
Computer Vision Laboratory

Robot Vision Systems
PhD course spring term 2015

Michael Felsberg

michael.felsberg@liu.se

mailto:michael.felsberg@liu.se


Goals 

• System design and programming in 

–OpenCV 3.0 rc1

–ROS (robot operating system) Indigo (Jade ?)

• focus part 1: visual computing

–basically same as OpenCV course 2012

–platform for own computational schemes and 

estimation methods

–own vision models and visual representations

• combining with high-level tools provided 

by OpenCV in the project part



Goals 

• lectures concentrate on the fundamental 

data structures and how to manipulate 

and extend those

• focus part 2: robot vision systems

–distributed computing with ROS

–efficient use of OpenCV in ROS

• access to robotic hardware is not part of 

the course – make use of available 

resources from your lab

• simulation as fallback



Prerequisites

• solid background in 

–mathematics (linear algebra, numerical 

methods)

–signal/image processing

–computer vision

–C++ programming

• own laptop with internet access and 

admin rights to install software

• camera supported by Ubuntu 14.04 

(15.04 ?)



Organization

• lectures

–core features of OpenCV 3.0

–systems basics in ROS Indigo (Jade ?)

• seminars

–participants present topics

–one seminar presentation required for credits

• exercises

–installation of OpenCV and ROS

–going through essential first steps

• project (example application)



Organization

• credits: 9hp if

–project work

–80% presence

–one seminar presentation

• without the project work: 6hp

• note: if you have participated in the 

course ‘visual computing with OpenCV’, 

you can only get 6hp (3hp without project)

• 'listen-only’: 0hp



Schedule

• lecture 1: course information and OpenCV

history. April 30, Thursday, 13.15 - 14.45

• exercise 1: installation of Ceemple: Eclipse, 

Python, and OpenCV. May, w19 Mon?

• lecture 2: dense matrices. May, w19 Wed?

• seminar 1 (topic 1-4). May, w20 Mon?

• lecture 3: methods on dense matrices. May, 

w20 Wed?



Schedule

• seminar 2 (topic 5-8). May, w21 Mon?

• lecture 4: sparse matrices and methods. May, 

w21 Wed?

• exercise 2: adding functionality to sparse 

matrices. May, w21 Thu?

• lecture 5: building your own representation. 

May, w22 Mon?

• exercise 3: build and test your own represen-

tation. May, w22 Wed?



Schedule

• lecture 6: good desgin principles, selection of 

projects. May, w22 Thu?

• lecture 7: rapid prototyping using Python. May, 

w23 Mon?

• exercise 4: Python: basics and prototyping using 

OpenCV. May, w23 Tue?

• lecture 8: debugging in OpenCV. May, 23 Thu?

• Part 2 (ROS) and final workshop (presentation of 

projects): Start in August, w33 or 34?



Seminars

1. classes (fundamentals)

2. classes (templates and namespaces)

3. vectors in STL (without iterators)

4. iterators in STL (mainly for vectors)

5. inheritance and virtual methods

6. exceptions

7. debugging: gdb

8. documentation with Doxygen



What is OpenCV?

• Open Source Computer Vision Library

• library of optimized algorithms (>2500)

• aimed at real-time computer vision

• developed by Intel, and now supported by 

Willow Garage and Itseez

• free for use under the open source BSD 

license

• cross-platform



History of OpenCV

• Intel Research Initiative

• Project launch 1999

• Related to Intel’s Performance Library 

(today: IPP, Integrated Performance 

Primitives)

• Looking for CPU-intensive applications

• Project goals

–Advance vision research by open and optimized 

infrastructure

–Disseminate vision knowledge with readable code

–Advance commercial applications



Versions
• alpha-release at CVPR 2000

• five beta-releases 2001-2005

• Version 1.0 2006

• Continuation of development by Willow 
Garage 2008 (pre-release version 1.1)

• Version 2.0 2009

• Versions 2.1, 2.2 2010

• Version 2.3 2011

• Version 2.4 2012-2014

• Version 3.0 beta November 2014

• Version 3.0 rc1 April 2015



Applications
• 2D and 3D feature toolkits

• Egomotion estimation

• Facial recognition system

• Gesture recognition

• Human–computer interaction (HCI)

• Mobile robotics

• Motion analysis

• Object detection and recognition

• Segmentation

• Stereo vision: depth perception from 2 cameras

• Structure from motion (SFM)

• Motion tracking



Machine Learning

• Boosting

• Decision tree learning

• Gradient boosting trees

• Expectation-maximization algorithm

• k-nearest neighbor algorithm

• Naive Bayes classifier

• Artificial neural networks

• Random forest

• Support vector machine (SVM)



Programming Languages

• Originally in C, since 2.0 also C++

• Wrappers to many other languages, a.o.

Python, Matlab, and Java, although 

sometimes a bit outdated

• Since 2010 CUDA-based GPU interface

• Many desktop platforms (Windows, Linux, 

FreeBSD, OpenBSD, Mac OS)

• Mobile platforms (Android, Maemo, iOS)

• Primary vision package for ROS (Robot 

Operating System)



Why Using OpenCV?

• Many algorithms (>2.500)

• Efficient implementations

• De-facto standard (>7.000.000 

downloads)

• Free to use

• Source code

• Quick bug-fixes

• Platform independent

• Rapid prototyping with Python



Decisions within Course

• ROS requires Ubuntu (Windows: 

VirtualBox)

• OpenCV option 1: Ceemple IDE (license will 

be provided)

–Platform independent 

–Based on Eclipse IDE (integration of g++, gdb, 

svn, doxygen)

–Includes OpenCV, Qt, OpenCL, Eigen, Boost, 

Dlib, etc.

–Aims at replacing Python (rapid prototyping in 

C++)



Decisions within Course

• OpenCV option 2: Ceemple for VS

–Requires Visual Studio Community (Windows) 

–Image Watch Extension and Project Wizard

–Includes OpenCV, OpenCL, etc.

–Qt etc might need to be installed separately

–Aims at replacing Python (rapid prototyping in 

C++)

• Python installation:

–Ubuntu: via package tool

–Windows: WinPython 3.4.3.2 (OpenCV 3) / 

2.7.9.4 (OpenCV 2.4)



How does CVL use OpenCV?

• Alternative to Matlab with mex-files

• Collaboration with other labs

• Combined with ICE or ROS for building 

distributed real-time systems

• Connected to hardware APIs (e.g. 

LadyBug3)

• Undergraduate courses: project work



Motivation to give Course

• Used from Matlab: calculate with image data

• Images are matrices, thus entities in 

computations

• OpenCV 2/3 uses Mat for both images and 

matrices

• Support for doing calculations is limited, in 

particular on sparse data

• Gained knowledge on both cross-platform 

development and extending Mat-capabilities: 

to be shared!



Links
• http://www.ceemple.com/buy/ (license for course 

exists)

• http://sourceforge.net/projects/winpython/files/WinPyt
hon_3.4/3.4.3.2/

• http://www.robotappstore.com/Knowledge-
Base/ROS-Installation-for-Windows-Users/137.html

• http://releases.ubuntu.com/14.04.2/ubuntu-14.04.2-
desktop-amd64.iso

• http://download.virtualbox.org/virtualbox/4.3.20/Virtua
lBox-4.3.20-96997-Win.exe

• -install Ubuntu in a new virtual machine (16 GB)

• -resolution will initially be poor; install Guest Additions 
by clicking 'devices' in the Virtual Machine

• http://wiki.ros.org/indigo/Installation/Ubuntu

http://www.ceemple.com/buy/
http://sourceforge.net/projects/winpython/files/WinPython_3.4/3.4.3.2/
http://www.robotappstore.com/Knowledge-Base/ROS-Installation-for-Windows-Users/137.html
http://releases.ubuntu.com/14.04.1/ubuntu-14.04.1-desktop-amd64.iso
http://download.virtualbox.org/virtualbox/4.3.20/VirtualBox-4.3.20-96997-Win.exe
http://wiki.ros.org/indigo/Installation/Ubuntu


OpenCV without Ceemple

• Windows: 

http://www.cvl.isy.liu.se/education/graduate/o

pencv/opencv-installation-windows

• Mac: 

http://www.cvl.isy.liu.se/education/graduate/o

pencv/opencv-installation-mac-os

• Linux (Fedora): 

http://www.cvl.isy.liu.se/education/graduate/o

pencv/opencv-installation-linux

http://www.cvl.isy.liu.se/education/graduate/opencv/opencv-installation-windows
https://www.cvl.isy.liu.se/education/graduate/opencv/opencv-installation-mac-os
https://www.cvl.isy.liu.se/education/graduate/opencv/opencv-installation-linux

