
Computer Vision Laboratory

Robot Vision Systems
Lecture 7: Good Design Principles

Michael Felsberg

michael.felsberg@liu.se

mailto:michael.felsberg@liu.se

Computer Vision Laboratory

• software engineering discipline

• detailed creation of working, meaningful

software through a combination of

–coding

–verification

–unit testing

–integration testing

–debugging

Software Construction

Computer Vision Laboratory

Why is software construction

important?
• large part of software development

• central activity in software development

• focus on construction: individual

programmer’s productivity improves

• product, the source code, is often the only

accurate description of the software

• the only activity that’s guaranteed to be done

Computer Vision Laboratory

Key Construction Decisions

• programming language’s strengths and

weaknesses: be aware of!

• establish programming conventions before

you begin programming

• more practices exist than you can use:

consciously choose the best suited one

• are practices a response to the

programming language or controlled by it?

• program into the language, rather than in it

Computer Vision Laboratory

Design in construction

• primary: managing complexity - greatly

aided by simplicity:

–minimize the amount of essential complexity to

deal with

–keeping accidental complexity from growing

• heuristic; Dogmatic adherence hurts

creativity and programs

• iterative; try design possibilities

• information hiding: “What should I hide?”

Computer Vision Laboratory

Desirable characteristics of a

design

• Minimal complexity

• Ease of maintenance

• Loose coupling

Computer Vision Laboratory

Desirable characteristics of a

design

• Extensibility

• Reusability

• High fan-in

• Low-to-medium fan-out

Computer Vision Laboratory

Desirable characteristics of a

design

• Portability

• Leanness

• Stratification

• Standard techniques

Computer Vision Laboratory

Working classes

• primary tool for managing complexity

• interfaces should

–provide a consistent abstraction

–hide something

• containment is usually preferable to

inheritance

–unless modeling an “is a” relationship

Computer Vision Laboratory

Working classes

“If inheritance is a chain saw, multiple

inheritance is a 1950s-era chain saw with

no blade guard, no automatic shutoff, and a

finicky engine. There are times when such a

tool is valuable; mostly, however, you’re

better off leaving the tool in the garage

where it can’t do any damage.”

Computer Vision Laboratory

High-Quality Routines

• creating a routine is to improve the

intellectual manageability of a program

• put simple operations into a routine of its

own

• name of a routine: indication of its quality

Computer Vision Laboratory

High-Quality Routines

• primary purpose of a function is to return the

specific value described by its name

• use macro routines only as a last resort

Computer Vision Laboratory

Defensive Programming

• a routine is passed bad data, it won’t be

hurt, even if it is another routine’s fault

• programs have problems and modifications,

the programmer develops code accordingly

• parts with dirty data and parts with clean

data: relieve majority for checking data

• more sophisticated way than “garbage in,

garbage out”

Computer Vision Laboratory

Defensive Programming

• errors easier to find, to fix, and less

damaging

• assertions detect errors early, in large +

high-reliability systems; fast-changing code

• how to handle bad inputs is a key decision:

error-handling and high-level design

• exceptions: handling errors in a different

dimension from the normal flow of the code

Computer Vision Laboratory

General issues in using variables

• initialize variables when declared to avoid

unexpected initial values

• minimize the scope variables and keep it

local to a routine or a class

• cluster statements with the same variables

• early binding: reduce flexibility & complexity

late binding: increase flexibility & complexity

• each variable for one and only one purpose

Computer Vision Laboratory

The power of variable names

• key element of readability; specific kinds

require specific considerations

• as specific as possible - vague / general

names for multi-purpose = bad names

• conventions: local, class, global data;

distinguish type names, named constants,

enumerated types, and variables

• adopt convention, depending on size of

program and the number of programmers

Computer Vision Laboratory

The power of variable names

• abbreviations rarely needed

• use project dictionary or standardized

prefixes approach

• favor read-time convenience over write-time

convenience

Computer Vision Laboratory

Guidelines for making use of

numbers less error-prone

• use named constants instead of “magic

numbers”

• the only literals that should occur in the

body of a program are 0 and 1

• prevent divide-by-zero error

• make type conversions obvious

Computer Vision Laboratory

Guidelines for making use of

numbers less error-prone

• avoid mixed-type comparisons and do the

conversion manually

• heed compiler’s warnings

• eliminate all compiler warnings

Computer Vision Laboratory

Creating types

• own types make programs easier to modify

and self-documenting

• refer to represented problem part

• consider new class instead of typedef

• avoid predefined types

• don’t redefine predefined types

Computer Vision Laboratory

Unusual data types

• structures make programs less complicated,

easier to understand and to maintain

• consider class instead of structure

• pointers are error-prone, protect yourself!

• avoid global variables

• use access routines for global variables

Computer Vision Laboratory

Organizing straight-line code

• strongest principle: ordering dependencies

• make dependencies obvious through routine

names, parameter lists, comments, and

housekeeping variables

• in absence of order dependencies, keep

related statements close together

Computer Vision Laboratory

Using conditionals

• if-else statements: pay attention to the order;

make sure the nominal case is clear

• if-then-else chains and case statements:

choose an order that maximizes readability

• trap errors: default clause (case) or last else

(if-then-else)

• choose control construct that’s most

appropriate for each section of code

Computer Vision Laboratory

Controlling loops

• keep loops simple for readability

–avoid exotic kinds of loops

–minimizing nesting

–clear entries and exits

–keep housekeeping code in one place

• name indexes clearly; only one purpose

• verify normal operation under each case

and termination under all conditions

Computer Vision Laboratory

Unusual control structures

• use multiple returns carefully for

–enhancing readability and maintainability

–preventing deeply nested logic

• use recursion carefully

• use gotos only as last resort

–enhancing readability and maintainability

Computer Vision Laboratory

Table-driven methods

• alternative to complicated logic and

inheritance structures

• key1: access

–direct access

–indexed access

–stair-step access

• key2: contents

Computer Vision Laboratory

Debugging

1. understand the problem

2. fix it; avoid random guesses & corrections

• use compiler at pickiest level and fix the

reported errors

• use

–debugging tools

–your brain

Computer Vision Laboratory

Self-documenting code

• poor commenting is a waste of time

• source code

–contains most of the critical information

–most likely to be kept current

• improve the code so that it does not need

extensive comments

• comments at summary or intent level;

things that the code cannot say about itself

• commenting style that is easy to maintain

Computer Vision Laboratory

Layout and style

• illuminate the logical organization

–accuracy

–consistency

–readability

–maintainability

• looking good is secondary

• follow some (any) convention consistently

• objective vs subjective preferences

Computer Vision Laboratory

Additional resources

• Code Complete, Steve McConnel, Microsoft

press

• Google C++ Style Guide,

http://code.google.com/p/google-styleguide/

• The OpenCV Coding Style Guide,

http://code.opencv.org/projects/opencv/wiki/

CodingStyleGuide

