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Python

• General purpose programming language

• Interpreted high-level language

• Readability: clear and expressive syntax

• Large standard library

• Multiple programming paradigms, a.o. OO

• Reference implementation CPython free and 

open source

• Version 3 can be used with OpenCV 3

• Integrated in Eclipse by means of PyDev
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Open Console
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Import NumPy
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NumPy

• Python extension

• Multi-dimensional arrays

• High-level functions

• Similar to MATLAB, but more modern

• Also based on LAPACK

• Further extensions by means of SciPy and 

Matplotlib (native SVG support!)

• OpenCV Mat are wrapped to NumPy arrays
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Example

• x = linspace(0,2*pi,100)

• y = sin(x)

• Better use ‘import numpy’ and explicitly

writing numpy.sin(x) etc

• Result can be plotted:

–from matplotlib import pyplot

–pyplot.plot(x, y)

–pyplot.show()
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Using OpenCV in Python

• OpenCV functions are in Python module cv2

– import cv2

• OpenCV1 is no longer supported

• Use autoexpand in Eclipse and search in 
documentation to find function names

• Problem with Ceemple: missing Python bindings

– Install Python: WinPython (Windows) or via apt-get

–Download OpenCV 3 (binary (Windows) or build (*), see  
http://milq.github.io/install-opencv-ubuntu-debian/)

–Copy cv2.pyd to Lib\site-packages (Windows) or cv2.so to 
/usr/local/lib/python2.7/site-packages
(*) experimental: copy first /opt/ceemple/lib/* to build/lib/ 
before running “make opencv_python2”
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Example: Read form Cam

–capture = cv2.VideoCapture(0)

–[status,img] = capture.retrieve()

–cv2.imshow("camera",img)

–cv2.waitKey(0)

–cv2.destroyAllWindows()

• Note that status contains binary flag

• Without waitKey(0), window will not be 

created (0 means: infinitely long)
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Example: Color Edges

–h2 = numpy.array([[-1.0, 0 , 1]]).T.dot(

numpy.array([[1, 2, 1]]))

–edgex = cv2.filter2D(img, cv2.CV_32F, h2.T)

–edgey = cv2.filter2D(img, cv2.CV_32F, h2)

–mag = cv2.magnitude(edgex,edgey)

–cv2.imshow("camera",

cv2.convertScaleAbs((255.0/mag.max())*mag))

–cv2.waitKey(0)

–cv2.destroyAllWindows()

• Note that magnitude only works with floats
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Generating Scripts

• As in MATLAB: just pipe your command line 

commands into a text-file

• Suffix: .py

• You may run the script from command-line by 

python my_script.py
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Generating Projects
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Package and Modules

• A PyDev project is just a container for 

packages

• Packages correspond (in a certain way) to 

C++ namespaces and are containers for 

modules

–Next step: generate package

• Modules correspond to .cpp files and are 

containers for functions and scripts

–Next step: generate module (‘main’) and add code
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Prototyping in Ceemple

• No interactive console (drawback or 
advantage?)

• Only on Windows (drawback)

• Same syntax (advantage)

• Matplotlib is not available (drawback)

• Weak support for debugging of Mat 
(drawback)

• Not all math available (drawback)

• Faster execution (advantage)

• No extra testing needed (advantage)


