
Computer Vision Laboratory

Robot Vision Systems
Lecture 6: Rapid prototyping in OpenCV

using Python and Ceemple

Michael Felsberg

michael.felsberg@liu.se

mailto:michael.felsberg@liu.se

Computer Vision Laboratory

Python

• General purpose programming language

• Interpreted high-level language

• Readability: clear and expressive syntax

• Large standard library

• Multiple programming paradigms, a.o. OO

• Reference implementation CPython free and

open source

• Version 3 can be used with OpenCV 3

• Integrated in Eclipse by means of PyDev

Computer Vision Laboratory

Interactive Workspace

Computer Vision Laboratory

Interactive Workspace

Computer Vision Laboratory

Interactive Workspace

Computer Vision Laboratory

Open Console

Computer Vision Laboratory

Import NumPy

Computer Vision Laboratory

NumPy

• Python extension

• Multi-dimensional arrays

• High-level functions

• Similar to MATLAB, but more modern

• Also based on LAPACK

• Further extensions by means of SciPy and

Matplotlib (native SVG support!)

• OpenCV Mat are wrapped to NumPy arrays

Computer Vision Laboratory

Example

• x = linspace(0,2*pi,100)

• y = sin(x)

• Better use ‘import numpy’ and explicitly

writing numpy.sin(x) etc

• Result can be plotted:

–from matplotlib import pyplot

–pyplot.plot(x, y)

–pyplot.show()

Computer Vision Laboratory

Using OpenCV in Python

• OpenCV functions are in Python module cv2

– import cv2

• OpenCV1 is no longer supported

• Use autoexpand in Eclipse and search in
documentation to find function names

• Problem with Ceemple: missing Python bindings

– Install Python: WinPython (Windows) or via apt-get

–Download OpenCV 3 (binary (Windows) or build (*), see
http://milq.github.io/install-opencv-ubuntu-debian/)

–Copy cv2.pyd to Lib\site-packages (Windows) or cv2.so to
/usr/local/lib/python2.7/site-packages
(*) experimental: copy first /opt/ceemple/lib/* to build/lib/
before running “make opencv_python2”

Computer Vision Laboratory

Example: Read form Cam

–capture = cv2.VideoCapture(0)

–[status,img] = capture.retrieve()

–cv2.imshow("camera",img)

–cv2.waitKey(0)

–cv2.destroyAllWindows()

• Note that status contains binary flag

• Without waitKey(0), window will not be

created (0 means: infinitely long)

Computer Vision Laboratory

Example: Color Edges

–h2 = numpy.array([[-1.0, 0 , 1]]).T.dot(

numpy.array([[1, 2, 1]]))

–edgex = cv2.filter2D(img, cv2.CV_32F, h2.T)

–edgey = cv2.filter2D(img, cv2.CV_32F, h2)

–mag = cv2.magnitude(edgex,edgey)

–cv2.imshow("camera",

cv2.convertScaleAbs((255.0/mag.max())*mag))

–cv2.waitKey(0)

–cv2.destroyAllWindows()

• Note that magnitude only works with floats

Computer Vision Laboratory

Generating Scripts

• As in MATLAB: just pipe your command line

commands into a text-file

• Suffix: .py

• You may run the script from command-line by

python my_script.py

Computer Vision Laboratory

Generating Projects

Computer Vision Laboratory

Package and Modules

• A PyDev project is just a container for

packages

• Packages correspond (in a certain way) to

C++ namespaces and are containers for

modules

–Next step: generate package

• Modules correspond to .cpp files and are

containers for functions and scripts

–Next step: generate module (‘main’) and add code

Computer Vision Laboratory

Prototyping in Ceemple

• No interactive console (drawback or
advantage?)

• Only on Windows (drawback)

• Same syntax (advantage)

• Matplotlib is not available (drawback)

• Weak support for debugging of Mat
(drawback)

• Not all math available (drawback)

• Faster execution (advantage)

• No extra testing needed (advantage)

