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Fixed-pattern noise (FPN), which is caused by the nonuniform opto-electronic responses of microbolometer focal-
plane-array (FPA) optoelectronics, imposes a challenging problem in infrared imaging systems. In this paper, we
successfully demonstrate that a better single-image-based non-uniformity correction (NUC) operator can be
directly learned from a large number of simulated training images instead of being handcrafted as before.
Our proposed training scheme, which is based on convolutional neural networks (CNNs) and a column FPN
simulation module, gives rise to a powerful technique to reconstruct the noise-free infrared image from its cor-
responding noisy observation. Specifically, a comprehensive column FPNmodel is utilized to depict the nonlinear
characteristics of column amplifiers in the readout circuit of FPA. A large number of high-fidelity training images
are simulated based on this model and the end-to-end residual deep network is capable of learning the intrinsic
difference between undesirable FPN and original image details. Therefore, column FPN can be accurately
estimated and further subtracted from the raw infrared images to obtain NUC results. Comparative results with
state-of-the-art single-image-based NUC methods, using real-captured noisy infrared images, demonstrate that
our proposed deep-learning-based approach delivers better performances of FPN removal, detail preservation,
and artifact suppression. © 2018 Optical Society of America

OCIS codes: (100.2550) Focal-plane-array image processors; (100.2980) Image enhancement; (110.4280) Noise in imaging sys-

tems; (110.3080) Infrared imaging; (100.4996) Pattern recognition, neural networks; (100.3010) Image reconstruction techniques.
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1. INTRODUCTION

Microbolometer focal plane arrays (FPAs) are the key compo-
nent of modern uncooled infrared imaging systems. The
operating principle of microbolometer detectors is that the
temperature variation caused by the absorption of infrared
radiation leads to a change in electrical resistance of the bolom-
eter material. A two-dimensional (2D) thermal image is then
generated by translating the changes in resistance of each
microbolometer detector in FPA into a time-accumulated elec-
trical signal [1]. However, the radiometric accuracy of FPA is
adversely affected by the responsive nonuniformity of the
detectors in the array. Such nonuniformity typically manifests
itself as undesirable fixed-pattern noise (FPN) in the raw infra-
red data, which is particularly severe in uncooled long-wave
infrared imaging systems. The existence of complex FPN
significantly decreases performances of infrared applications

such as energy assessment, thermal analysis, and medical
diagnosis.

Figure 1(a) illustrates the structures of FPA, which include a
detector array, column-parallel blind bolometers, column-parallel
accumulators, and column-parallel analog-to-digital converters
(ADCs) [1,3,4]. The column-parallel blind bolometers provide
references for extracting small thermal signals from severe
background noise. The photo-induced electric signals are accu-
mulated in the integrators, then read out through the corre-
sponding column ADCs under the control of the sequential
circuit [3]. It is noted that characteristics of reference bolometers
and ADCs in different columns are not perfectly uniform, and
such nonuniformity of the readout circuit will introduce vertical
noise strips as shown in Fig. 1(b). Effective removal of this
common type of FPN is a critical step to improve the radiometric
accuracy of captured infrared data as shown in Fig. 1(c).
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Accordingly, many strip nonuniformity correction (NUC) algo-
rithms have been proposed to suppress column FPN while pre-
serving thermal details [3–10]. However, the above-mentioned
NUC methods exhibit a number of limitations as follows: (1)
infrared images typically contain a substantial amount of low-
magnitude signals, therefore it is difficult to remove strong strip
noise without blurring thermal details; (2) the intensity adjust-
ment operation (e.g., Midway Histogram Equalization [2,5])
usually introduces some obvious artifacts into the NUC results;
(3) most of these methods contain many parameters that require
fine-tuning to achieve satisfactory NUC performance for a par-
ticular input image.

In recent years, the deep-learning technique has been suc-
cessfully applied to solve image restoration problems (e.g.,
super-resolution [11], deblurring [12], and in-painting [13])
and has achieved breakthrough improvements. In this paper,
we made the attempt to learn a better performing strip NUC
operator from a large number of simulated training images.
Compared with existing handcrafted NUC methods, our
single-image-based method has many desirable advantages in-
cluding artifact-free noise reduction, better detail preservation,
and no user-specific parameters. A comprehensive column FPN
model, which characterizes column-wise nonuniformity in the

readout circuit of FPA, is utilized to simulate a large number of
training image pairs (infrared images with and without simu-
lated column FPNs). The training images are then fed into
our end-to-end deep network architecture to reconstruct the
residual information between noisy and noise-free images.
Instead of learning the mapping relationship between noisy
and noise-free pairs [14], our network aims to reconstruct
the residual information (i.e., column FPN) first and then sub-
tracts it from the raw image to generate the NUC output. This
residual learning strategy is proven effective for achieving better
FPN removal performance. Moreover, we employ pooling and
deconvolution layers in our architecture to enable both a large
receptive field and computation cost reduction. The workflow
of our proposed single-image deep-learning-based strip NUC
method (DLS-NUC) is illustrated in Fig. 2. The contributions
of our work include:

• We present a unified framework, which combines a col-
umn FPN simulation module with convolutional neural net-
works (CNNs), to train the optimal model for column FPN
correction of infrared images. To the best of our knowledge,
it is the first work revealing that NUC model trained using
simulated data can be successfully employed to handle real-
captured infrared images with column FPN.

Fig. 1. Column-parallel reference bolometers and ADCs in infrared FPA have different characteristics and will cause obvious column FPN.
(a) Block diagram of uncooled long-wave infrared FPA. (b) A raw infrared image with severe column FPN. (c) NUC result of our method. It
is noted that without proper noise compensation, objects in a raw image are difficult to recognize. The raw image is available under the
Creative Commons Attribution (CC-BY) license [2].

Fig. 2. Workflow of our proposed DLS-NUC method. A column FPN model is adopted to generate substantial training pairs. Our DLS-NUC
method embeds end-to-end CNNs to learn the intrinsic difference between undesirable FPN and original image details. The estimated column FPN
is subtracted from the noisy image to obtain NUC results. Conv, Deconv, and Concat denote convolutional, deconvolution, and concatenation
layers, respectively. Conv�k,w, p� indicates that this convolutional operation takes w kernels of size k × k on the images/feature maps with padding p.
Please note that our residual network attempts to reconstruct FPN signals instead of the noise-free image. Such a residual learning strategy leads to
better performances of noise reduction and detail preservation. All images are normalized to the 0–1 range for visualization.
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• We design a residual network architecture with a large
receptive field to accurately distinguish between undesirable
FPNs and the original thermal details. Compared with state-
of-the-state single-image-based NUC solutions, our DLS-NUC
achieves artifact-free noise reduction, better detail—preservation,
and has no user-specific parameters.

2. RELATED WORK

The traditional NUC methods are typically divided into
two main categories: calibration-based and scene-based. The
calibration-based techniques [15,16], which are based on
uniform temperature references (e.g., shutter or blackbody),
are widely applied in some commercial infrared cameras.
However, they periodically freeze image capturing for a few sec-
onds and are not suitable for dynamic infrared application [17].
To overcome this limitation, many scene-based NUC tech-
niques, based on different working principles such as statistic
analysis [18,19], algebraic computation [20–22], temporal
registration [23], or Kalman filtering [24,25], have been pro-
posed. A noticeable limitation of many scene-based methods is
that they typically require multiple frames and are not appli-
cable to single-frame images with FPNs. Moreover, “ghosting”
artifacts will appear in the current frame if the image sequence
does not contain enough scene motions. It is also worth men-
tioning that the above methods are developed for slowly drift-
ing spatial nonuniformity and cannot achieve satisfactory
results for column FPN removal [6,7,26].

Münch et al. [27] developed a de-stripping method based on
wavelet decomposition and Fourier transform (WD-FT). Strip
noise is filtered out in the Fourier domain of wavelet vertical
components. Qian et al. [7] applied a threshold to distinguish
the difference between image edges and column FPN. In the
extracted non-edge area, the optimal NUC parameters are com-
puted to minimize the energy of horizontal gradients. However,
this threshold-based method will falsely remove weak thermal
details while preserving strong strip noise in low-textured infra-
red images [28]. In [29], the NUC problem is translated into a
gradient-constrained optimization problem, which aims to
compute the optimal image in which the energy of horizontal
gradients is as small as possible while the vertical gradients
are similar to the ones of the original image. Tendero et al.
[2,5] assumed that the difference between two adjacent
columns is statistically small and then applied Midway
Histogram Equalization (MHE) to adjust intensities of pixels
within a column. MHE-based NUC does not need to separate
column FPN from thermal details, and can therefore effectively
remove FPN without blurring details. However, it is prone to
generating false artifacts. In [9], a local linear model is used to
depict the relationship between column FPN and thermal
radiation. A 1D row guided filter is applied to perform
edge-preserving image smoothing in the horizontal direction,
while a 1D column guided filter is applied to separate column
FPN from other high-frequency signals (edges and textures).
Although this method can achieve a good balance between
noise removal and detail preservation, still some vertical struc-
tures are falsely removed from its NUC results.

Stripe noise removal convolutional neural network
(SNRCNN) presented by Kuang et al. [14] is by far the most

relevant method found in the literature to our research work.
This deep-learning-based method involved three convolutional
layers and performed well on images with simulated strip noise.
However, SNRCNN was trained using visible images only and
did not consider the natural differences between infrared and
visible images (e.g., infrared images are low textured, and sig-
nificant column FPN is visually more obvious than the weak
thermal details), its performance drops significantly when
applied to real-captured infrared images with column FPN.
In comparison, our DLS-NUC model employs a comprehensive
column FPN model to simulate high-fidelity training data and
can successfully handle real-captured infrared images. Moreover,
SNRCNN attempts to directly learn the complex mapping
relationship between noisy and noise-free images, which is dif-
ficult to train, while our proposed residual deep network model
aims to reconstruct the residual information (column FPN). The
latter is proven effective for achieving higher image restoration
accuracy. Finally, three-layer SNRCNN only considers informa-
tion within a small receptive field, which is not sufficient to
restore original image details. On the contrary, pooling and
deconvolution layers are added into our DLS-NUC architecture
to enable both a large receptive field and computation cost
reduction.

3. METHODOLOGY

Our proposed single-image-based DLS-NUC method consists
of a column FPN simulation module and a residual deep net-
work. Its workflow is illustrated in Fig. 2. A comprehensive
column FPN model is derived to characterize spatial nonuni-
formity in the readout circuit of FPA. Based on this model, a
large number of high-fidelity training images are simulated and
fed to a residual network model with a large receptive field to
accurately distinguish between undesirable FPN and the origi-
nal thermal details. The estimated residual information (i.e.,
column FPN) is subtracted from the raw infrared image to
obtain NUC results.

A. Training Data Simulation
It is important to simulate a large number of high-fidelity
training image pairs (infrared image patches with and without
simulated FPNs) to train the optimal deep network model
for column FPN correction of real-captured infrared images.
Previously, a number of noise models have been presented
to characterize the relationship between column FPN and ther-
mal radiation. A simple offset model is used to simulate column
FPN in [14]. In [3,6], a linear correction model is utilized to
normalize column-wise pixel outputs for strip NUC. Cao and
Li [8] designed a series of thermal calibration experiments and
revealed that thermal responses and strip noise terms of pixels
within a column can be characterized by a quadratic curve
model. In this paper, we employ a comprehensive column
FPN model that incorporates the above-mentioned column
FPN models.

Let V �i, j� be the thermal response of a detector �i, j� on the
FPA, and then the column FPN S�i, j� caused by spatial non-
uniformity of column-parallel readout circuits can be character-
ized by a nonlinear function G as

S�i, j� � G�V �i, j��, (1)
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where we make use of a polynomial model of degree M to
approximate the nonlinear function G, and the FPN compo-
nent of pixel �i, j� becomes

S�i, j� � aMj V M �i, j� � aM−1
j V M−1�i, j� � � � � � a0j , (2)

where aMj , aM−1
j …a0j are the column-fixed polynomial coeffi-

cients. It is worth mentioning that our column FPN model
adaptively incorporates other noise models mentioned above
[3,6,8,14,30]. Specifically, when aMj � aM−1

j � � � � a3j � 0,
Eq. (2) becomes the second-order polynomial model adopted
in [8]. When aMj � aM−1

j � � � � a2j � 0, it becomes a linear
model [3,6]. When aMj � aM−1

j � � � � a1j � 0, it presents a
simple offset model used in [14,30]. Through adjusting the
values of polynomial coefficients, our model can simulate
different types of column FPNs. In our implementation,
aMj , aM−1

j � � � a0j are randomly assigned to values in the interval
between −0.1 and 0.1. A critical parameter of this column FPN
model is the degree number M. The comparative results using
FPN models of different degree numbers are provided and dis-
cussed in Section 3.C. The experimental results demonstrate
that setting M � 3 provides a good balance between complex-
ity and performance.

Based on the derived column FPN model, we generate a
large number of training image patches. We make use of a com-
mercial uncooled long-wave infrared camera (Xenics Gobi-
640-GigE) to capture 100 high-resolution (640 × 480) infrared
images for training and another 20 images for testing. Then the
images are cropped into sub-images with a size of 54 × 54, and
data augmentation methods (left-to-right flip, rotation, and
scale) are applied to expand the number of training samples.
For each noise-free image patch V , we add simulated column
FPN S computed based on Eq. (2) to generate its noisy version
I � V � S. Please note that each simulated noisy image patch
has a unique pattern of column FPNs. In total, 192,384 pairs of
image patches with and without simulated column FPNs are
collected to build up the training dataset for our residual deep
network. Some sample training image pairs are shown in Fig. 3.
Using such a large training dataset covering different FPN pat-
terns to train a deep network model will significantly boost the
robustness of image restoration and enable its application on
real-captured infrared images.

B. Deep Network Architecture
As illustrated in Fig. 2, our residual network consists of three
consecutive operations including feature extraction, nonlinear
mapping, and image reconstruction. The feature extraction op-
eration takes noisy image patches as input and then outputs a

high-dimensional matrix which contains a set of feature maps.
The nonlinear mapping operation transfers the high-dimensional
matrix to another matrix through nonlinear functions. In this
step, a pooling layer is employed to simultaneously enlarge
the receptive field and reduce the computational cost. To
increase the nonlinearity, N convolutional layers are followed
by N − 1 rectified linear unit (ReLU) activation functions.
Finally, the reconstruction operation utilizes a concatenation
layer to fuse the feature maps before and after pooling layers
to alleviate information loss during the downsampling. The fused
feature maps are aggregated to generate the final output.

In each training image pair �I ,V �, I denotes the input noisy
image and V denotes the noise-free reference image, as illus-
trated in Fig. 2, the feature extraction operation employs a
convolutional layer to extract high-dimensional features as

F 0 � W 0 � I � B0, (3)

where W 0 and B0 indicate the filtering weights and biases, re-
spectively, and * denotes the convolution operation. Here, W 0

corresponds to w filtering kernels of size k × k, and B0 corre-
sponds to w biases. Intuitively, W 0 applies w convolutions on
the image, and each convolution has a kernel size k × k with
padding p. Each convolution result is added with correspond-
ing bias. Note that the output F 0 consists of w feature maps. In
our implementation, we set p � 1

2 �k − 1� to avoid size reduc-
tion of feature maps. All convolutional layers in our DLS-NUC
share the same setting of p. In addition, the stride of
convolution operation is set to 1.

The output of feature extraction operation is then fed to a
max pooling layer. The downsampling operation resizes ex-
tracted feature maps with a resizing ratio r as

F 0
0 � ↓r�F 0�, (4)

where F 0
0 denotes the resized feature maps after the pooling

layer, and ↓r means a downsampling operation with a scale fac-
tor r. There are two main advantages in employing this down-
sampling operation. First, it accelerates the restoration process,
since the processing cost of a smaller-size image in subsequent
convolutional layers will be reduced by a factor of r2. Second,
it enlarges the receptive fields of the subsequent layers by r2

times and incorporates more neighborhood information to
achieve high-accuracy restoration. We will evaluate the impacts
of this pooling layer design later in Section 3.C.

N convolutional layers are embedded in the architecture to
perform nonlinear mapping of feature maps as

F 0
i �max�0,W i�F 0

i−1�Bi�, i∈f1,2,…,N −1g, (5)

F 0
N � WN � F 0

N−1 � BN , (6)

where F 0
i denotes the output feature maps of i-th convolution,

and W i and Bi indicate the filtering weights and biases of the
ith convolution, respectively. We apply a ReLU activation func-
tion (i.e., max�0, x�) [31] after each convolution operation to
increase the nonlinearity of the decision function. Then we uti-
lize a deconvolution layer to upsample the feature maps with
the same factor r as

FN � ↑r�F 0
N �, (7)

where FN denotes the resized feature maps after the deconvo-
lution layer, and ↑r means an upsampling operation with a scale

Fig. 3. Some training pairs (54 × 54 resolution). Top: image with
simulated column FPN. Bottom: corresponding noise-free image.

D158 Vol. 57, No. 18 / 20 June 2018 / Applied Optics Research Article



factor r. Due to the deployment of the pooling layer, some de-
tailed information is unavoidably lost in the feature map FN .
As an effective remedy, we combine the feature maps from
low-resolution space FN with the feature maps from original
space F 0 in the reconstruction step as

F fusion � �F 0; FN 	, (8)

where the concatenated output F fusion contains 2 � w feature
maps. Finally, we apply a convolution layer Conv�k, 1, p� with
w � 1 to reconstruct the residual information between I and
V as

S � W c � F fusion � Bc , (9)

whereW c and Bc indicate the filtering weights and biases of the
reconstruction convolution, respectively. This residual learning
strategy has been successfully applied to reduce the convergence
time and improve the performance [32]. More evaluation
results are presented in Section 3.C. The final predicted
noise-free image P is calculated by subtracting the recon-
structed column FPN S from the input noisy image I ,

P � I − S, (10)

and our objective function is defined as

L � kP − V k1, (11)

where k · k1 denotes the L1 norm. Training is carried out by
minimizing the above-mentioned loss function using a mini-
batch gradient descent based on backpropagation. Our goal
is to learn a model with the optimal parameters (W and B)
that can estimate a P as close as possible to its corresponding
V . The mean squared error (MSE) or L2 is the most widely
used loss function for image restoration problems. However,
L2 correlated poorly with human observations for image quality
assessment [33]. In DLS-NUC, we make use of a L1 loss
function to drive our learning.

C. More Analysis
In this section, we evaluate how each significant component
of our DLS-NUC method contributes to performance.
Specifically, we examine the impact of three components, in-
cluding the column FPN model, pooling/deconvolution layers,
and residual learning strategy.

1. Column FPN Model
The degree number M of the column FPN model is a critical
parameter that determines the complexity of a simulated train-
ing dataset. We experimentally evaluate the performances of
five alternatives using different degree numbers. Specifically,
we generate five different training datasets using (a) an offset
model (M � 0) [14,30], (b) a linear model (M � 1) [3,6,9],

(c) a quadratic model (M � 2) [8], (d) a cubic model (M � 3),
and (e) a quartic model (M � 4), respectively. Then we train
five network models and evaluate them on 20 testing images
with column FPN simulated using these five different models.
For a fair comparison, we adopt the same deep network archi-
tecture and make the size of the training dataset equal. The
comparative results in terms of peak signal-to-noise ratio
(PSNR) values are shown in Table 1. It is noted that a network
model trained using simulated data of the noise model with
larger M always achieves a higher PSNR value. A more
comprehensive model provides more complex column FPN
patterns, and thus its trained network model has a better
expressive/generalization ability. However, the improvement
becomes insignificant when M is larger than 3. In Fig. 4 we
also show some comparative NUC results of using different
column FPN models. In our implementation, we set M � 3
to achieve a good balance between model complexity and good
performance.

2. Pooling/Deconvolution Layers
In deep neural networks, the receptive field determines how
many neighboring pixels in the input layer are considered to
restore lost information. For the task of strip NUC, a reason-
ably large receptive field is utilized to capture global informa-
tion for accurate reconstruction of column FPN. Two common
solutions to enlarge the receptive field include using large ker-
nels and stacking more layers; however, both need to employ
more parameters and adversely increase the runtime of deep
network models.

Another feasible solution is to add pooling layers, which was
originally presented by Simonyan and Zisserman [34] and
He et al. [32]. In this paper, we employ a pooling layer to
enlarge the receptive field and a deconvolution layer to restore
the original spatial resolution, respectively. The feature maps
extracted in the low-resolution space are fused with ones
extracted in the original space to preserve image details.
Moreover, performing feature extraction on low-resolution
spaces will increase the processing speed. In Fig. 5, we show
network architectures with (DLS-NUC) and without (DLS-
NUC Plain) pooling/deconvolution layers. Their architecture
settings are listed in Table 2. It is noted that our DLS-NUC
can achieve a significantly larger receptive field with the same
number of convolutional layers.

As illustrated in Fig. 6, DLS-NUC effectively removes
significant column FPN. In comparison, some obvious strips
are still visible in the result of the DLS-NUC plain. For
runtime comparison, we execute both models 10 times and
compute their average processing times. These experiments
are performed in Matlab R2015b without optimizations or

Table 1. PSNR Values of Different Trained Models Applied to Different Simulated Datasets (Unit: dB)a

Models\Datasets Sim. with A Sim. with B Sim. with C Sim. with D Sim. with E Average

Trained with A 39.71 39.92 39.89 40.23 39.90 39.93
Trained with B 39.97 40.07 40.24 40.53 40.31 40.22
Trained with C 39.98 40.08 40.25 40.55 40.33 40.24
Trained with D 40.00 40.11 40.30 40.62 40.38 40.28
Trained with E 40.01 40.12 40.31 40.62 40.40 40.29

aSim. with A denotes a dataset containing noisy testing images simulated with noise model A. The average of these 5 datasets are also provided.
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parallel-computing implementation on a PC equipped with an
Intel Core i7-6820HK CPU (2.70 GHz) and 16 GB memory.
It is worth mentioning that DLS-NUC still achieves a faster
running speed, although it contains three extra layers (pooling,
deconvolution, and concatenation). This is because the process-
ing times of a smaller-size image in subsequent convolutional
layers are significantly reduced by a factor of r2.

3. Residual Learning
With the increase of the network depth, the training process
becomes more difficult due to the gradient exploring/vanishing
problem [32]. In this paper, we first introduce the residual
learning strategy to the context of deep-learning-based
NUC. Instead of reconstructing the noise-free image [14],

we attempt to compute the residual information and subtract
it from the raw image to remove column FPN. Performance
curves with/without residual learning are shown in Fig. 7.
First, we observe that the residual-learning network converges
much faster than non-residual-learning one. Second, a residual-
learning network obtains a more accurate restoration when the
training process is converged. The PSNR values are calculated
on our 20 testing images with simulated column FPN.

4. EXPERIMENTAL RESULTS

A. Implementation Details
In our DLS-NUC method, a cubic column FPN model is uti-
lized for generating training pairs, and we set N and r to 8 and
3, respectively, to form our network architecture. Our network
comprises 10 convolutional layers, 1 pooling layer, 1 deconvo-
lution layer, and 1 concatenation layer. For each convolutional
layer, �k,w, p� is set to (3,32,1), except the final convolutional
layer in the reconstruction part, where we set �k,w, p� to
(3,1,1) to reconstruct the residual information between paired
training images. Training is carried out by optimizing the loss
function using the “Adam” optimizer with a mini-batch of 64
sub-images. The weights are initialized according to the
method described in [35], which is proved effective for net-
works employing ReLUs. The initial learning rate is set to
0.0001 and decreases by a factor of 10 every 40 epochs,
and training is regularized by weight-decay (penalty item multi-
plied by 0.0001). We empirically train our model by 80 epochs
on a single GPU of NVIDIA GTX 1080Ti.

Our DLS-NUC model is trained using simulated noisy im-
ages, and therefore we hope to investigate its effectiveness on
real-captured infrared images. For this purpose, we make use of

Fig. 4. NUC results using different column FPN models. (a) A raw image with obvious column FPN and comparative results of DLS-NUC
trained using (b) an offset model, (c) a linear model, (d) a quadratic model, (e) a cubic model, and (f ) a quartic model. It is noted that network trained
using simulated data of the offset (M � 0) or linear (M � 1) models cannot produce satisfactory NUC results. The NUC results are very similar
when M is larger than 3. In our implementation, we set M � 3 to achieve a good balance between model complexity and good performance.

Fig. 5. Architectures of two deep network models. (a) The DLS-
NUC plain model without pooling/deconvolution layers. (b) The
DLS-NUC model with pooling/deconvolution layers.
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a 20-image infrared dataset (Data1), which is available under
the Creative Commons Attribution (CC-BY) license [2]
(http://demo.ipol.im/demo/glmt_mire). In addition, we turn
off the on-chip calibration of our long-wave infrared camera
and capture 10 infrared images with obvious strip noise
(Data2). These testing images will be made publicly available
in the future.

B. Qualitative Evaluation
We compare our DLS-NUC method with state-of-the-art
single-image-based strip NUC solutions. The handcrafted
NUC methods include the WD-FT method [27], the
Midway Histogram Equalization (MHE)-based method [2],
and the 1D guided-filter-based method (GF) [9]. We also
consider the deep-learning-based NUC method (SNRCNN)
[14]. The source codes of the WD-FT (ftp://ftp.empa.ch/

pub/empa/outgoing/BeatsRamsch/stripeFilter/xStripes.jar), MHE
(http://www.ipol.im/pub/art/2012/glmt-mire/), and SNRCNN
(https://github.com/Kuangxd/Train_SNRCNN) methods are
publicly available, and the implementation of the GF method
[9] is provided by the authors.

In Fig. 8, we show NUC results of an infrared image with
obvious vertical edges. It is observed that some obvious strip
noise remains visible in the correction results of the WD-
FT, MHE, and SNRCNN methods. Moreover, the WD-FT
and MHE methods falsely generate some artifacts, which sig-
nificantly degrade image quality. Overall, the GF method
achieves satisfactory correction results; however, it over-
smooths the vertical edge (building boundary) and adds some
blurry visual effects to its output. In comparison, our proposed
DLS-NUC method can effectively remove FPN in infrared im-
ages without losing original information or causing artifacts.
In Fig. 9, we show NUC results of a raw infrared image with
severe column FPN using different methods. It is observed that
our proposed DLS-NUC method significantly outperforms
other alternative solutions since it can better remove column
FPN and preserve original thermal details. As a result, human
targets can be easily identified in the output of our DLS-NUC
method.

We also evaluate the DLS-NUC method on our own
captured infrared images. It is noted that column FPNs in
our captured raw images present different visual characteristics.
Comparative NUC results are illustrated in Fig. 10, and it is
visually observed that our DLS-NUC achieves the best noise
correction performance. It completely removes strips without
blurring details and generates no artifacts. The underlying rea-
son is that DLS-NUC model is trained using a large amount of
high-fidelity simulated data; therefore, it can successfully han-
dle images captured using different types of infrared devices.
Figure 11 shows an example that the proposed DLS-NUC
model favorably preserves original information when applied

Fig. 6. Comparative NUC results. (a) A raw image with obvious column FPN, (b) NUC result of DLS-NUC plain model, (c) NUC result of
DLS-NUC. DLS-NUC employs pooling/deconvolution layers to enlarge the receptive field and can thus better eliminate strip noise using less
runtime.

Fig. 7. PSNR versus epoch curves of different configurations.

Table 2. Architecture Settings of DLS-NUC Plain and DLS-NUCa

Network # Convolution Pooling Resizing Factor Deconvolution Concatenation Receptive Field

DLS-NUC Plain 10 × – × × 21 × 21
DLS-NUC 10

p
3

p p
53 × 53

aPooling/convolution layers are employed in DLS-NUC to enlarge the receptive field.
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to a noise-free image, while other non-deep-learning NUC
methods cause obvious vertical artifacts. The SNRCNN
method falsely removes some image details. Through deep
learning of big high-fidelity data, the DLS-NUC method
can accurately distinguish between undesirable FPN and origi-
nal image details. Therefore, it effectively removes strip noise
and preserves original information.

C. Quantitative Evaluation
We make use of two reference-free metrics (roughness index ρ
[19,29,36] and smoothing difference index DsF

sT [37]) to quan-
titatively evaluate performances of different column FPN
correction methods. Roughness index ρ, which is used to mea-
sure the high-pass content of an image, was first introduced by
Hayat et al. [19] to evaluate the performance of NUCmethods,
and its definition is

ρ � kh1 � Pk1 � kh2 � Pk1
kPk1

, (12)

where P denotes the restored image to evaluate, h1 � �−1, 1	 is
a horizontal mask, h2 � �−1, 1	 is a vertical mask, k · k1 indi-
cates the L1 norm, and * denotes the convolution operation.
A NUC result with a smaller ρ value indicates column
FPN is better suppressed. DsF

sT evaluates how horizontal
smoothing is performed in structure and non-structure regions
as follows:

Fig. 8. Strip NUC results of WD-FT [27], MHE [2], SNRCNN
[14], GF [9], and our DLS-NUC methods on an infrared image with
obvious vertical edges.

Fig. 9. Correction results of a raw infrared image with severe col-
umn FPN.

Fig. 10. Correction results of a raw infrared image captured using
our own uncooled long-wave infrared camera.
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DsF
sT �G, I� �

P
i∈sT ∂xG�I�i��
P

i∈sT ∂xI�i�
−

P
i∈sF ∂xG�I�i��
P

i∈sF ∂xI�i�
, (13)

where I�i� is the value of a pixel i in raw image I , G�·� denotes
a proposed column FPN correction method, sT and sF define
pixels in structure and non-structure regions, respectively. A
higher DsF

sT �G, I� value indicates the proposed FPN correction
method G has a better ability to suppress column FPN while
preserving original information.

The quantitative evaluation results (mean DsF
sT and mean ρ)

are shown in Table 3. It is observed that our DLS-NUC
method yields the lowest ρ and the highest DsF

sT values for both
Data1 and Data2. The experimental results illustrate that our
proposed method not only better eliminates column FPN but
also preserves original thermal details.

5. CONCLUSION

In recent years, many changeling image restoration problems
have been successfully solved through deep learning of big data.
In this paper, we made the attempt to learn a better-performing
strip NUC operator from a large number of simulated training
images. We present a unified framework, DLS-NUC, which
combines a column FPN simulation module with convolu-
tional neural networks (CNNs) to train the optimal model
for column FPN correction of infrared images. Compared with
existing handcrafted NUC methods, our proposed single-
image-based method has many desirable advantages including
superior noise reduction, better detail preservation, being
artifact-free, and having no user-specific parameters. This is
the first research work revealing that a NUC model trained us-
ing simulated data can be successfully employed to handle real-
captured raw infrared images. In the future we plan to extend
this deep-learning approach by incorporating more FPN mod-
els to compensate for other types of FPNs presented in infrared
FPA (e.g., periodical FPNs presented between two adjacent
periods [3], optics temperature-dependent FPNs [38,39],
and FPNs of individual detectors [18,22,25]). We will also
make efforts to optimize the processing speed of this deep
network model for real-time implementation.
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