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Summary

The material presented in this package is focused on repre-
sentation and estimation of local orientation in multi-dimen-
sional signals using tensors. The package covers the 2D, 3D,
and 4D cases of signal dimensionality, but the theory can be
extended to arbitrary finite dimensionality. Estimation of ve-
locity is treated as a special case of 3D methods.

The package contains a theory part, an exercise part, and
a computer exercise part based on Matlab.
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Scientific Background

The material in this package is a compilation and adaptation
of reports, compendiums, and books produced by the Com-
puter Vision Laboratory of Linköping University for use in our
computer vision undergraduate courses. The foundation of
this material are the following publications

• Granlund [2], which describes the vector representation
for local 2D orientation, and an estimation procedure for
this representation based on Gabor filters.

• Knutsson [10], which describes a consistent approach for
the estimation of the 2D vector representation using sep-
arable quadrature filters.

• Knutsson [6], which describes the tensor representation
for local multi-dimensional structures, thereby extending
the reprsentation domain from 2D signals to signals of ar-
bitrary finite dimensionality.

• Knutsson, Bårman, and Haglund [8], which describes es-
timation procedures for the tensor representation in 2D,
3D, and 4D, using separable quadrature filters.

• Knutsson and Andersson [7], which describes the general
mechanism for estimation of the local orientation tensor
using in principle an arbitrary number of filters in arbitrary
directions.
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These results are summarized and further developed by
Hans Knutsson in the book

• Granlund, Knutsson:
”Signal Processing for Computer Vision” [3].
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Prerequisites

In In order to comprehend this package you will have to be
familiar with the following concepts:

• From linear algebra: vector spaces, scalar products,
bases and dual bases, vectors and matrices, decomposi-
tion of symmetric matrices using eigenvalues and eigen-
vectors.

• From signal processing: the Fourier transforms of multi-
dimensional functions. In particular the concepts of simple
signals and the properties of their Fourier transforms. See
chapter 4 of [3].
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Feedback

This package is a dynamic document, and we invite you to
send feedback to the authors in order to make it dynamic.
If you find errors, or have a question, or think that some
part of the text is unclear, it is likely that your comments
will modify the package in some way or another.
Send comments to

klas@isy.liu.se
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1 Introduction

This package presents a unified approach and a theory for
estimation of local orientation and velocity in multi-dimen-
sional spatial or spatio-temporal signals. The presentation is
intended to serve as a basis for the design of efficient multi-
dimensional signal analysis algorithms.

Multi-dimensional signals can be seen as functions of more
than one variable and there are in principle no restrictions
on what these variables may represent. However, signals
as functions of space or space-time are by far the most fre-
quently used. New techniques to produce and process multi-
dimensional data are constantly being developed in a number
of different fields.

The techniques presented in this package are based on
spatial or spatio-temporal filtering and tensor representations.
This means that each neighborhood of the signal is linearly
combined with a set of filters. The filters employed here are
quadrature filters, each sensitive to a particular orientation
in space. The quadrature property implies that the filter out-
puts are complex numbers, representing a magnitude and a
phase. The phase can be used to describe local symmetry
properties of the signal. The magnitudes of the different filters
are combined to give a tensor description of local orientation.

In the 3D case, the resulting tensors contain information
about how plane-like or line-like the neighborhoods are, in
addition to the orientation description. If the 3D signal cor-
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responds to a spatio-temporal sequence, velocity estimates
can be directly obtained from the corresponding orientation
tensors. In line-like, i.e., ”moving point” type regions, a true
velocity estimate is produced. In plane-like, i.e., ”moving line”
type regions, the velocity component perpendicular to the lo-
cal structure is produced.

A few examples are given below of commonly available
multi-dimensional data sets to which the techniques pre-
sented in this package could be applied.

• Images (2D)

Photograph
X-ray
Satellite
Infrared

• Image sequences (2D + time)

Video
Ultrasound
Satellite

• Volumes (3D)

Magnetic Resonance (MR)
Computed Tomography (CT)
Positron Emission Tomography (PET)

• Volume sequences (3D + time)

Magnetic Resonance (MR)
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1.1 Local orientation

A basis for the approach taken in this presentation is the fact
that a major part of the information needed for image interpre-
tation is contained in the directions of local gradients. Equally
important is the local simplicity hypothesis [2, 9, 10]. The
basis for this hypothesis is that the spatial variation of the
gradient directions is in general much slower than the spatial
variation of the image itself. In summary, local orientation is
an important and, for most neighborhoods, well defined local
feature of multi-dimensional data. To be well defined means,
in this case, that the corresponding local signal is linear in
the 2D case, and it is planar in the 3D case, referred to as
simple neighborhoods. Furthermore, local orientation plays
an important role in the mammalian visual system, as has
been demonstrated by the physiological findings of Hubel and
Wiesel and others [4], as discussed in chapter 2 of [3].
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1.2 Orientation and local Fourier transforms

To see how local orientation analysis can be attained it is
useful to study the behavior of local Fourier transforms (see
chapter 4 of [3]). If the image locally can be approximated as
simple, i.e.constant along parallel lines or planes, this is indi-
cated in the Fourier domain by the fact that most of the energy
is concentrated in a narrow sector oriented at the same angle
as the local image gradients. The less the variation of local
orientation, the narrower is the sector.

The distribution of energy along the sector, in the radial
direction, reflects the frequency properties of the neighbor-
hood’s variation in the gradient direction. This distribution
thus becomes analogous to that of a one-dimensional Fourier
transform.

From the above it can be concluded that a description of
a neighborhood in terms of local orientation and local fre-
quency content can be obtained by partitioning the local Four-
ier transform and studying the energy contribution in the dif-
ferent parts, see Figure 1. The following sections present a
method for estimation of local orientation based on this ob-
servation.
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Figure 1: Two neighborhoods and the corresponding energy
contributions in the Fourier domain.
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2 Tensors - A short introduction

It is obvious that processing of higher-dimensional data sets
puts high demands on computer power and storage capac-
ity. Perhaps less obvious is that increasing the dimension-
ality of the data also has profound implications for its analy-
sis. For example, in the analysis of data with a dimensionality
higher than two it turns out that using scalars and vectors
is no longer always convenient [6]. An important extension
made here is the use of a generalization of the vector con-
cept - the tensor.

The need for using tensors is motivated in the same way as
for many physical quantities of complicated nature that can-
not naturally be described or represented by scalars or vec-
tors. Examples are the stress at a point in a solid body due
to internal forces, the deformation of an arbitrary infinitesimal
element of volume of an elastic body, and the moments of
inertia and conductivity in anisotropic materials. These quan-
tities can be described and represented adequately only by
the more sophisticated mathematical entities called tensors.
In fact, scalars and vectors belong to this family of elements.
Thus, scalars and vectors are special cases of tensors.

Associated with a tensor is the order of that tensor. The
order can be thought of as the complexity of the entity which
the tensor represents, e.g., a zeroth order tensor is a scalar,
a first order tensor is a vector and a second order tensor can
be thought of as a linear mapping on a vector space. In this
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presentation, second order tensors are denoted by bold up-
per case letters, e.g., T, vectors by bold lower case letters,
e.g., x, and scalars, both real and complex, by lower case
italics, e.g., x .

The following sections contain a short introduction to ten-
sors. However, the rather lengthy and theoretical presenta-
tion that is needed to give the full flavor of this rather general
concept is outside the scope of this package. In particular,
dual spaces and their relation to covariant and contra-variant
tensors, as well as the metric tensor, are completely left out,
and only one case of second order tensors is treated. Fur-
thermore, only real vector spaces are considered in this pre-
sentation.
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2.1 What are tensors?

Let us consider a distance in space, e.g., your height, and
ask the question how long is this distance, i.e., what is your
height? One answer could be 180 cm, another 72 inches, a
third 6 feet. The point to be made is that the distance is the
same but depending on the reference system, i.e., the unit of
length, the answer is different. Your height is an example of
a tensor, an object or phenomena which exists independent
of any reference system that may be used for assigning a
value to it. The tensor is the same, but since it is possible to
choose the reference system quite arbitrary, the description
of the tensor in terms of a value changes with the reference
system.

First order tensors correspond to the basic concept of a
vector, being an element of a vector space, and without rela-
tion to a reference system. If we wanted to use a reference
system it would be a basis which defines a coordinate system
of the vector space. Given such a basis, any vector can be
described in terms of its coordinates relative to the basis. But,
again, for one and the same vector this description changes
if the basis is changed. Therefore, it is important to make the
distinction between a vector and its coordinates, the vector is
invariant relative to the choice of reference system, hence it
is a first order tensor, whereas its coordinates varies with the
reference system. The set of coordinates is a description of
the vector, but it is not the same as the vector.
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Second order tensors correspond to linear mappings on a
vector space (of first order tensors), i.e., they map a vector
of a vector space to a vector of the same vector space in a
linear way. As an example, consider a line in the vector space
and the linear mapping which rotates any vector around the
line by some angle. This linear mapping is completely de-
scribed by the previous sentence, and this is done without
any reference to a coordinate system. If we want to know
how the this particular mapping changes the coordinates of
a vector relative to some particular basis, however, the map-
ping is conveniently described as a matrix whose action on
the coordinates gives the coordinates of the resulting vector.
A careful examination of the matrix reveals that the columns
of the matrix contain the coordinates of the basis vectors after
rotation. Hence, when choosing a different basis, the general
effect is that the matrix which describes this particular map-
ping changes. To summarize, a matrix is a description of a
second order tensor relative to a particular basis, whereas
the tensor itself is invariant to any particular choice of basis.

2.1.1 Tensors and orientation

The same discussion applies to orientation. A linear struc-
ture in an image, e.g., a line or an edge, has an orientation
regardless of which coordinate system is chosen to describe
which orientation it is. For example, it is possible to consider
two different edges and see if they have similar orientation or
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not, or to consider a curve and find that the local orientation
along the curve changes in one way or another. All this can
be done without actually assigning a value to the orientation.
To find the value, however, a coordinate system is needed
but the value assigned to the orientation of one and the same
linear structure changes if the coordinate system changes.

As is shown in the following, orientation can be given a rep-
resentation in terms of a second order tensor, which in ad-
dition is symmetric. Given a coordinate system, this second
order tensor can be described in terms of a matrix, so the ori-
entation tensor is in practice realized as a symmetric matrix.
It is important to know, however, that this matrix is defined
both by the orientation which it describes and the coordinate
system being used. Since the latter is quite arbitrary chosen,
this means that the matrix also has a flavor of arbitrariness in
the sense that if we change to another coordinate system, the
matrix changes even though the tensor is the same. This is
the main motivation why second order tensors and matrices
should not be confused, even though from a practical point
of view, when a particular coordinate system is established,
they are very much related.

To make the following presentation less abstract, the dis-
tinction between second order tensors and matrices is not
emphasized in any particular way. This can be done by
assuming that there exists some suitably chosen basis for
the vector space, and, furthermore, that the vector space
is equipped with a scalar product such that the basis is or-
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thonormal. Most of the properties and results which are pre-
sented then follow more or less immediately from the cor-
responding statements about vectors and matrices made in
linear algebra. In accordance to this, it is assumed that to
each vector x there is a coordinate vector whose elements
are denoted xi , and to each tensor T there is a matrix whose
elements are denoted Tij , such that the result of applying the
mapping T on x is the coordinate vector given by

n

∑
j=1

Tij xj (1)

To make the presentation more compact, however, x is used
also to denote the corresponding coordinate column vector,
and T denotes the corresponding matrix. The resulting coor-
dinate vector is then given by the matrix expression T x.

18



2.2 Tensors and vectors

Given the vectors (first order tensors) which constitute a vec-
tor space V , it is easy to see that the second order tensors
also form a vector space. The sum of two linear mappings
T and U is a new linear mapping T + U, which maps in the
following way

[T + U] x = T x + U x (2)
for arbitrary x ∈ V . Multiplying a linear mapping T by a real
number a gives a linear mapping a T, which maps in the fol-
lowing way

[a T] x = a (T x) (3)
Furthermore, this vector addition and scalar multiplication
comply with the usual requirements which are needed to
make the set of second order tensors form a vector space.
The space of second order tensors is here denoted V 2, the
tensor product space of V with itself.

In the following, the word vector is used to represent a first
order tensor, i.e., an element of the vector space V . The
word tensor is used for second order tensors relative to V ,
i.e., elements of the vector space V 2. If the dimensionality of
V is n, the dimensionality of V 2 is n2.
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2.3 Scalar products and norms

Given a vector space V (of first order tensors) a scalar prod-
uct can be defined on that space. The scalar product between
vectors x and y is denoted 〈 x | y 〉, and it has the following
properties

〈 · | · 〉 : V × V → R

〈 x + y | z 〉 = 〈 x | z 〉 + 〈 y | z 〉
〈 a x | y 〉 = a 〈 x | y 〉 (4)
〈 x | y 〉 = 〈 y | x 〉

〈 x | x 〉 ≥ 0, with equality iff x = 0
where x,y,z ∈ V and a is a real number. These five properties
together imply that the scalar product is a positive definite
quadratic form on V .

In most cases, the basis used for V is orthonormal (ON)
with respect to the scalar product being used. The conse-
quence of this arrangement is that the scalar product be-
tween two vectors can be computed as the inner product of
their corresponding coordinates, i.e.,

〈 x | y 〉 =
n

∑
i=1

xi yi = xT y (5)

where xi and yi are the coordinates of x and y, respectively,
and xT denotes the transpose of x.
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The scalar product induces a norm on V in the following
way

‖x‖2 = 〈 x | x 〉 (6)
In terms of coordinates, relative to an ON-basis (where ON is
relative to the scalar product), the norm can also be written
as

‖x‖2 =
n

∑
i=1

x2
i = xT x (7)

where xi are the coordinates of x.
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2.4 Eigenvalues and eigenvectors

Given a linear mapping T, any vector e which has the follow-
ing property

T e = λ e (8)
where λ is a real number, is an eigenvector of T. The real
number λ is the eigenvalue of e. The zero vector is normally
not considered as an eigenvector, even though (or rather be-
cause) it satisfies Equation (8) for any λ. A thorough inves-
tigation on the existence of eigenvalues and, in particular, of
eigenvectors for an arbitrary T is outside the scope of this pre-
sentation. The following discussion, therefore, relates only to
the cases where there exist at least one eigenvector to each
eigenvalue.

The first thing to note about eigenvalues and eigenvectors
is the fact that if e satisfies Equation (8) for some λ, then so
does a e for any real number a. Hence, to each eigenvalue
there is a linear subspace, at least one-dimensional, of cor-
responding eigenvectors. Furthermore, if e1 and e2 are two
linearly independent eigenvectors of T, both with eigenvalue
λ, then any linear combination of the two is too an eigenvec-
tor with eigenvalue λ. Hence, each eigenvalue λ defines a
subspace of V , which is at least one-dimensional, such that
the subspace contains exactly those vectors which are eigen-
vectors of T and have eigenvalue λ.

An illustration of the above discussion is provided by I, the
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identity tensor. This tensor is such that

I e = e (9)

for any vector e. Thus, any vector is an eigenvector of I, and
the corresponding eigenvalue is always unity. Therefore, the
subspace defined by this single eigenvalue is the entirety of
V .

It is noteworthy that the eigenvectors, and their correspond-
ing eigenvalues, are invariant properties of the tensor itself.
This means that if e is an eigenvector of T, with eigenvalue λ,
this is the case regardless of which coordinate system is cho-
sen. Of course, the coordinates of e are different for different
bases, as mentioned above. The eigenvalue, however, does
not depend on the choice of basis.

The eigenvalues of T are given by the roots of the secular
equation

det(T− λI) = 0 (10)
where I is the identity mapping. This is an n-th order polyno-
mial in λ, and from that point of view it has n roots, i.e., T has
n eigenvalues. On the other hand, it may be the case that
two or more eigenvalues are equal. In fact, it can be shown
that the multiplicity of a root λ, i.e., the number of roots which
are equal to λ, is the same as the dimensionality of the corre-
sponding subspace of eigenvectors. It should be noted that
even though the eigenvalues of a particular T are not distinct,
they are always treated as n individual scalar values.
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2.5 Symmetric tensors

A tensor T is symmetric if

〈 T x | y 〉 = 〈 x | T y 〉 (11)

for all x,y ∈ V . From a practical point of view, this implies that
the matrix representation of T has the following property

Tij = Tji (12)

A well known result from linear algebra is the fact that for
any symmetric tensor T it is possible to find an ON-basis of
eigenvectors, {êi}, and furthermore, it is possible to write T
as a linear combination of outer products of these eigenvector
with themselves, according to

T =
n

∑
i=1
λi êi êT

i (13)

where λi is the eigenvalue corresponding to êi . In fact, any
ON-basis of eigenvectors {êk} validates Equation (13), when
λk are the corresponding eigenvalues. Furthermore, the op-
posite is also true: if T can be decomposed in this way, where
{êk} is an ON-basis, these vectors are eigenvectors of T and
{λk} are corresponding eigenvalues.

In the following, only symmetric tensors are considered.
These tensors form a subspace of V 2 denoted Sym(V 2), and
any tensor of this space can thus be decomposed according
to Equation (13). The dimensionality of Sym(V 2) is n(n+1)

2 . The
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symmetric property of T ensures that all its eigenvalues are
real, which means that they can be ordered. The eigenvalues
are labeled λ1,λ2, ... ,λn, using the convention

λ1 ≥ λ2 ≥ ... ≥ λn (14)

In the following presentation, a terminology is used which
implies that to each eigenvalue λK can be associated a nor-
malized eigenvector êk . This is practical, but according to the
previous discussion, however, it is not true in a strict sense.
The problem lies in the fact that for a given λk , being one
of the n roots of the secular equation, the choice of êk is
not unique. On the other hand, it turns out that all results
presented are invariant to any particular choice that can be
made, as long as the resulting set of eigenvectors {êk} is an
ON-basis.

The rank of T is defined as the number of non-zero eigen-
values. This means that a rank one tensor T can always be
written as

T = λ ê êT (15)
where λ is the single non-zero eigenvalue, and ê is the corre-
sponding normalized eigenvector.
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2.6 Trace

For any tensor T ∈ Sym(V 2), the trace of T, denoted tr(T), is
defined as

tr(T) = ∑
i
λi (16)

where {λi} is the set of all eigenvalues of T. According to
the previous section, the eigenvalues of T are invariant to the
choice of coordinate system. This must then be true also for
the trace of T, it is an intrinsic property of the tensor itself.

Given a matrix representation of T, the trace is given by

tr(T) = ∑
i

Tii (17)

which is a summation of the diagonal element of the corre-
sponding matrix T.
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2.7 Scalar products and norms for tensors

Not only does V induce a vector space structure for V 2. If
a scalar product is defined on V , it induces a scalar product,
and eventually a norm, on Sym(V 2). To see this, let 〈 · | · 〉 be
a scalar product on V , and let T and U be symmetric tensors,
i.e., they can be written as

T =
n

∑
i=1
λi êi êT

i (18)

U =
n

∑
j=1
σj f̂j f̂T

j (19)

The scalar product between T and U, 〈 T | U 〉, is then given
by

〈 T | U 〉 = ∑
ij
λi σj 〈 êi | f̂j 〉2 (20)

A proof that this is a scalar product, i.e., that it complies with
the five properties stated in Equation (4), is demonstrated in
Exercise 1. In terms of the matrix description of T and U, their
scalar product can also be written

〈 T | U 〉 = ∑
ij

Tij Uij (21)

There is also third way of describing the scalar product be-
tween tensors. A careful examination of Equation (21) leads
to the following expression

〈 T | U 〉 = tr(TT U) (22)
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Proofs of Equations (21) and (22) are presented in Exer-
cise 2.

Note that the same notation for scalar products between
vectors and between tensors are being used, i.e., 〈 · | · 〉. This
is convenient, but not strictly correct, since these two scalar
products are defined on two different vector spaces.

Since a scalar product between tensors is established, a
norm can also be defined, according to

||T||2 = 〈 T | T 〉 (23)

In accordance with the above three descriptions of the tensor
scalar product, this norm can also be expressed as

||T||2 = ∑
i
λ2

i (24)

||T||2 = ∑
ij

T 2
ij (25)

||T||2 = tr(TT T) (26)

This tensor norm is referred to as the Frobenius norm.
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2.8 Bases and dual bases

Given a basis {ei} for V , i.e., a set of linearly independent
vectors which span V , any x ∈ V can be written as a linear
combination of the basis vectors:

x =
n

∑
i=1

xi ei (27)

where xi are the corresponding coordinates of x relative to
this particular basis. Given the scalar product for V , there is
a unique set of vectors {ẽj}, the dual basis of {ei}, which is
characterized by

〈 ei | ẽj 〉 = δij =

{
1 i = j

0 i 6= j
(28)

In Exercise 3 it is shown that the coordinates of x relative to
the basis {ek} are given by

xi = 〈 x | ẽi 〉 (29)

Hence, the recipe for computing coordinates of a vector rela-
tive to a basis is first to find the corresponding dual basis, and
then compute the scalar product between the vector and the
dual basis vectors. Normally, the basis for V is an ON-basis
which implies that it is its own dual basis.

The same discussion relates also to Sym(V 2), the vector
space of symmetric second order tensors. Any set of such
tensors {Bi} which are linearly independent and which span

29



Sym(V 2) is a basis for that space. An arbitrary T ∈ Sym(V 2)
can then be written as

T =
n(n+1)

2

∑
i

ti Bi (30)

where ti are the corresponding coordinates of T relative to this
basis. The scalar product defined for Sym(V 2), Equations
(20), (21) and (22), then establishes the dual basis of {Bi},
denoted {B̃i}, according to

〈 Bi | B̃j 〉 = δij (31)

and the coordinates ti are given by

ti = 〈 T | B̃i 〉 (32)

which implies that

T =
n(n+1)

2

∑
i
〈 T | B̃i 〉 Bi (33)

Since the dual basis of {B̃i} is the original basis, it is possible
to express T also as

T =
n(n+1)

2

∑
i
〈 T | Bi 〉 B̃i (34)

While Equation (31) gives a description of the relation be-
tween a basis and its dual basis, it does not explain how the
dual basis is found. In this case, where the vector space is of
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finite dimensionality, the dual basis can always be computed
in the following way. Define the symmetric matrix P as

Pkl = 〈 Bk | Bl 〉 (35)

Then,
B̃l = ∑

k
Bk Qkl (36)

where QT = P−1. Hence, first compute the scalar product
between all pairs of basis tensors, giving the matrix P. Then,
the inverse matrix Q is used in a linear combination of the
original basis tensors to give the sought for dual basis. A
proof of this statement is presented in Exercise 4.
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2.9 Frames and dual frames

In the following, we have reasons to consider also the case
when a tensor T is written as a linear combination of a finite
set of tensors, {Bk}, which span the vector space of tensors,
but are not linearly independent. Such a set is here referred
to as a frame, even though the proper definition of a frame
includes bases as a special case. In the same way as for
a basis, we are interested in how the corresponding coeffi-
cients of the linear combination, Equation (30) (but with sum-
mation made over a larger set), can be found. In the case of
a frame, however, it is easily realized that there is no unique
set of coefficients (corresponding to coordinates in the case
of a basis) which does the job. Similar to the case of a ba-
sis, though, a dual frame {B̃k}, can be defined such that the
coefficients

tk = 〈 T | B̃k 〉 (37)
can be used in Equation (30). The derivation of the dual
frame is outside the scope of this presentation, and instead a
straightforward recipe is given.

Each tensor in the frame, represented as a symmetric ma-
trix Bk , must first be reshaped to a row vector. This has to
be done so that each such row vector has the same norm as
the tensor, and so that the resulting set of row vectors span
a vector space of the same dimensionality as Sym(V 2). This
is done by placing the n diagonal elements Bk , and n(n−1)

2 off-
diagonal elements (either in the upper or lower off-diagonal),
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in some fixed order along the row vector. However, to pre-
serve the norm, each off-diagonal element must by multiplied
by
√

2. The reshaping of an n × n tensor thus results in a
1× n(n+1)

2 row vector.
For each frame tensor Bk , the above reshaping gives a row

vector. Let these vectors define the rows of a matrix F, re-
ferred to as the frame operator. The dual frame operator F̃ is
then given by

F̃ = F (FT F)−1 (38)
The rows of F̃ then contains the corresponding dual tensors,
reshaped according to the above procedure. To obtain the
dual frame tensor B̃k , therefore, it is only needed to apply
the inverse reshaping procedure on the k -th row of F̃, includ-
ing dividing each off-diagonal element by

√
2. Of course, the

dual tensors also are symmetric, so each off-diagonal ele-
ment taken from row k of F̃ must be copied into both the
upper and lower off-diagonals of B̃k .
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3 Representing orientation

First of all, it should be emphasized that orientation is a local
property of a signal. Almost no signal does in practice exhibit
one single orientation, instead normal images are scattered
with various structures, each having its own characteristics
in terms of orientation and type, e.g., line or edge. Note,
however, that these characteristics are not uncorrelated, two
neighborhoods very close to each other normally have similar
(but not necessary equal) characteristics.

In order to arrive at a useful representation of local orienta-
tion for a signal, it must first be clarified for which local neigh-
borhoods the notion of orientation is well-defined. For exam-
ple, a neighborhood that contains a single edge or line has
a well-defined orientation, whereas neighborhoods that are
constant, contains substantial amounts of noise, or several
edges or lines, do not have a well-defined orientation in the
sense used here.

For a signal of arbitrary dimensionality n, the model chosen
for a local neighborhood which has well-defined orientation is
that it is simple. A simple neighborhood is represented as a
function of n variables, f , that can be expressed as

f (ξ) = g(〈 ξ | x 〉) = g(ξT x) (39)

where ξ is the local spatial coordinate vector, g is a non-
constant function of one variable, and x is a constant vector.
According to this definition, f is constant along any vector that
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is perpendicular to x, or, vice versa, f has its ”maximal vari-
ation” in the direction of x. For example, in 2D f is constant
along all lines that are perpendicular to x, and all these lines
are parallel. In 3D, f is constant on any plane that is perpen-
dicular to x, and all these planes are parallel. In general, the
dimensionality of the hyper-planes on which f is constant is
one less than the dimensionality of the signal. It should be
noted that the concept of a simple neighborhood does not
depend on the range of f and g. The range can be anything
from real or complex numbers to vectors or tensors.

Obviously, the characteristic properties of a simple neigh-
borhood f , defined by Equation (39), is given by the one-
variable function g and the vector x. However, the choice
of g and x are not entirely unique. If the equation is true for a
particular x and g, then it is true also for a x, where a 6= 0, by
choosing g′ defined as

g′(x) = g(
x
a

) (40)

instead of g. To make the situation less ambiguous, x can
always be normalized, i.e., a = ||x||−1. In the following it is
assumed that g and x̂ are chosen so that

f (ξ) = g(〈 ξ | x̂ 〉) = g(ξT x̂) (41)

where ||x̂|| = 1. Still, however, the sign of x̂ is undetermined.
Having restricted the signals for which orientation is well-

defined to simple signals, it should be noted that there is a
distinction between orientation and direction. A line has an
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unambiguous orientation, and no direction, whereas a (non-
zero) vector has a unique direction and no orientation. The
same goes for a plane in 3D, it has a unique orientation and
no particular direction. Its orientation is given, e.g., by a nor-
mal vector, but the sign of this vector, i.e., its direction, is
indeterminable.

With the above considerations in mind the approach taken
here is to define the orientation of a simple neighborhood as
being defined entirely by x̂, but independent of its sign, and
it is also independent of g. Below, this latter property is dis-
cussed more formally, but the consequence is that the repre-
sentation chosen is a true orientation representation, and not
a representation of direction. As mentioned above, however,
the direction of, e.g., a slope may be of importance, which
means that the information on orientation sometimes has to
be complemented with a description of direction. This can be
done in terms of a local phase descriptor. In fact, the phase
is a more general concept than direction, and can be used,
for example, to determine whether a two-dimensional line is
darker than the background or vice versa. It can even give an
exact description of where an edge or a line is located. See
chapter 7 of [3].
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3.1 Requirements of the orientation
representation

Assuming that the representation chosen for orientation, here
denoted T, is an element of a normed vector space, it can be
normalized according to

T̂ =
T
||T||

(42)

so that
T = ||T|| T̂ (43)

Regardless of what type of object T really is, be it a tensor or
something else, there are at least three requirements which
it should meet.

3.1.1 The invariance requirement

It is evident that the orientation of the neighborhood is the
same for all possible g in Equation (41), at least as long as
g is not constant. In other words the entity which represents
the orientation must be invariant to g, something which can
be expressed as

T must not depend on g (44)

In fact, this requirement is very strong and can not be met in
practice. A somewhat weaker, but more practical requirement
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is to allow the norm of T, i.e., ||T||, and only the norm, to
change with g. This can be expressed as

T̂ must not depend on g (45)
Note that the stronger requirement is a special case of the
weaker. In the following section, it is illustrated how the invari-
ance requirement is implemented for various types of varia-
tions in g.

3.1.2 The equivariance requirement

If the orientation of the local neighborhood changes by a
small amount, this should always result in a small change
in the representation T. A more formal description of this sit-
uation is to say that there must be a continuous mapping from
x̂ to T. Furthermore, if making a small change in x̂, resulting
in a small change also in T, the norm of the latter should be
invariant to x̂. This implies that the variation in T caused by a
variation in x̂ is isotropic.

These two ideas can be formalized by describing any small
change in x̂ as the result of adding to it a fraction of the vector
v̂, where v̂ is perpendicular to x̂. The result is the vector x1,

x1 = x̂ + ε v (46)
If T is the representation for the orientation given by x̂, and
T(ε) is the representation given by x1, define

dT
dε

= lim
ε→0

T(ε)− T
ε

(47)
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The equivariance requirement can then be written as∣∣∣∣∣∣∣∣dT
dε

∣∣∣∣∣∣∣∣must not depend on x̂ or y (48)

3.1.3 The uniqueness requirement

In order to be a representation of orientation, it is required
that T is a one-to-one mapping from the orientation to the
representation domain. Formally, such a mapping is referred
to as bijective, and the consequence of this property is that
to each orientation there is a unique representation T, and
vice versa, to each T in the representation domain there is a
unique orientation.

Since the orientation of a simple neighborhood depends
only on x̂, but not on the sign of this vector, the uniqueness
requirement implies that

T(x̂) = T(ŷ) ⇔ ŷ = ±x̂ (49)

3.1.4 Implications

The implications of the three requirements can easily be ex-
plained by studying the 3D signals in Figure 2. The invariance
requirement implies that T should be the same for neigh-
borhoods fa and fb, as well as the same for fc and fd , even
though g is different in the two cases. Equivariance implies
that in moving from fa to fc, or from fb to fd , the infinitesimal
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changes of T which integrate to the total change, should ev-
erywhere be proportionally to the change in local orientation.
The uniqueness requirement implies that there can only be
one unique representation for the orientation of, e.g., fa and
fb, and this representation uniquely defines the orientation of
the two neighborhoods.
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fa(ξ) = g1(ξT x1) fb(ξ) = g2(ξT x1)

fc(ξ) = g1(ξT x2) fd(ξ) = g2(ξT x2)

Figure 2: Four simple neighborhoods in 3D. The neighbor-
hoods are constructed using two different signal functions (g1
and g2) and two different signal orienting vectors (x1 and x2).
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3.2 The orientation tensor

A representation for orientation that meets the above criteria
is a second order tensor given by:

T ≡ A x̂ x̂T (50)
where A is an arbitrary positive number which does not de-
pend on x̂. Note that x̂ is an eigenvector of T, with corre-
sponding eigenvalue A, and that this is the only non-zero
eigenvalue, so T is a tensor of rank one.

You may ask: why not use something simpler than a second
order tensor? At least in 2D, a simple scalar which represents
the angle of x̂ should do. Apart from not being useful in higher
dimensions, where several angles would be needed, this rep-
resentation does not meet the equivariance requirement. For
some angle, there has to be a discontinuity so that a small
change in x̂ corresponds to a very large change in the scalar.
It is also possible to use just the first order tensor x, or x̂,
as a representation of the orientation. As already mentioned,
however, x is not unique for a simple neighborhood, and the
vector −x is then also a valid representation. The only way to
overcome this ambiguity is to restrict the domain of x to some
directional interval which, in turn, introduces discontinuities in
the same way as for scalars.

A second order tensor avoids both the ambiguity problem,
changing the sign of x does not change T, and it gives a
continuous representation. It also meets the invariance and
equivariance requirements, as is shown below.
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As a consequence of using a tensor for orientation rep-
resentation, it is not necessary to make a distinction be-
tween the different dimensions of the signal when the ten-
sor is formed. For example, local orientation of a 3D signal
where two dimensions represent space and the third time is
described in the same way as for a 3D signal where all three
dimensions represent space. However, the interpretation of
the information which the orientation tensor carries requires
knowledge of which case it is, e.g., which dimension corre-
sponds to time.

As mentioned in Section 2, given a suitable basis, x̂ is de-
scribed as a column vector of n real numbers, and T is de-
scribed as an n × n matrix. If the vector is

x̂ =


x1
x2
...

xn

 (51)

then the tensor is

T =


T11 T12 ... T1n

T12 T22 ... T2n
... ... . . . ...

T1n T2n ... Tnn

 = A


x2

1 x1x2 ... x1xn

x1x2 x2
2 ... x2xn

... ... . . . ...

x1xn x2xn ... x2
n

 (52)
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3.2.1 The norm

Calculating the norm of T, Equation (24), gives:

||T|| = A (53)

Since ||T|| (or A) is independent of the orientation it repre-
sents, it can be used to represent another property. In Sec-
tion 4 it is shown that A can be made to represent the local
amplitude of the signal in a natural way.

3.2.2 Invariance

By its construction T is trivially invariant to the signal func-
tion g in the strong sense. However, as can be expected,
making the actual orientation estimates invariant to g is by no
means trivial. In practice, the weaker invariance requirement
is used, which implies that ||T||, but not T̂, is dependent on g.
A discussion of this topic appears in Section 4.

3.2.3 Equivariance

To show that the equivariance requirement is met by the sug-
gested representation is fairly straightforward. Starting from

T = A x̂ x̂T (54)
Equation (46) gives

T(ε) = A (x̂ + ε v̂) (x̂ + ε v̂)T (55)
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and, finally, from Equation (47),

dT
dε

= A (x̂ v̂T + v̂ x̂T ) (56)

In Exercise 5 it is verified that x̂+v̂ and x̂−v̂ both are eigenvec-
tors of the right hand side of Equation (56), with correspond-
ing eigenvalues A and −A, respectively. Furthermore, these
are the only non-zero eigenvalues. Hence, Equation (24)
gives ∣∣∣∣∣∣∣∣dT

dε

∣∣∣∣∣∣∣∣2 = 2 A2 (57)

which shows that the norm of the differential is independent
of both x̂ and v̂, and therefore the equivariance requirement
is met.

3.2.4 Exercises

Exercise 6 shows how the orientation tensor is described by
numerical values in a matrix for a particular simple 2D neigh-
borhood. Exercise 7 shows how to find the corresponding 2D
local neighborhood given a particular orientation tensor in the
form of a matrix.
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3.3 The 2D orientation vector

In the special case of a 2D signal, e.g., an ordinary gray-scale
image, it is in fact possible to use a vector for the represen-
tation of local orientation. This vector is neither x nor x̂, but
rather something which rotates with twice the angular speed
as either one of them. This representation of local 2D orien-
tation was first introduced in [2].

In the 2D case, the vector x̂ has the form

x̂ =
(

cosα
sinα

)
(58)

where α is measured relative to some suitably chosen coor-
dinate system. This gives

T =
(

T11 T12
T12 T22

)
= A

(
cos2 α cosα sinα

cosα sinα sin2 α

)
(59)

The orientation vector is then given by

z =
(

T11 − T22
2 T12

)
= A

(
cos2 α− sin2 α
2 cosα sinα

)
= A

(
cos 2α
sin 2α

)
(60)

In some cases it is more convenient to describe z as a com-
plex number instead of as a 2D vector. This complex number,
z, is then given by

z = T11 − T22 + 2 i T12 = A (cos 2α + i sin 2α) (61)

Regardless of whether a 2D vector or a complex number is
used, it is evident that it rotates with twice the angular speed
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relative to x̂. Hence, if x̂ rotates half a turn, corresponding to
a change in the sign of the original x̂, z rotates a complete
turn, returning to its original value. The following shows that
the 2D orientation vector complies with the invariance and
equivariance requirements.

3.3.1 The norm

The norm of z is given by
||z||2 = A2(cos2 α + sin2 α) = A2 (62)

i.e., it is the same as the norm of T.

3.3.2 Invariance

In the same manner as T, z is trivially invariant to g.

3.3.3 Equivariance

Instead of constructing the rotation of x̂ by means of adding
a perpendicular vector to it, the 2D case offers the angle α as
a parameterization of the rotation. Hence,

z(α) = A
(

cos 2α
sin 2α

)
(63)

and
dz
dα

= 2 A
(
− sin 2α
cos 2α

)
(64)
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which gives ∣∣∣∣∣∣∣∣dz
dα

∣∣∣∣∣∣∣∣ = 2 A (65)

Hence, the norm of the differential is a constant and the
equivariance requirement is met.
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4 Orientation estimation

Having found a suitable representation of orientation, it is
then natural to ask the question:

Can the representation be implemented using measurements
on actual image data, where lines or other structures are rep-
resented as local gray scale correlations?

It is shown here that by combining the outputs from polar sep-
arable quadrature filters, it is possible to produce a represen-
tation corresponding exactly to Equation (50). The exactness
relies on the image data being locally simple, Equation (39),
i.e., on the existence of a locally well-defined orientation. The
case where the simplicity assumption does not hold is dis-
cussed in Section 6.
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4.1 The signal and its Fourier transform

The analysis is restricted to real valued simple neighbor-
hoods, i.e., neighborhoods f that can be expressed as

s(ξ) = g(ξT x̂) (66)

where g is a real valued function of one variable, x̂ is a nor-
malized vector.

The Fourier transform of s, denoted S, has the character-
istic property of being concentrated to an impulse line which
passes through the origin, with x̂ as a direction vector, and
along that line S varies as G, the one-dimensional Fourier
transform of g. See Exercise 8. Formally, this can be ex-
pressed as

S(u) = (2π)n−1 G(uT x̂) δline
x̂ (u) (67)

where u is the frequency coordinate, and δline
x̂ (u) is the im-

pulse line.
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4.2 The quadrature filter concept

In order to realize the invariance requirement, the estima-
tion procedure is designed using quadrature filters [10]. The
quadrature filter concept forms a basis for minimizing the sen-
sitivity to phase changes in the signal.

Independently of the dimensionality of the signal space, a
quadrature filter can be defined as a filter that is zero over
one half of the Fourier domain. More precisely, let F be the
Fourier transform of the quadrature filter f , then

F (u) = 0 if uT n̂ ≤ 0 (68)

where n̂ is the directing vector of the filter. Of course, this
is only half of the story, the characteristics of F in the non-
zero half of the Fourier domain are also important for this
application.

An important property of a quadrature filter is the fact that
both the filter itself and therefore also its output, in general, is
complex. This is immediately realized by the fact that F is not
Hermitian, and therefore f is not real. See chapter 4 of [3].
Hence, the filter output is in each point a complex number,
here denoted q′, and q is used to denote the magnitude of q′,
i.e., q = |q′|.

As an example of the phase invariant property of a quadra-
ture filter, it can be mentioned that if g is a sinusoidal function,
the argument of q′ represents the local phase, whereas q is
completely phase invariant. Consequently, if we consider a
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simple function s(ξ), Equation (66), where

g(x) = A sin(ωx − φ) (69)

and apply a quadrature filter to this signal, then the filter out-
put magnitude q is invariant to the position ξ. The following
sections present an estimation procedure where the orien-
tation representation is computed as a linear combination of
fixed tensors and quadrature filter output magnitudes. Con-
sequently, for a signal like this, the resulting orientation rep-
resentation is indeed invariant to the local phase or position.

In practice, we have to limit the discussion to local regions
of the signal which approximately can be modeled as simple
functions. In some cases these can be assumed to have a
sinusoidal characteristic, i.e.,

g(x) = e(x) sin(ωx − φ) (70)

corresponding to an envelop function e which describes the
local amplitude times a modulating factor sin(ωx − φ). Pro-
vided that e varies sufficiently slow compared to the modu-
lating frequency ω, we get q(ξ) ≈ e(ξT x̂), and consequently
that q has a relatively slow variation compated to the local fre-
quency ω. This means also that the resulting representation
varies relatively slow compared to the local frequency.

If, on the other hand, a locally simple signal does not has
a sinusoidal characteristic, not even approximately, this im-
plies that the representation may vary relatively fast over the
corresponding local neighborhood. However, the estimation
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procedure which is presented here assures that the only vari-
ation in the representation over a locally simple neighborhood
is in the norm of the representation. The estimated represen-
tation can always be approximated as a rank one symmet-
ric tensor where the eigenvector corresponding to the largest
eigenvalue is ±x̂ provided that the corresponding local neigh-
borhood is approximately a simple function.
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4.3 Filter output for a simple neighborhood

If a filter is applied to the signal, the filter output at a specific
point is the integral over the product of the Fourier transform
of the filter and the Fourier transform of the local neighbor-
hood around the point. Assuming that the neighborhood is
simple, the latter is described by Equation (67). Let the filter
output be denoted q′, this gives

q′ =
1

(2π)n

∫
S(u) F (u) dnu (71)

where integration is made over the entire Fourier domain.
However, since S contains an impulse line, the integration
can be restricted only to this line, i.e.,

q′ =
1

2π

∞∫
−∞

G(u) F (u x̂) du (72)

where the line is parameterized by u = u x̂. Clearly, the
integration can be partitioned into the two half lines which
stretches out from the origin, i.e.,

q′ =
1

2π

 ∞∫
0

G(−u) F (−u x̂) du +

∞∫
0

G(u) F (u x̂) du

 (73)
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Since g is real valued, G is Hermitian, and q′ can be written

q′ =
1

2π

 ∞∫
0

G?(u) F (−u x̂) du +

∞∫
0

G(u) F (u x̂) du

 (74)

where ? denotes complex conjugation.
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4.4 Spherically separable filters

In the following, the filter f is assumed to be not only a quadra-
ture filter, but also polar separable in the Fourier domain, i.e.,
its Fourier transform can be written as a product of one radial
function R and one directional function D. Hence,

F (u) = R(ρ) D(û) (75)

where ρ = ||u||, and û = u/ρ. The quadrature property is then
transferred to D, i.e., it is demanded that

D(û) = 0 if uT n̂ ≤ 0 (76)

Both R and D are here assumed to be real valued.
Inserting Equation (76) into Equation (74) yields

q′ =
1

2π

 ∞∫
0

G?(u)R(u)D(−x̂)du +

∞∫
0

G(u)R(u)D(x̂)du

 (77)

and taking into account that q′ is computed for a particular
neighborhood where x̂ is fixed results in

q′ =
1

2π

D(−x̂)

∞∫
0

G?(u)R(u)du + D(x̂)

∞∫
0

G(u)R(u)du

 (78)
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Setting

a =
1

2π

∞∫
0

G(u) R(u) du (79)

and remembering that R is real valued then implies that

q′ = D(−x̂) a? + D(x̂) a (80)

Taking the quadrature property into account it is clear that
either D(x̂) or D(−x̂) is zero, implying that the two compo-
nents do not interfere, and the magnitude of the quadrature
filter output can be written

q = |q′| = |a| [D(−x̂) + D(x̂)] (81)

Thus, the magnitude of the filter output can be decomposed
into two factors, A = |a| which is orientation invariant and
dependent on both G and R, and [D(−x̂) + D(x̂)] which is in-
variant to G and dependent on x̂. It is this latter dependency
which is the topic of the next section.

It was mentioned that one prominent feature of a quadra-
ture filter is the fact that q, together with the resulting orienta-
tion tensor, turn out to be phase-invariant for single-frequency
signals. The proof of this assertion is presented in Exer-
cise 19.
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4.5 The directional function

To allow the resulting orientation tensor to meet the equivari-
ance requirement it is necessary that the Fourier transforms
of the filters have particular interpolation properties. Direc-
tional functions having the necessary properties were first
suggested in [10] for the 2D case and in [5] for the 3D case.
Regardless of dimension these functions can be written:

D(û) =

{
(ûT n̂)2 uT n̂ > 0

0 otherwise
(82)

where n̂k is the filter directing vector. Thus, in the non-zero
half of the Fourier domain, D(û) varies as cos2 ∆ϕ, where ∆ϕ
is the difference in angle between u and the filter direction n̂.
Figure 3 is a plot of D as a function of ∆ϕ, this plot also illus-
trates the directional function for the 2D case in a natural way.
Figure 4 contains a visualization of the directional function in
the 3D case for a particular choice of n̂.
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∆ϕ

D

ππ−π −π 0
2 2

Figure 3: One-dimensional plot of the directional function
with ∆φ, i.e., the angle between u and n̂, as parameter.

Figure 4: Angular plot,i.e., radius = D(û), of the directional
function in 3-dimensional signal space for a particular choice
of n̂. Origin of the Fourier domain is at the center of the cube.
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4.6 The filter outputs

Finally, by combining Equations (81) and (82) the output mag-
nitude from a quadrature filter in direction n̂ is found to be

q = A (x̂T n̂)2 (83)

where A is independent of the filter orientation and depends
only on radial distribution of the signal spectrum G(ρ) and
the radial filter function R(ρ). See Figure 5 for a visualization
of the output magnitude q as a function of x̂ for a particular
choice of n̂.

At this point it is finally possible to make the connection with
the presented filtering and the orientation tensor discussed
in Section 3. First, consider the two second order rank one
tensors

T̂ = x̂ x̂T N̂ = n̂ n̂T (84)
which both have the single non-zero eigenvalue equal to one,
with x̂ and n̂ as corresponding normalized eigenvectors. Us-
ing Equation (20), it is evidently the case that

q = A 〈 T̂ | N̂ 〉 = 〈 A T̂ | N̂ 〉 (85)

which implies that the filter outputs can be interpreted as the
scalar product between the tensor T = A T̂, which represents
the local orientation of the neighborhood, and N̂ which is a
constant tensor related to the direction of the quadrature filter.
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Figure 5: Angular plot of the quadrature output magnitude, q,
as a function of the signal orienting vector x̂ for 3-dimensional
simple signals and a particular choice of n̂.

4.7 Constructing the tensor

Having realized that filter outputs are described by Equa-
tion (85), it is possible to apply several filters of the prescribed
type, all having the same radial frequency function R but dif-
ferent directing vectors n̂k , and obtain a set of scalar products
between the sought for tensor T and constant tensors

N̂k = n̂k n̂T
k (86)
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According to Equation (34), if the latter set of tensors form a
basis for Sym(V 2), the n(n + 1)/2-dimensional vector space
of symmetric tensors, T can be written as

T =
n(n+1)

2

∑
k
〈 T | Nk 〉 Ñk =

n(n+1)
2

∑
k

qk Ñk (87)

where {Ñk} is the set of dual tensors relative to {N̂k}, see
Section 2.8. Hence, by using the magnitude of the filter out-
puts, qk in a linear combination with a set of fixed and pre-
calculated tensors {Ñk}, the sought for orientation tensor is
obtained.

Evidently, at least n(n + 1)/2 filters are needed to obtain a
basis for Sym(V 2). How to choose the corresponding filter di-
recting vectors n̂k is an issue address in Section 5, but from a
theoretical point of view it is sufficient that the corresponding
tensors N̂k form a basis. The reason for choosing a partic-
ular set of filter directions is rather related to practical con-
siderations, e.g., that the directions n̂k should be isotropically
distributed over the space. Furthermore, in certain cases of
dimensionality, e.g., the 4D case, it is desirable to use more
than the smallest number of filter directions. In that case the
constant tensors N̂k form a frame rather than a basis, and the
tensors Ñk is then the dual frame.

Regardless of how the filter directions are chosen, it should
be noted that they cannot be choose such that {N̂k} is an
ON-basis. To be sure, each N̂k is normalized, but since they
are all of rank one, it follows that N̂k is orthogonal to N̂l if
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and only if n̂k is orthogonal to n̂l . Since there are at most
n orthogonal vectors n̂k , it is not possible to find n(n + 1)/2
orthogonal tensors N̂k if n ≥ 1. As consequence, the dual ba-
sis {Ñk} can not be the same as the original basis. However,
each dual basis tensor is a linear combination of the original
tensor basis, according to Section 2.8.
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4.8 The radial function

It is clear from the preceding analysis that the radial func-
tion R(ρ) can be chosen arbitrarily without violating the ba-
sic requirements. This makes the choice of R(ρ) subject
to considerations similar to those traditionally found in one-
dimensional filter design. Typically R(ρ) is a band-pass func-
tion having design parameters such as center frequency and
bandwidth. Perhaps even more important than in traditional
one-dimensional filter design are the concepts of locality and
scale. Good radial functions are therefore found by studying
the resulting filter simultaneously in the space-time and the
Fourier domains. A radial filter function with useful proper-
ties, first suggested in [9], is given by:

R(ρ) = e−
4

B2 ln2
ln2(ρ/ρi) (88)

This class of functions are termed lognormal functions. B is
the relative bandwidth and ρi is the center frequency.
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5 Working algorithms

This section addresses some of the practical issues which
must be considered in order to develop implementations of
the estimation procedure presented in Section 4. Particular
choices of the filter directions for the cases of 2D, 3D, and
4D signals are presented, together with the corresponding
dual bases {Ñk}. These results where originally presented in
[10, 5, 6, 8].

As basic requirement for the choice of the filter directions
is uniform distribution in space. Although not necessary for
the tensor construction made in Section 4, there are a num-
ber of practical implications of this approach. First, since the
filters are normally implemented as a number of optimized
filter kernels on a discrete and finite grid, it is desirable to op-
timize only a few filters and obtain the rest through simple co-
ordinate transformations like mirroring, e.g., in the coordinate
axes, and rotations by multiples of 90◦. A uniform distribution
of the filter directions facilitates the process of generating the
filter kernels. Second, as is shown in the following, the set of
dual tensors {Ñk} becomes particularly easy to realize when
the filter directions are uniformly distributed.

The easiest way to accomplish a uniform distribution is to
have the filter directions pass through the vertices of a regular
polytope. Note, however, that for vertices located on opposite
sides of the origin, only one of them can be used, since both n̂
and−n̂ gives the same basis tensor N̂ = n̂n̂T . This issue, and

65



others, can make the choice of polytope a delicate matter.
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5.1 The 2D case

In 2D, Sym(V 2) is a three-dimensional space. Therefore, at
least three filters are needed. In certain cases, however, four
filters are used, and this is also discussed here. Finally, the
consequences of using the vector representation of 2D orien-
tation, Section 3.3, is also covered.

5.1.1 Three filters

First, the case of using three filters is considered. As men-
tioned above, their directing vectors {n̂1,n̂2,n̂3} should be uni-
formly distributed in the two-dimensional space V , and this is
done by having them pointing to the vertices of a uniform tri-
angle. The orientation of the triangle is of no importance,
and just to make a particular choice, the following direction
vectors are used.

n̂1 =

(
1
0

)
n̂2 =

(
−1/2
√

3/2

)
n̂3 =

(
−1/2

−
√

3/2

)
(89)

See Figure 6. It should be noted that the corresponding fil-
ters fk , and therefore also the filter kernels, are such that the
second and third filters are mirror images relative to the hori-
zontal axis.

The tensor basis {N̂k} which corresponds to these direc-
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n̂1

n̂2

n̂3

Figure 6: A triangle and the corresponding filter orienting
vectors.

tions is given by N̂k = n̂k n̂T
k , thus

N̂1 =

(
1 0
0 0

)

N̂2 =

(
1/4 −

√
3/4

−
√

3/4 3/4

)

N̂3 =

(
1/4

√
3/4

√
3/4 3/4

) (90)

In Exercise 9 it is shown that the corresponding dual basis is
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given by

Ñ1 =

(
1 0
0 −1/3

)

Ñ2 =

(
0 −1/

√
3

−1/
√

3 2/3

)

Ñ3 =

(
0 1/

√
3

1/
√

3 2/3

) (91)

It should be noted that due to the uniform distribution of the
filter directions there is a particularly simple relation between
the basis and its dual basis according to

Ñk =
4
3

N̂k −
1
3

I (92)

where I is the identity tensor.
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5.1.2 Four filters

As is explained in Section 6, the orientation tensor can be
used for representation of more than just the orientation of
a single simple neighborhood. In order to facilitated this ca-
pability, however, the estimation procedure must carefully de-
signed. One issue to consider then is to employ more than
the minimal number of filters. For example, in 2D it proves
profitable to use four filters, rather than three, provided that
the extra computational effort caused by the additional filter
is acceptable.

The polytope which gives a uniform distribution of the fil-
ter directions is not a square, which may be the first guess.
The reason is that diagonally positioned vertices correspond
to the same filter direction tensor N̂, which means that the
resulting set of such tensors only span a two-dimensional
space. Choosing four consecutive vertices of an octagon,
however, gives both a uniform distribution of the filter direc-
tions and a set of direction tensors which span the tensor
space. For example, it is possible to employ the following
filter directions

n̂1 =

(
1
0

)
, n̂2 =

(
1/
√

2

1/
√

2

)
, n̂3 =

(
0
1

)
, n̂4 =

(
−1/
√

2

1/
√

2

)
(93)

which are illustrated in Figure 7. The corresponding set of
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n̂1

n̂2

n̂3

n̂4

Figure 7: An octagon and the corresponding filter orienting
vectors.

filter direction tensors is then

N̂1 =

(
1 0
0 0

)
N̂2 =

(
1/2 1/2
1/2 1/2

)

N̂3 =

(
0 0
0 1

)
N̂4 =

(
1/2 −1/2
−1/2 1/2

) (94)

It should be noted that this is a frame rather than a basis of
the tensor space. Using the recipe in Section 2.9 for comput-
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ing the dual frame results in (see Exercise 10)

Ñ1 =

(
3/4 0
0 −1/4

)
Ñ2 =

(
1/4 1/2
1/2 1/4

)

Ñ3 =

(
−1/4 0

0 3/4

)
Ñ4 =

(
1/4 −1/2
−1/2 1/4

) (95)

Again, there is a simple relation between the frame tensors
and their dual elements, according to

Ñk = N̂k −
1
4

I (96)

Choosing the filter direction in this way implies that the cor-
responding four filter kernels are such that the first and third
filters, as well as the second and fourth filters, are related
through a 90◦ rotation. Hence, only two sets of filter coeffi-
cients have to be optimized.

A 22.5◦ rotation of the octagon in Figure 7 gives the fil-
ter directions illustrated in Figure 8. Evidently, filter k + 1 is
obtained by mirroring filter k in the axis k . Hence, by em-
ploying these filter directions, only one filter kernel needs to
be optimized. Of course, the corresponding direction tensors
N̂k , and their dual tensors Ñk , can also be computed for this
case, although the resulting matrices look a little bit messier
than Equations (94) and (95). On the other hand, these alter-
native filter directions corresponds to a rotation of the origi-
nal coordinate system by 22.5◦, which simply means that the
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n̂1

n̂2n̂3

n̂4

1

2

3

Figure 8: An alternative set of filter directing vectors.

resulting orientation tensor T gives the orientation relative to
the rotated coordinate system. Therefore, it is possible to use
the dual tensors in Equation (95) and defer the compensation
due to the change of coordinate system until the tensor is be-
ing used.

To get a better feeling for how the orientation tensor T is
constructed in the 2D case, see Exercise 18.
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5.1.3 2D orientation vector

As mentioned in Section 3.3, the 2D case enables the use
of a two-dimensional vector for representation of local orien-
tation. Since the two components of this vector are simple
linear combinations of the elements of the corresponding ori-
entation tensor, and this tensor can be constructed as a linear
combination of filter output magnitudes qk and constant ten-
sors Ñk , it must the case that the vector can be written as

z =
3

∑
k=1

qk mk (97)

where mk are constant vectors given by

mk =
(

m1,k
m2,k

)
=

(
Ñ11,k − Ñ22,k

2 Ñ12,k

)
(98)

and Ñ11,k ,Ñ12,k ,Ñ22.k are the three elements of the tensor Ñk .
The two previous sections provides two particular choices

of filter directions for three and four filter, respectively. For
three filters, the combination of Equations (91) and (98) gives

z = 4/3
[
q1

(
1
0

)
q2

(
−1/2
−
√

3/2

)
+ q3

(
−1/2√

3/2

)]
(99)

For four filters, a combination of Equations (95) and (98) gives

z = q1

(
1
0

)
+ q2

(
0
1

)
+ q3

(
−1
0

)
+ q4

(
0
−1

)
(100)
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In both cases it should be noted that the constant vectors
m̂k used in the linear combination have twice the directional
angle relative to the corresponding filter directions n̂k .
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5.2 The 3D case

In 3D, Sym(V 2) is six-dimensional, so at least six filters are
needed for estimation of the orientation tensor. Even though
more than six filters can be considered, as was the case in
2D, it has proven practical to stick to the minimal number.
Fortunately, there is a three-dimensional regular polytope
which provides a uniform distribution of six filter directions;
the icosahedron, see Figure 9. This polytope has twelve ver-
tices, consisting of six pairs of points where the points of each
pair are on opposite sides of the origin. Thus, it is possible
to choose six points on one side of a plane through the origin
as filter directions.

Figure 9: An icosahedron, one of the five Platonic polyhedra.
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The following set of six filter directions, together with their
negative counterparts, are the twelve vertices of an icosahe-
dron.

n̂1 =

a
0
b


n̂2 =

−a
0
b


n̂3 =

b
a
0


n̂4 =

 b
−a
0


n̂5 =

0
b
a


n̂6 =

 0
b
−a


(101)

where

a =
2√

10 + 2
√

5
b =

1 +
√

5√
10 + 2

√
5

(102)

The corresponding filter tensors N̂k are

N̂1 =

a2 0 ab
0 0 0
ab 0 b2


N̂3 =

b2 ab 0
ab a2 0
0 0 0


N̂5 =

0 0 0
0 b2 ab
0 ab a2



N̂2 =

 a2 0 −ab
0 0 0
−ab 0 b2


N̂4 =

 b2 −ab 0
−ab a2 0

0 0 0


N̂6 =

0 0 0
0 b2 −ab
0 −ab a2


(103)
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where

a2 =
2

5 +
√

5
ab =

1 +
√

5
5 +
√

5
b2 =

3 +
√

5
5 +
√

5
(104)

In this case, the filter tensors form a basis, and in Exercise 11
it is shown that the corresponding dual tensors are

Ñ1 =

c 0 e
0 f 0
e 0 d


Ñ3 =

d e 0
e c 0
0 0 f


Ñ5 =

 f 0 0
0 d e
0 e c



Ñ2 =

 c 0 −e
0 f 0
−e 0 d


Ñ4 =

 d −e 0
−e c 0
0 0 f


Ñ6 =

 f 0 0
0 d −e
0 −e c


(105)

where

c =
5 −
√

5
4(5 +

√
5)
, d =

5 + 2
√

5
2(5 +

√
5)
, e =

√
5

4
, f = −1

4
(106)

A careful examination of the numerical values of the filter ten-
sors and their corresponding dual tensors reveals the follow-
ing simple relation

Ñk =
5
4

N̂k −
1
4

I (107)

which is due to the uniform distribution of the filter directions.
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As should be apparent from Equation (101), the six filter
directions presented here are all related through simple mir-
roring operations. The practical implication of this property
is that only one filter kernel needs to be optimized, and any
of the other remaining five kernels can be obtained by the
proper mirroring of the first one.
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5.3 The 4D case

In 4D, Sym(V 2) is ten-dimensional which implies that at least
ten filters are needed for the tensor estimation. However, in
4D there is no regular polytope such that ten of its vertices
can be used as uniformly distributed filter directions. Rather
than using ten filter which are distributed in a non-uniform
fashion, their number can be increased to twelve by consid-
ering the possibilities offered by the 24-cell [1]. This regular
four-dimensional polytope has 24 vertices and, similar to the
icosahedron, they consist of twelve pairs where the points
of each pair are on opposite sides of the origin. Figure 10
shows an illustration of a projection of the 24-cell onto a two-
dimensional space.

Figure 10: A projection of the 24–cell
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The following set of ten filter directions, together with their
negative counterparts, are the vertices of a 24-cell.

n̂1 =
1√
2


1

1

0

0



n̂4 =
1√
2


1

0

−1

0



n̂7 =
1√
2


0

1

1

0



n̂10 =
1√
2


0

1

0

−1



n̂2 =
1√
2


1

−1

0

0



n̂5 =
1√
2


1

0

0

1



n̂8 =
1√
2


0

1

−1

0



n̂11 =
1√
2


0

0

1

1



n̂3 =
1√
2


1

0

1

0



n̂6 =
1√
2


1

0

0

−1



n̂9 =
1√
2


0

1

0

1



n̂12 =
1√
2


0

0

1

−1



(108)
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The corresponding twelve filter tensors are

N̂1 =
1
2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0



N̂3 =
1
2


1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0



N̂5 =
1
2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1



N̂7 =
1
2


0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0



N̂9 =
1
2


0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1



N̂11 =
1
2


0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1



N̂2 =
1
2


1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0



N̂4 =
1
2


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0



N̂6 =
1
2


1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1



N̂8 =
1
2


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0



N̂10 =
1
2


0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1



N̂12 =
1
2


0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1



(109)
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Since two filter directions more than necessary are used,
this set of tensors form a frame rather than a basis. Using
the recipe presented in Section 2.9, the corresponding dual
frame is given by (see Exercise 12)

Ñ1 =
1
6

2 3 0 0
3 2 0 0
0 0 −1 0
0 0 0 −1


Ñ3 =

1
6

2 0 3 0
0 −1 0 0
3 0 2 0
0 0 0 −1


Ñ5 =

1
6

2 0 0 3
0 −1 0 0
0 0 −1 0
3 0 0 2


Ñ7 =

1
6

−1 0 0 0
0 2 3 0
0 3 2 0
0 0 0 −1


Ñ9 =

1
6

−1 0 0 0
0 2 0 3
0 0 −1 0
0 3 0 2


Ñ11 =

1
6

−1 0 0 0
0 −1 0 0
0 0 2 3
0 0 3 2



Ñ2 =
1
6

 2 −3 0 0
−3 2 0 0
0 0 −1 0
0 0 0 −1


Ñ4 =

1
6

 2 0 −3 0
0 −1 0 0
−3 0 2 0
0 0 0 −1


Ñ6 =

1
6

 2 0 0 −3
0 −1 0 0
0 0 −1 0
−3 0 0 2


Ñ8 =

1
6

−1 0 0 0
0 2 −3 0
0 −3 2 0
0 0 0 −1


Ñ10 =

1
6

−1 0 0 0
0 2 0 −3
0 0 −1 0
0 −3 0 2


Ñ12 =

1
6

−1 0 0 0
0 −1 0 0
0 0 2 −3
0 0 −3 2



(110)
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It should be noted that also in the 4D case, when choosing
the filter directions as the vertices of a hemi-24-cell, there is
a simple relation between the filter direction tensors N̂k and
their corresponding duals Ñk , according to

Ñk = N̂k −
1
6

I (111)

Furthermore, the twelve filters kernels which must be real-
ized, e.g., by means of an optimization process, are related
through simple mirroring operations. In fact only one filter ker-
nel has to be optimized, and the other eleven kernels can be
obtained by suitable mirroring operations of the first one.
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6 Interpretation of the orientation
tensor

Applying algorithms for estimation of the local orientation ten-
sor on data acquired from the real world, e.g., using the algo-
rithms presented in the previous section, it will be apparent
that not all neighborhoods are simple, Equation (39). There
are many reasons why a neighborhood is not simple, e.g.,
the presence of noise or multiple linear structures of different
orientations. Consequently, the resulting orientation tensor is
not a rank one tensor, Equation (50). Therefore, some way
of interpreting the estimated orientation tensor for the gen-
eral case is needed. This section addresses this issue in two
rather different ways. First, by considering the rank one ten-
sor which is closest to the estimated one, thereby offering an
interpretation of the tensor as representing a simple neigh-
borhood. Second, by finding a consistent interpretation of
tensors which have higher rank than one in terms of neigh-
borhoods that are constant in other ways than just on hyper-
planes. This approach is of particular interest in the 3D case.
In both cases, the interpretation is achieved by considering
the eigenvalues and eigenvectors of the tensor T.

Given the estimation procedures of the previous section,
the resulting orientation tensor is always symmetric, i.e., it
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can be decomposed as

T =
n

∑
k=1

λk êk êT
k (112)

where each êk is an eigenvectors of T such that {êk} form an
ON-basis, and {λk} are the corresponding eigenvalues. For
a simple neighborhood, the corresponding T is such that

λk =

{
A ≥ 0 k = 1

0 k > 1
(113)

Hence, the discussion in this section relates to the case when
Equation (113) is not true. In order to make a useful interpre-
tation of the orientation tensor it must meet at least one basic
requirement: it should be positive semi-definite, i.e., λk ≥ 0
for all k . The estimation procedures presented in Section 4
composes the estimated orientation tensor as a linear com-
bination of filter output magnitudes qk and dual filter tensors
Ñk . A careful examination of each Ñk shows that they are
all indefinite, and it is only by assuming a simple neighbor-
hood that the qk are such that the resulting tensor is positive
definite. However, in the general case, for non-simple neigh-
borhoods, the resulting tensor may be indefinite. Rather than
discarding such tensors, the convention of setting any nega-
tive eigenvalue to zero before making any further processing
or interpretation of T is used.
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6.1 Rank one approximation

Given an estimated orientation tensor T, not necessary of
rank one, which rank one tensor Ts is closest to T? The rank
one property of Ts implies that

Ts = λ ê êT (114)

and the question can be formulated as: which Ts minimizes

ε = ||T− Ts||2 = ||T− λ ê êT ||2 (115)

The Ts which satisfies this criteria is referred to as a rank one
approximation of T.

In Exercise 13 it is shown that any rank one approximation
Ts of T is such that λ is the largest eigenvalue of T, with ê as
the corresponding eigenvector, i.e., λ = λ1 and ê = ê1. Note
that the choice of ê may ambiguous if λ1 = λ2, i.e., if the two
largest eigenvalues of T are equal. Therefore, the rank one
approximation of T is only of interest if λ1 > λ2.

By choosing Ts as the rank one approximation of T, the
value of ε is

ε = ||
n

∑
k=1

λk êk êT
k −λ1 ê1 êT

1 ||2 = ||
n

∑
k=2

λk êk êT
k ||2 =

n

∑
k=2

λ2
k (116)

An upper bound of ε is then given by

ε ≤ (n − 1) λ2
2 = (n − 1) λ2

1

(
λ2

λ1

)2

(117)
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With the above considerations in mind, a measure is
needed that indicates the successful of a rank one approx-
imation of T. There are several candidates for such a mea-
sure, so the suggested one is not unique. Define

c1 =
λ1 − λ2

λ1
(118)

Since λ1 ≥ λ2 it follows that 0 ≤ c ≤ 1. Furthermore, it is
the case that c1 = 1 if and only if T is a rank one tensor, and
c1 = 0 if and only if λ1 = λ2. Hence, if c1 ≈ 1 this means
that T is approximately a rank one tensor, corresponding to a
simple neighborhood. Note, however, that it is only possible
to assume that the corresponding neighborhood is simple, as
there are non-simple neighborhoods for which T is of rank
one when estimated according to Section 4.

Using the measure c1 in Equation (117) gives

ε ≤ (n − 1) λ2
1 (1− c1)2 (119)

which shows that the upper bound of ε vanishes when c1 ap-
proaches unity and λ1 is constant.
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6.2 Estimation errors

The rank one approximation enables the estimated orienta-
tion tensor to be compared to ground truth, e.g., for evaluation
of an estimation algorithm. Assume that the correct orienta-
tion of a neighborhood is known, represented by the vector x̂
which is a normal vector of the linear structure, and that the
estimated orientation tensor is T. It is then possible to make
a rank one approximation of T, resulting in Ts, and compare
the orientation represented by Ts with the true orientation,
represented by x̂. A natural choice is to compute the angle
between x̂ and the eigenvector ê1 of Ts,

α = arccos
( ∣∣x̂T ê1

∣∣ ) (120)

Note that taking the absolute value of the scalar product
implies that the signs of both x̂ and ê1 are irrelevant, thus
0 ≤ α ≤ 90◦. This angle can also be expressed as

α = arccos
(√(

x̂T ê1
)2
)

= arccos
(√
〈 ê1 ê1 | x̂ x̂T 〉

)
=

= arccos
(√
〈 T̂s | T̂0 〉

)
(121)

where T̂s and T̂0 are the normalized versions of the rank one
approximation of Ts, and of the correct orientation tensor, re-
spectively. Simple trigonometry shows that this angular error

89



can also be written as

α = arcsin

(√
1
2

∥∥∥T̂s − T̂0

∥∥∥2
)

(122)

The above discussion relates to comparing one estimated
orientation tensor T with the ground truth, represented by T0.
What if the angular error is to be measured over a large set
of orientation tensors, each corresponding to an angular er-
ror αk? A straightforward approach would be to average αk
over the set. However, by doing so neither the wrap around
effect of the angle nor the fact that αk is always positive is
taken into account. The first effect can be illustrated in 2D
by comparing T̂s = ê1 êT

1 and T̂0 = x̂ x̂T and let x̂ be sub-
ject to a continuous rotation. If the two vectors initially are
equal, α = 0, the rotation makes α increase monotonically to
90◦. After this point, α decreases to zero, corresponding to
the situation where x̂ = −ê1. Hence, an increasing rotation
angle does not necessary correspond to an increase in α. As
a consequence, it is more reasonable to average sinα, since
the difference of the sinus function for two angles is smaller
the larger the angles are, e.g.,

sin 90◦ − sin 80◦ < sin 15◦ − sin 5◦ (123)
The second effect, averaging of positive angles, implies that
it is not possible to interpret the result as a true mean value
of the angular error. Instead, it is normally reasonable to as-
sume that the mean angular error is zero. In this case, the
standard deviation E[ α2

k ] is an interesting measure.
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Combining these two observations results in the following
formulation of the angular error measure ∆α

sin2∆α = E[ sin2αk ] (124)

Note that this formulation takes the wrap around effect into
account, and that ∆α amounts to a measure of standard de-
viation for small angles αk . Each αk is described by Equa-
tion (122), which finally gives

sin2∆α =
1
2

E
[ ∥∥∥T̂s − T̂0

∥∥∥2
]

(125)

or

∆α = sin−1

√
1
2

E
[ ∥∥∥T̂s − T̂0

∥∥∥2
]

(126)
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6.3 Higher rank neighborhoods in 3D

Simple neighborhoods are represented by tensors having
rank one. One the other hand, in higher dimensional data
there exist highly structured neighborhoods that are not sim-
ple. In that case, the rank of T can be used to reflect the
complexity of the neighborhood. The eigenvalue distributions
and the corresponding tensor representations are given be-
low for three particular cases of T in 3D. The interpretation of
T is based on the energy distribution in the Fourier domain
for different autocorrelation functions of the signal.

The case of a simple signal, and its representation in terms
of a rank one tensor, has already be discussed, but the fol-
lowing facts are mentioned here in order to make generaliza-
tions. For the case of an approximately simple signal, where
g, the variation of the signal across the linear structure, has
a well localized autocorrelation function, the corresponding
autocorrelation function is an impulse plane, with the same
orientation as the signal. In the Fourier domain, the signal
is approximately concentrated on a line, passing through the
origin, constituting a one-dimensional subspace. The eigen-
vector ê1 of the corresponding rank one orientation tensor T
spans the subspace, and it is also a normal vector to the par-
allel planes.

Consider now the case of a 3D signal which is approxi-
mately constant along parallel lines. Its autocorrelation func-
tion is then an impulse line, of the same orientation as the
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lines of constancy. In the Fourier domain, this signal is ap-
proximately concentrated on a plane passing through the ori-
gin. This plane is then a two-dimensional subspace and, sim-
ilar to the planar case, a set of two vectors which span the
subspace is used as a representation of this neighborhood.
The corresponding orientation tensor is of rank two. See Sec-
tion 6.3.2.

Finally, consider a signal which is isotropic, i.e., it is rota-
tionally symmetric. This property is the inherited both by its
autocorrelation function as well as by its Fourier transform.
Since there is no concentration into subspaces in the Fourier
domain, three vectors are needed to span the full Fourier do-
main. Hence, the corresponding orientation tensor has rank
three. See Section 6.3.3.

It should be noted that the estimation procedures presented
in Section 4, applied to the three different cases, gives ap-
proximately the intended orientation tensor. In the planar and
isotropic cases, the orientation tensor is exactly the intended
one. For the line case the resulting tensor can be shown to be
the intended one only if the neighborhood is an impulse line.
Note, however, that this is a shortcoming of the estimation
procedure, rather than of the representation.

Figures 11, 12 and 13 shows the three cases discussed
above, the left figure illustrates the autocorrelation function
in the spatial domain, and the right figure illustrates the en-
ergy distribution in the Fourier domain. Note the reciprocity
between the first two cases. The following summarizes this
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discussion and presents the eigensystem of the orientation
tensor for the three cases.
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6.3.1 The plane case

• The signal is constant on parallel planes.

• The Fourier transform of the signal is concentrated on a
line.

• ê1 is a normal vector of the planes in the spatial domain,
and a direction vector of the lines in the Fourier domain.

• The orientation tensor is

T = λ1 ê1 êT
1 (127)

• In practice, any orientation tensor characterized by

λ1 � λ2 (128)

is classified as representing the plane case. See Fig-
ure 11.
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6.3.2 The line case

• The signal is constant on parallel lines.

• The Fourier transform of the signal is concentrated on a
plane.

• ê1 and ê2 are perpendicular to the lines in the spatial do-
main, and span the plane in the Fourier domain.

• The orientation tensor is

T = λ
(

ê1 êT
1 + ê2 êT

2

)
(129)

• In practice, any orientation tensor characterized by

λ1 ' λ2 � λ3 (130)

is classified as representing the line case. See Figure 12.

Note that in this case, when two eigenvalues are equal, the
corresponding eigenvectors ê1 and ê2 are ambiguous with
respect to their individual orientations. However, given the
plane in the Fourier domain, any pair of perpendicular vectors
ê1 and ê2 which span the plane gives the same T.
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6.3.3 The isotropic case

• The signal is isotropic or rotationally symmetric.

• The orientation tensor is

T = λ
(

ê1 êT
1 + ê2 êT

2 + ê3 êT
3

)
= λ I (131)

• In practice, any orientation tensor characterized by

λ1 ' λ2 ' λ3 (132)

is classified as representing the isotropic case. See Fig-
ure 13.

The particular choice of eigenvectors is also ambiguous in
this case.
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Spatial domain Fourier domain

Figure 11: The plane case: A planar autocorrelation func-
tion in the spatial domain corresponds to energy being dis-
tributed on a line in the Fourier domain.

Figure 12: The line case: An autocorrelation function con-
centrated on a line in the spatial domain corresponds to a
planar energy distribution in the Fourier domain.
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Figure 13: The isotropic case: A spherical autocorrelation
function in the spatial domain corresponds to a spherical en-
ergy distribution in the Fourier domain.
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6.3.4 The general 3D case

Obviously, not every 3D signal can be classified as belonging
to one of the three cases presented above. However, any 3D
orientation tensor T,

T = λ1 ê1 êT
1 + λ2 ê2 êT

2 + λ3 ê3 êT
3 (133)

can be written as a linear combination of tensors of rank one,
two, and three, according to

T = (λ1 − λ2) T1 + (λ2 − λ3) T2 + λ3 T3 (134)

where

T1 = ê1 êT
1 (135)

T2 = ê1 êT
1 + ê2 êT

2 (136)

T3 = ê1 êT
1 + ê2 êT

2 + ê3 êT
3 = I (137)

Note that T1 is a rank one tensor, T2 is a rank two tensor, and
T3 is a rank three tensor.

Section 6.1 introduced a measure c1, Equation (118), which
can used for determining the closeness to the rank one case.
Having decomposed a general tensor according to Equa-
tion (134), it is reasonable to use the following three mea-
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sures as indicators for the three different cases

c1 =
λ1 − λ2

λ1
The plane case (138)

c2 =
λ2 − λ3

λ1
The line case (139)

c3 =
λ3

λ1
The isotropic case (140)

Note that
0 ≤ ck ≤ 1 (141)

and
c1 + c2 + c3 = 1 (142)

These three measures can be used to classify the 3D orien-
tation tensor into either of the three classes, e.g., by choosing
class k if ck is the largest of the three. In most practical imple-
mentations, however, a null class is needed for those cases
when the difference between the largest and second largest
is too small. The particular values to be used as thresholds
for each of the indicators in order to classify a tensor is en-
tirely implementation specific. See Exercise 14.

101



7 Time sequences and velocity

Consider an image sequence, and some spatial neighbor-
hood in this sequence which contains a linear structure, e.g.,
a line or an edge. The sequence can then be described as
a 3D signal, with two spatial and one temporal dimensions.
Regardless of whether the linear structure moves or not, it
generates a 3D structure that corresponds to a simple neigh-
borhood, i.e., the signal is locally constant on parallel planes.
The orientation of these planes is determined by the motion of
the linear structure. If the structure does not move, the planes
of constancy are perpendicular to any spatial dimension, and
the larger the velocity is, the less is the angle between the
planes and the spatial dimensions.

The same discussion applies to a moving point. In that
case, the corresponding 3D signal is constant on a line. If the
point does not move, the line is perpendicular to the spatial
dimensions, and the larger the velocity is, the less is the angle
between the line and the spatial dimensions.

With this in mind, it is natural to design an estimation proce-
dure for local 2D motion by means of estimation of local orien-
tation in 3D. Using the orientation representation presented in
Sections 3 and 6.3, and the estimation procedures presented
in Section 5.2, the resulting orientation tensor is capable of
determining which case it is (a moving linear structure or a
moving point), as well as the velocity. The former is found by
considering the eigenvalues of the tensor, and the latter by
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considering the appropriate eigenvector.
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7.1 Moving linear structure

Before the properties of the orientation tensor for this case
are discussed, the so called aperture problem must be ad-
dressed. If a moving linear structure is observed through a
small aperture, the only velocity which can be determined is
the component perpendicular to the structure. This corre-
sponds to the situation where the 3D orientation is estimated
by applying a set of filter kernels at each local neighborhood.
Note that the terminology is somewhat misleading since it is
the structure of the signal which causes the problem rather
than the aperture. See Figure 14 for an illustration of the
aperture problem. Neighborhoods labeled ’P’ contain a sim-
ple local image structure, and only the normal velocity can be
estimated. Neighborhoods labeled ’L’ are not simple, and the
true velocity can be estimated.

L

P

L

True
flow

L

P

L

P

P

Figure 14: Illustration of the ‘aperture problem’.
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Consider a locally linear structure which moves with the ve-
locity components

ṽ =
(

v1
v2

)
(143)

over the 2D image. If the unit of time is one per image frame
in the sequence, this implies that any point on the linear struc-
ture moves a distance in 3D equal to

v =

v1
v2
1

 (144)

between each frame. The vector v is referred to as the spatio-
temporal velocity vector. From the above discussion is should
be clear that v lies in the three-dimensional plane of con-
stancy which is created when the linear structure moves. This
implies that v is an eigenvector of the orientation tensor, and
its eigenvalue is zero.

Since the signal in this case is locally simple, the corre-
sponding orientation tensor is of rank one. If λ1 is its largest
eigenvalue, with

ê1 =

x1
x2
x3

 (145)

as a corresponding normalized eigenvector, this means that
ê1 and v are perpendicular, i.e.,

v1 x1 + v2 x2 + x3 = 0 (146)
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Due to the aperture problem, this is the only statement that
can be made about v (and ṽ). On the other hand, if ê1 is
projected to the spatial dimensions, the resulting vector n,

n =
(

x1
x2

)
(147)

is a normal vector of the linear 2D structure of the signal.
Hence, the vector

m =
(

x2
−x1

)
(148)

which is perpendicular to n, points along the linear 2D struc-
ture. See Exercise 17. If ṽ represents the normal velocity,
this means that m and ṽ are perpendicular, i.e.,

ṽT m = v1 x2 − v2 x1 = 0 (149)

Combining Equations (146) and (149) finally yields

ṽ =
(

v1
v2

)
= − x3

x2
1 + x2

2

(
x1
x2

)
(150)

Note that the velocity estimate derived here is not necessary
the true velocity of the linear structure, it is the normal com-
ponent of the true velocity.

Figure 15 shows an illustration of a local 3D neighborhood
corresponding to a moving linear structure. The three hori-
zontal lines are the image plane for three consecutive frames.
The oblique thicker line is the plane generated by the moving
linear structure. The spatio-temporal velocity vector v lies in
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this plane, and ê1 is perpendicular to it. The vector ṽ is the
projection of v onto the image plane, and n is the projection
of ê1 onto the same plane. Note that in this figure, the tem-
poral dimension goes from bottom to top, and that one of the
spatial dimensions is horizontal.

Figure 16 shows the same situation, but in the image plane
for a specific frame. The vectors ṽ and n are perpendicular
to the linear structure and m is parallel to it. Note that both
dimensions in the figure are spatial.
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Image plane frame n

frame n + 1

frame n − 1

Plane generated by moving line

ê1

ṽ

v

n

Figure 15: A spatio-temporal neighborhood for the case of
moving linear structure.

ṽ

n

m

Figure 16: The image plane in the case of a moving linear
structure.
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7.2 Moving point

In the case of a moving point there is no aperture problem.
Similarly to the case of a moving linear structure, however, a
velocity vector ṽ can be introduced together with the corre-
sponding spatio-temporal velocity vector v, Equations (143)
and (144). In this case, the corresponding orientation tensor
is of rank two, see Section 6.3.2, and there are two perpendic-
ular eigenvectors ê1 and ê2, both with non-zero eigenvalues.
Clearly, v is perpendicular to both ê1 and ê2, which means
that

v ∝ ê3 =

x1
x2
x3

 (151)

Consequently, the velocity vector ṽ is given by

ṽ =
(

v1
v2

)
=

1
x3

(
x1
x2

)
(152)

This velocity estimate is the true velocity of the point.
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7.3 The general case

A general approach for estimating local velocity in a 2D image
can now be formulated as follows.

• Consider the image sequence as a three-dimensional sig-
nal, and estimate, for each neighborhood, the correspond-
ing 3D orientation tensor.

• The eigenvalues and eigenvectors of each orientation ten-
sor are then computed.

• Using the measures discussed in Section 6.3.4, each ten-
sor can be classified as being either approximately corre-
sponding to the plane case, to the line case, or neither of
these two cases (corresponding to the isotropic case and
the null class).

• If the tensor is found to describe the plane case, corre-
sponding to a moving linear structure, the normal velocity
estimate derived in Section 7.1, Equation (150), is com-
puted.

• If the tensor is found to describe the line case, corre-
sponding to a moving point, the velocity estimate derived
in Section 7.2, Equation (152), is computed.

• If the tensor describes neither the plane nor the line case
no velocity is computed.

See Exercise 16.
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It should be noted that the last case mentioned above,
when the orientation tensor describes neither the plane nor
the line case, has to be treated correctly. First of all, it is
not possible to compute a velocity estimate in this case, but
this does not imply that there is not motion at the corre-
sponding point of the volume, i.e., that the velocity is zero.
It is rather the case that the velocity is unknown or indeter-
minable. Therefore, it is not correct to set the velocity vec-
tor ṽ to zero at all points corresponding to this case since
these will be confused with zero velocity vectors which are
estimated from plane or line type of tensors, corresponding
to actual motion. Instead, a separate descriptor of certainty
or confidence should be used in combination with the velocity
vector as a result from the above velocity estimation.

Second, any type of local structure which is not a linear
structure or a point, e.g., a corner or some other non-simple
type of signal, is likely to result in a tensor that does not
describe the plane or line cases, and this regardless of its
motion. Therefore, even though the human eye sees a well-
defined motion, the above motion estimation method may not
be able to represent this fact. Solutions to this problem are
discussed in the following section.

Third, the motion model used here assumes that the lo-
cal motion is relatively constant over time. Only then does
a moving linear structure or point correspond to a planar or
linear structure in the image volume. If, for example, the line
or point accelerate, the corresponding 3D structure is rather
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a parabolic surface or curve. If the deviation from linear mo-
tion is large enough, it is likely that the estimation procedure
which generates the 3D orientation tensor produce tensors
which are neither of rank one nor of rank two at these points.
Therefore, tensors of this type can also correspond to moving
linear structures or points which moves in a non-linear fash-
ion. The acceptable deviation from linear motion is normally
given by the temporal size of the filters being used for the
estimation of the tensor.
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7.4 Averaging of orientation tensors

The only case when the true velocity can be obtained is for
the case of a moving point, corresponding to a rank two 3D
orientation tensor. To be sure, it is enough for the moving
structure to be non-linear or else the aperture problem im-
plies that only the normal velocity can be estimated. For non-
linear structures in general, however, the estimated orienta-
tion may not result in the proper rank two tensor. Consider
the neighborhoods labeled ’L’ in Figure 14. In these neigh-
borhood it is possible to measure the true velocity, but since
the local structure is a corner, it depends on the qualities of
the the estimation algorithm being used whether or not the
orientation tensor at these points is of rank two. In fact, it is
only neighborhoods that contain a linear structure that gives
a correct description of the 3D orientation in terms of a rank
one tensor. At these points, however, only the normal velocity
can be measured.

Consider again Figure 14, and in particular the neighbor-
hoods labeled ’P’ at the upper and left right borders. Ev-
idently, the true velocity of these two borders are the same,
but due to the aperture problem only the normal velocities can
be determined there. To overcome this problem, recall that
for the case of a moving linear structure, the spatio-temporal
velocity vector v is an eigenvector of the orientation tensor
T, with corresponding eigenvalue equal to zero. Hence, if
T1 and T2 are the orientation tensors estimated at these two
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neighborhoods, v must be an eigenvector of zero eigenvalue
relative to both tensors. In Exercise 15 it is shown that this
property is inherited by the sum

Ta = T1 + T2 (153)

Thus, v is an eigenvector of Ta and the corresponding eigen-
value is zero. The point is that the rank one property of T1
and T2 is not inherited by Ta. Instead Ta is a rank two tensor,
provided that the local orientation of the two neighborhoods
are different.

As a consequence of this observation, an estimate of the
true velocity can be obtain by summing, or averaging, rank
one tensors corresponding to linear structures which moves
with the same velocity, provided that there is a sufficiently
large difference in their orientation. The resulting integrated
tensor Ta is then a rank two tensor from which the true veloc-
ity can be computed using the results derived in Section 7.2.
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8 Exercises

The exercises part of this package contains the following ex-
ercises

• Exercise 1: Tensor scalar product

• Exercise 2: More tensor scalar products

• Exercise 3: Coordinates, bases and dual bases

• Exercise 4: Computing the dual basis

• Exercise 5: The eigenvectors of
dT
dε

• Exercise 6: Establishing the orientation tensor in 2D

• Exercise 7: Establishing the local structure corresponding
to a 2D orientation tensor.

• Exercise 8: The Fourier transform of simple functions.

• Exercise 9: Dual tensors for the 2D case with 3 filters.

• Exercise 10: Dual tensors for the 2D case with 4 filters.

• Exercise 11: Dual tensors for the 3D case with 6 filters.

• Exercise 12: Dual tensors for the 4D case with 12 filters.

• Exercise 13: Rank one approximation.

• Exercise 14: Classification of 3D orientation tensors.

• Exercise 15: Rank one preservation under tensor addi-
tion.
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• Exercise 16: Image velocity in practice.

• Exercise 17: Image velocity in theory.

• Exercise 18: Computing a 2D orientation tensor.

• Exercise 19: Quadrature filters give phase invariance
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Exercise 1

Consider two symmetric tensors T and U which are decom-
posed according to

T =
n

∑
i=1
λi êi êT

i , U =
n

∑
j=1
σj f̂j f̂T

j (154)

Show that the following expression

∑
ij
λi σj 〈 êi | f̂j 〉2 (155)

is a scalar product between T and U.

Hint Solution

117



Hint to exercise 1

To be a proper scalar product it must satisfy the five condi-
tions presented in Equation (4). You will probably find that all
but the second condition are straightforward to demonstrate.

The second condition implies proving that

〈 T + U |W 〉 = 〈 T |W 〉 + 〈 U |W 〉 (156)

for all W. To do so, assume that T and U are expanded ac-
cording to Equation (154), and that

T + U =
n

∑
k=1

γk ĝk ĝT
k , W =

n

∑
m=1

αm ĥm ĥT
m (157)

where {gk} and {ĥm} are two ON-bases of eigenvectors rel-
ative to T + U and W, respectively, and {γk} and {αm} are
the corresponding eigenvalues. To prove Equation (156), two
more relations are needed. First, each ĝk is an eigenvector
of T + U. Using Equation (154), this implies that

∑
i
λi 〈 êi | ĝk 〉 êi + ∑

j
σj 〈 f̂j | ĝk 〉 f̂j = γk ĝk (158)

Second, since any vector is an eigenvector of I with corre-
sponding eigenvalue equal to unity, in particular this relates
to the vectors ĝk , and it follows that

I =
n

∑
k=1

ĝk ĝT
k (159)
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and therefore

〈 êi | ĥm 〉 = êT
i I ĥm = ∑

k
〈 êi | ĝk 〉 〈 ĝk | ĥm 〉 (160)

and similarly

〈 f̂j | ĥm 〉 = f̂T
j I ĥm = ∑

k
〈 f̂j | ĝk 〉 〈 ĝk | ĥm 〉 (161)

By using these relations in the proper way, the second condi-
tion follows immediately.
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Solution to exercise 1

All conditions but the second one follows immediately. Us-
ing the hints and the definition of the tensor scalar product,
Equation (20), it follows that

〈 T + U |W 〉 = ∑
km
γk αm 〈 ĝk | ĥm 〉2 = (162)

= ∑
km
〈 γk ĝk | ĥm 〉 αm 〈 ĝk | ĥm 〉 (163)

Now, insert the left hand side of Equation (158) instead of
γk ĝk in the above equation. This gives

〈 T + U |W 〉 =

∑
ikm

λi αm 〈 êi | ĝk 〉 〈 ĝk | ĥm 〉 〈 êi | ĥm 〉 +

∑
jkm

σj αm 〈 êi | ĝk 〉 〈 ĝk | ĥm 〉 〈 f̂j | ĥm 〉 (164)

Using Equations (160) and (161) this reduces to

〈 T + U |W 〉 =

∑
im
λi αm 〈 êi | ĥm 〉2 + ∑

jm
σj αm 〈 f̂j | ĥm 〉2 =

〈 T |W 〉 + 〈 U |W 〉 (165)
The last equality follows from the definition of the tensor
scalar product. This concludes the proof of Equation (156).
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Exercise 2

Show that the scalar product between T and U also can be
expressed as

〈 T | U 〉 = ∑
ij

Tij Uij (166)

and
〈 T | U 〉 = tr(TT U) (167)

Hint Solution

121



Hint to exercise 2

The elements of T and U can be expressed as

Tij =
n

∑
k=1

λk (ei)k (ej)k , Uij =
n

∑
l=1
σl (fi)l (fj)l (168)

where (ei)k and (fi)k are the elements of eigenvectors êk and
f̂k , respectively. Using these two equations inserted in the
right hand side of Equation (166), its equality with the left
hand side follows immediately.

The formulation of the tensor scalar product according to
Equation (167) follows immediately from the definition of the
trace, Equation (17).
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Solution to exercise 2

Using Equation (168), it follows that

∑
ij

Tij Uij = ∑
ijkl
λk σl (ei)k (ej)k (fi)l (fj)l (169)

The summation made over the indices i and j amounts to a
scalar product between the vectors êk and f̂l , which results in

∑
ij

Tij Uij = ∑
kl
λk σl 〈 êk | f̂l 〉2 = 〈 T | U 〉 (170)

where the last equality follows from the definition of the tensor
scalar product, Equation (20).
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Exercise 3

Consider a vector x and a basis {ek}. Then, x can be written
as a linear combination of the basis vector, according to

x =
n

∑
i=1

xi ei (171)

where xk are the corresponding coordinates. Show that

xi = 〈 x | ẽi 〉 (172)

where {ẽk} is the dual basis relative to the original basis,
characterized by the relation

〈 ei | ẽj 〉 = δij =

{
1 i = j

0 i 6= j
(173)

Hint Solution
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Hint to exercise 3

Compute the right hand side of Equation (172) by substituting
x for the right hand side of Equation (171), and apply Equa-
tion (173) on each term. The result is xi
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Solution to exercise 3

Substituting the right hand side of Equation (171) into the
right hand side of Equation (172) results in

〈 x | ẽi 〉 = ∑
j

xj 〈 ej | ẽi 〉 (174)

Using Equation (173) in each term in the sum gives

〈 x | ẽi 〉 = ∑
j

xj δij (175)

and since δij = 1 only when i = j , and zero otherwise, it follows
immediately that

〈 x | ẽi 〉 = xi (176)
which concludes the proof.
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Exercise 4

Let {Bk} be a basis of tensors (or vectors). Show that the
corresponding dual basis {B̃k} is given by the expression

B̃l = ∑
k

Bk Qkl (177)

where QT is the matrix inverse of the matrix P defined as

Pkl = 〈 Bk | Bl 〉 (178)

Hint Solution
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Hint to exercise 4

Show that the dual basis tensors Bl , defined by Equa-
tion (177), satisfies the basic relation between a basis and
its dual basis

〈 Bj | B̃i 〉 = δij =

{
1 i = j

0 i 6= j
(179)
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Solution to exercise 4

From Equation (177) it follows immediately that

〈 Bi | B̃j 〉 = ∑
k
〈 Bi | Bk 〉Qjk = ∑

k
Pik Qjk (180)

If Qjk are the elements of the matrix Q, and QT
kj are the ele-

ments of the matrix QT , the transpose of Q, then Qjk = QT
kj .

Hence,
〈 Bi | B̃j 〉 = ∑

k
Pik QT

kj (181)

But QT = P−1, so

〈 Bi | B̃j 〉 = ∑
k

Pik P−1
kj (182)

where P−1
kj are the elements of the matrix P−1, the inverse

of P. A careful examination of the right hand side of the last
equation reveals that it corresponds to a matrix multiplication
between P and P−1, which by definition yields the identity ma-
trix. Hence, the right hand side of this equation are the ele-
ments of the identity matrix, i.e., δij . Therefore

〈 Bj | B̃i 〉 = δij =

{
1 i = j

0 i 6= j
(183)
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Exercise 5

Consider the tensor

D = A (x̂ v̂T + v̂ x̂T ) (184)

where x̂ and v̂ are normalized and perpendicular to each
other. Show that x̂ + v̂ and x̂ − v̂ both are eigenvectors of
D, with eigenvalues A and −A, respectively. Show also that
these are the only eigenvectors with non-zero eigenvalues
(provided A > 0).

Hint Solution
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Hint to exercise 5

Multiply D from left onto x̂ + v̂ and x̂ − v̂, respectively, and
check that the result is a multiple (±A) of the original vector.
Note that x̂T v̂ = 0, and that x̂T x̂ = v̂T v̂ = 1.

To show that ±A are the only non-zero eigenvalues, use the
statement made in Section 2.5 regarding the fact that any
symmetric tensor can be decomposed in terms of a linear
combination of eigenvalues and eigenvectors. If it is true that
±A are the only non-zero eigenvalues, it it possible to decom-
pose D in this way, using only the normalized eigenvectors

1√
2

(x̂ + v̂) with eigenvalue A (185)

1√
2

(x̂− v̂) with eigenvalue −A (186)
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Solution to exercise 5

Multiplying D from left onto x̂ + v̂ and x̂ − v̂, and observing
the relations between the two vectors mentioned in the hints,
gives

D (x̂ + v̂) = A (x̂ v̂T + v̂ x̂T ) (x̂ + v̂) =

= A
[
x̂ (v̂T x̂ + v̂T v̂) + v̂(x̂T x̂ + x̂T v̂)

]
=

= A (x̂ + v̂)

(187)

and
D (x̂− v̂) = A (x̂ v̂T + v̂ x̂T ) (x̂− v̂) =

= A
[
x̂ (v̂T x̂− v̂T v̂) + v̂(x̂T x̂− x̂T v̂)

]
=

= A (−x̂ + v̂) = −A (x̂− v̂)

(188)

To show that ±A are the only non-zero eigenvalues, com-
pute the linear combination of eigenvectors and eigenvalues,
as suggested in the hints. This gives

A
1√
2

(x̂ + v̂)
1√
2

(x̂ + v̂)T − A
1√
2

(x̂− v̂)
1√
2

(x̂− v̂)T =

A
2

(x̂ x̂T +x̂ v̂T +v̂ x̂T +v̂ v̂T )−A
2

(x̂ x̂T−x̂ v̂T−v̂ x̂T +v̂ v̂T ) =

A (x̂ v̂T + v̂ x̂T ) = D
Since D can be decomposed in this way it must be the case
that ±A are the only non-zero eigenvalues of D.
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Exercise 6

Consider the two-dimensional linear structure in the figure be-
low, corresponding to some local neighborhood in an image.
The dashed lines indicate a local coordinate system of the
neighborhood, and a line perpendicular to the linear struc-
ture. What is the orientation tensor of this neighborhood, de-
scribed as a matrix containing numerical values?

30◦

Hint Solution
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Hint to exercise 6

Clearly, the neighborhood is simple since it is constant on
parallel lines. To find the orientation tensor, a (normalized)
normal vector to the parallel lines must first be established.
Use the coordinates defined by the coordinate system pre-
sented in the figure. Note that in this case, the normal vector
is well-defined except for the sign. The orientation tensor is
then defined as proportional to the outer product between the
normal vector and itself. Therefore, which sign is chosen is
irrelevant.
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Solution to exercise 6

As a normal vector we can use

x̂ =

(
cos 30◦

sin 30◦

)
≈

(
0.8660
0.5000

)
(189)

The orientation tensor T is then given by

T = A x̂ x̂T =

= A

(
cos2 30◦ cos 30◦ sin 30◦

cos 30◦ sin 30◦ sin2 30◦

)
≈

≈ A

(
0.7500 0.4330

0.4330 0.2500

) (190)

A is any positive real number.
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Exercise 7

Consider the tensor

T =

(
1.4510 0.6010
0.6010 0.2490

)
(191)

Which orientation does T represent? Make an illustration of
the corresponding simple neighborhood.

Hint Solution
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Hint to exercise 7

Compute the eigenvalues λ1 and λ2, and corresponding
eigenvectors ê1 and ê2. According to the conventions used
here, the eigenvalues are labeled according to λ1 ≥ λ2. Note
that λ2 ≈ 0, so T is (approximately) a rank one tensor.

The orientation of the neighborhood is given by the eigen-
vector ê1. It is an normal vector to the corresponding linear
structure.
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Solution to exercise 7

The eigenvalues and eigenvectors of T are given by

λ1 ≈ 1.6999 ê1 =
(

0.9239
0.3827

)
≈
(

cos 22.5◦
sin 22.5◦

)
λ2 ≈ 0.0001 ê2 =

(
0.3827
−0.9239

) (192)

The ratio between λ1 and λ2 suggests that T can be treated
as a rank one tensor. The eigenvector ê1 is then a normal
vector to the corresponding linear structure of the neighbor-
hood. The figure below illustrates the characteristic proper-
ties regarding the orientation of the neighborhood. The vari-
ation across the parallel lines, however, is not represented by
T, and therefore indeterminable.

22.5◦
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Exercise 8

Show that the Fourier transform S of a simple function s,

s(ξ) = g(ξT x̂) (193)

is concentrated to an impulse line in the Fourier domain. The
line passes through the origin and it goes in the direction of
x̂, and the variation along the impulse line is given by G, the
one-dimensional Fourier transform of g.

To simplify the exercise, consider first the 2D case, and then
extend the result to higher dimensions.

The Fourier transform of s is given by the expression

S(u) =
∫
Rn

s(ξ) e−iuT ξ dξn (194)

The integration is made over the entirety of the spatial do-
main.

Hint Solution
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Hint to exercise 8

Introduce a coordinate system corresponding to an ON-basis
in the spatial domain, and express s in terms of the resulting
coordinates, rather than in terms of ξ. The function s can
then be rotated such that the first coordinate axis points in
the direction of x̂, resulting in the function s′. Note that when
s is rotated into s′, the same rotation applies also to its Fourier
transform.

Consider then the Fourier transform of s′, and note that it is
Cartesian separable into a product of n one-variable func-
tions. One of these is g, and the remaining n−1 are constant
functions (= 1). The Fourier transform of s′ therefore decom-
poses into a product of n one-variable transforms, one is a
transform of g and the remaining ones are of the constant
function ”1”. Thus, the resulting product is indeed an impulse
line, passing through the origin and in the direction of the first
coordinate axis in the Fourier domain. The variation along
the impulse line is described by G, the Fourier transform of g.

The above describes the Fourier transform of s′, a rotated
version of s. To get S, simply make the inverse rotation rela-
tive to the first one, and the result is that the impulse line now
is oriented in the direction of x̂.

140



Solution to exercise 8

Using the hints, the function s′ can be expressed as

s′(ξ1,ξ2) = g(ξ1) (195)

in the 2D case. Its Fourier transform is then given by

S′(ξ1,ξ2) =

∞∫
−∞

∞∫
−∞

g(ξ1) e−i(u1ξ1+u2ξ1) dξ1 dξ2 (196)

Since s′ is Cartesian separable, its transform can be de-
composed into two factors, each corresponding to a one-
dimensional transform.

S′(ξ1,ξ2) =

∞∫
−∞

g(ξ1) e−iu1ξ1 dξ1

∞∫
−∞

1 e−iu2ξ2 dξ2

= G(u1) 2π δ(u2)

(197)

Thus, S′ is an impulse line which lies on the u1 axes in the
Fourier domain. The variation along the impulse line is de-
scribed by G. S′ is related to S by the rotation that takes the
x̂ vector to the ξ1 axis, so S is obtained by the inverse rotation.
This means that S is an impulse line oriented in the direction
of x̂. The extension to higher dimensions is straightforward.
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Exercise 9

Show that the dual basis relative to the three tensors in Equa-
tion (90) are the tensors presented in Equation (91).

Hint Solution
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Hint to exercise 9

Refer to Section 2.8, in particular the last part which dis-
cusses how to compute the dual bases relative to a given
basis, Equations (35) and (36). See also the related exer-
cise. According to these results, the dual basis is found by
first computing P, the matrix which contains scalar product
between all pairs of basis tensors, then invert P to get QT ,
then use Q in a linear combination between the basis ten-
sors.
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Solution to exercise 9

Referring to the steps presented in the hints, first compute P.
This results in

P =
1
4

4 1 1
1 4 1
1 1 4

 (198)

Hence, QT is given by

QT = P−1 =
1
9

10 −2 −2
−2 10 −2
−2 −2 10

 (199)

The elements of Q are now to be used in a linear combination
of the basis tensors. For example,

Ñ1 = Q11 N̂1 + Q21 N̂2 + Q31 N̂3 (200)

which results in
Ñ1 =

(
1 0
0 −3

4

)
(201)

The other two dual tensors are computed in the correspond-
ing way.
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Exercise 10

Show that the dual frame relative to the tensors in Equa-
tion (94) are the tensors presented in Equation (95).

Hint Solution
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Hint to exercise 10

Refer to Section 2.9, in particular the last part which dis-
cusses how to compute the dual frame relative to a given
frame, Equation (38). According to these results, the dual
frame is found by first constructing F, the frame operator,
which contains the frame tensors in its rows. The dual frame
operator is then given by the expression

F̃ = F (FT F)−1 (202)

The rows of F̃ contain the dual frame tensors.

146



Solution to exercise 10

Using the recipe presented in Section 2.9, we start by form-
ing the frame operator. Each row of the frame operator cor-
responds to the elements of one frame tensor. For example,
the first two elements of a row may correspond to the diag-
onal elements of the frame tensors, and the third element
may correspond to the off-diagonal elements. Note, however,
that the latter must be multiplied by

√
2. Hence, the following

mapping from frame tensor N̂ to a row of F is being used(
N11 N22

√
2 N12

)
(203)

If the k -th row of F represent N̂k , this results in

F =


1 0 0

1/2 1/2 1/
√

2
0 1 0

1/2 1/2 −1/
√

2

 (204)

This gives

FT F =

3/2 1/2 0
1/2 3/2 0
0 0 1

 (205)

and

(FT F)−1 =

 3/4 −1/4 0
−1/4 3/4 0

0 0 1

 (206)
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Thus, the dual frame operator is

F̃ = F (FT F)−1 =

=


1 0 0

1/2 1/2 1/
√

2
0 1 0

1/2 1/2 −1/
√

2


 3/4 −1/4 0
−1/4 3/4 0

0 0 1

 =

=


3/4 −1/4 0

1/4 1/4 1/
√

2
−1/4 3/4 0

1/4 1/4 −1/
√

2

 (207)

The rows of F̃ describe the dual frame tensors in the same
way as the rows of F describe the frame tensors. Hence, the
dual frame tensors of Equation (95) follows immediately.
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Exercise 11

Show that the dual basis relative to the three tensors in Equa-
tion (103) are the tensors presented in Equation (105).

Hint Solution
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Hint to exercise 11

Refer to Section 2.8, in particular the last part which dis-
cusses how to compute the dual bases relative to a given
basis, Equations (35) and (36). See also the related exer-
cise. According to these results, the dual basis is found by
first computing P, the matrix which contains scalar product
between all pairs of basis tensors, then invert P to get QT ,
then use Q in a linear combination between the basis ten-
sors.
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Solution to exercise 11

Referring to the steps presented in the hints, first compute P.
This results in

P =
1
5


5 1 1 1 1 1
1 5 1 1 1 1
1 1 5 1 1 1
1 1 1 5 1 1
1 1 1 1 5 1
1 1 1 1 1 5

 (208)

Hence, QT is given by

QT = P−1 =
1
8



9 −1 −1 −1 −1 −1
−1 9 −1 −1 −1 −1
−1 −1 9 −1 −1 −1
−1 −1 −1 9 −1 −1
−1 −1 −1 −1 9 −1
−1 −1 −1 −1 −1 9


(209)

The elements of Q are now to be used in a linear combination
of the basis tensors. For example,

Ñ1 = Q11 N̂1 +Q21 N̂2 +Q31 N̂3 +Q41 N̂4 +Q51 N̂5 +Q61 N̂6 (210)
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which results in

Ñ1 =


a2 − b2/4 0 5ab/4

0 −(a2 + b2)/4 0

5ab/4 0 b2 − a2/4

 (211)

Setting

c = a2 − b2/4 (212)

d = b2 − a2/4 (213)

e = 5 a b/4 (214)

f = −(a2 + b)/4 (215)

and computing the other five dual tensors in the correspond-
ing way gives the dual tensor presented in Equation (105).
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Exercise 12

Show that the dual frame relative to the tensors in Equa-
tion (109) are the tensors presented in Equation (110).

Hint Solution
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Hint to exercise 12

Refer to Section 2.9, in particular the last part which dis-
cusses how to compute the dual frame relative to a given
frame, Equation (38). According to these results, the dual
frame is found by first constructing F, the frame operator,
which contains the frame tensors in its rows. The dual frame
operator is then given by the expression

F̃ = F (FT F)−1 (216)

The rows of F̃ contain the dual frame tensors.
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Solution to exercise 12

Using the recipe presented in Section 2.9, we start by form-
ing the frame operator. Each row of the frame operator cor-
responds to the elements of one frame tensor. For example,
the following mapping from elements of a frame tensor N̂ to a
row of F can be used.(

N11 N22 N33 N44
√

2 N12
√

2 N23
√

2 N34
√

2 N13
√

2 N24
√

2 N14

)
(217)

Let the k -th row represent N̂k . Hence,

F =
1
2



1 1 0 0
√

2 0 0 0 0 0
1 1 0 0 −

√
2 0 0 0 0 0

1 0 1 0 0 0 0
√

2 0 0
1 0 1 0 0 0 0 −

√
2 0 0

1 0 0 1 0 0 0 0 0
√

2
1 0 0 1 0 0 0 0 0 −

√
2

0 1 1 0 0
√

2 0 0 0 0
0 1 1 0 0 −

√
2 0 0 0 0

0 1 0 1 0 0 0 0
√

2 0
0 1 0 1 0 0 0 0 −

√
2 0

0 0 1 1 0 0
√

2 0 0 0
0 0 1 1 0 0 −

√
2 0 0 0


(218)
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This gives

FT F =
1
2



3 1 1 1 0 0 0 0 0 0
1 3 1 1 0 0 0 0 0 0
1 1 3 1 0 0 0 0 0 0
1 1 1 3 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 2



(219)
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and

(FT F)−1 =
1
6



5 −1 −1 −1 0 0 0 0 0 0
−1 5 −1 −1 0 0 0 0 0 0
−1 −1 5 −1 0 0 0 0 0 0
−1 −1 −1 5 0 0 0 0 0 0
0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 6 0 0 0 0
0 0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 0 6



(220)
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Thus, the dual frame operator is

F̃ = F (FT F)−1 =

=
1

6



2 2 −1 −1
√

18 0 0 0 0 0

2 2 −1 −1 −
√

18 0 0 0 0 0

2 −1 2 −1 0 0 0
√

18 0 0

2 −1 2 −1 0 0 0 −
√

18 0 0

2 −1 −1 2 0 0 0 0 0
√

18

2 −1 −1 2 0 0 0 0 0 −
√

18

−1 2 2 −1 0
√

18 0 0 0 0

−1 2 2 −1 0 −
√

18 0 0 0 0

−1 2 −1 2 0 0 0 0
√

18 0

−1 2 −1 2 0 0 0 0 −
√

18 0

−1 −1 2 2 0 0
√

18 0 0 0

−1 −1 2 2 0 0 −
√

18 0 0 0



(221)

The rows of F̃ describe the dual frame tensors in the same
way as the rows of F describe the frame tensors, the k -th
row of F̃ represents Ñk . Hence, the dual frame tensors of
Equation (95) follows immediately.
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Exercise 13

Let T be an orientation tensor which has been estimated, e.g.,
using the procedures presented in Section 4. For a general
neighborhood, then, T may not be a rank one tensor. Let Ts
be a rank tensor

Ts = λ ê êT (222)
Show that any rank one tensor Ts which minimized the error

ε = ‖T− Ts‖2 (223)

is constructed in such a way that λ1 is the largest eigenvalue
of T, and ê1 is a corresponding normalized eigenvector, i.e.,
λ = λ1 and ê = ê1.

Hint Solution
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Hint to exercise 13

The task is to minimize

ε = ‖T− λ ê êT‖2 (224)

over all λ and all normalized ê. Using Equation (26), this
expands to

ε = ‖T‖2 − 2λ êT T ê + λ2 (225)
This is a standard minimization problem with an additional
constraint which is solved using multi-variable calculus, i.e.,
by considering gradients of ε with respect to λ and ê. Start
by minimizing ε with respect to ê. The constraint defines a
compact set and, therefore, ε indeed takes a minimal (as well
as a maximal) value for at least one vector ê. At any such
point (corresponding to a local minimum or maximum), the
gradient of ε with respect to ê is parallel to the gradient of the
constraint. This gives a relation between T and ê, with turns
out to state that ê must be an eigenvector of T. It is then
straightforward to show that ê should be chosen to be ê1, an
eigenvector of T with eigenvalue λ1 which is the largest of all
eigenvalues.
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Solution to exercise 13

Using the hints, compute the gradient of ε with respect to ê
dε
d ê

= −4λ T ê (226)

and of the constraint

c = êT ê = 1 (227)

which gives
dc
d ê

= 2 ê (228)

The two gradients are parallel at any local minimum, thus we
seek ê which satisfies the relation

−4λ T ê = 2γ ê (229)

where γ is the corresponding Lagrange factor. According to
this relation, it is either the case that λ = γ = 0, and then ê
is any normalized vector, or the case that λ 6= 0, and then ê
is an eigenvector of T. Consider first the latter case. We can
write

T = ∑
i
λi êi êT

i (230)

where {λi} are the eigenvalues of T and {êi} the correspond-
ing eigenvalues. We know that ê = êk for some k , but not
which k . The difference between T and Ts can now the writ-
ten

T− Ts = (λk − λ) êk êT
k + ∑

i 6=k
λi êi êT

i (231)
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Evidently, this difference has the same eigenvectors as T has,
the only difference is that eigenvalue λk of T corresponds to
λk − λ for T− Ts. Using Equation (24), this gives

ε = ‖T− Ts‖2 = (λk − λ)2 + ∑
i 6=k
λ2

i (232)

Clearly, this sum is minimized if we choose λk = λ1 = the
largest eigenvalue of T, and λ = λ1. Consequently, it must be
the case that ê = ê1 = the eigenvector corresponding to the
largest eigenvalue of T. The minimal value of ε is then

ε0 = ∑
i 6=1
λ2

i (233)

Finally, observe that the case λ = 0, leads to ε = ‖T‖2 ≥ ε0,
so this case does not necessary correspond to a minimum.

It should be noted that, provided that λ1 > λ2, i.e., the
largest eigenvalue of T is distinct, ê can be chosen as ±ê1,
but the resulting Ts does not depend on this choice. However,
in the case that λ1 = λ2, i.e., there are two or more eigenval-
ues of T which are the largest ones, then the choice of ê is
not just a matter of sign, since the subspace of corresponding
eigenvectors is of dimensionality ≥ 2. One one hand, then,
any normalized vector ê in this subspace minimizes ε. On the
other hand, the problem of finding the rank one approximation
of T becomes less interesting in that case.
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Exercise 14

The following four orientation tensors have been estimated for
different neighborhoods of a 3D volume. Classify each of the
tensors as describing a planar structure, a linear structure,
or an isotropic structure, or if it cannot reasonably be said to
describe either of these three cases. In the planar and linear
case, what is the orientation of the plane or lines?

T1 =

 3.2098 1.4585 0.7406
1.4585 1.6950 0.3319
0.7406 0.3319 0.5453

 (234)

T2 =

 3.8629 −0.0125 −0.0681
−0.0125 3.1576 1.0858
−0.0681 1.0858 1.1095

 (235)

T3 =

 2.4460 0.0133 −0.0252
0.0133 2.3255 −0.0406
−0.0252 −0.0406 2.0985

 (236)

T4 =

 2.7913 −0.4909 0.4134
−0.4909 1.9154 0.2958
0.4134 0.2958 1.2133

 (237)

Hint Solution

163



Hint to exercise 14

Compute eigenvalues and eigenvectors of each of the ten-
sors. From the eigenvalues, compute the three measures
c1,c2, and c3, defined in Section 6.3.4. If a tensor is decided
to belong to either the plane case or the line case, consider
the appropriate eigenvector to get the corresponding orienta-
tion, see Sections 6.3.1 and 6.3.2.
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Solution to exercise 14

The eigenvalues of T1 are

λ1 ≈ 4.27 λ2 ≈ 0.83 λ3 ≈ 0.35 (238)

The three measures are

c1 ≈ 0.81 c2 ≈ 0.11 c3 ≈ 0.08 (239)

Since c1 is so much larger than the other two we can assume
that this tensor represents a plane case, i.e., a neighborhood
that is constant on parallel planes. The normal of the planes
is given by ê1, a normalized eigenvector corresponding to λ1
= the largest eigenvalue. In this case,

ê1 ≈ ±

0.8385
0.5022
0.2115

 (240)

The eigenvalues of T2 are

λ1 ≈ 3.87 λ2 ≈ 3.62 λ3 ≈ 0.64 (241)

The three measures are

c1 ≈ 0.06 c2 ≈ 0.77 c3 ≈ 0.17 (242)

Here, it is reasonable to assume that the tensor represent
a line case, i.e., a neighborhood that is constant on parallel
lines. The orientation of the lines is given by ê3, a normalized
eigenvector corresponding to λ3 = the smallest eigenvalue.
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In this case

ê3 ≈ ±

 0.0179
−0.3959
0.9181

 (243)

The eigenvalues of T3 are

λ1 ≈ 2.45 λ2 ≈ 2.33 λ3 ≈ 2.09 (244)

The three measures are

c1 ≈ 0.05 c2 ≈ 0.10 c3 ≈ 0.85 (245)

In this case, the measure of isotropy (c3) is much larger than
the other two, so we can assume that the corresponding
neighborhood (from any practical point of view) is isotropic.
The isotropy implies that the neighborhood does not exhibit
any particular orientation, so no orientation needs to be indi-
cated.

The eigenvalues of T4 are

λ1 ≈ 3.05 λ2 ≈ 1.94 λ3 ≈ 0.93 (246)

The three measures are

c1 ≈ 0.36 c2 ≈ 0.33 c3 ≈ 0.30 (247)

The three measures are here more or less equal and, there-
fore, it is not reasonable to classify the tensor as belonging
to either of the plane, line, or isotropy cases. Instead, we
leave the tensor unclassified. The practical consequence of
this choice is that this tensor (or others like it) will not take
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part in further analysis or measurements on the image data.
It should be noted that these tensors are not anomalies, but
are the result of applying estimation procedures which as-
sume specific models of the local image data (e.g., that it is
simple) where not every neighborhood fits the model.
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Exercise 15

Let T1 and T be two orientation tensors such that e is an
eigenvector with eigenvalue = 0 relative to both tensors.
Show that the sum Ta = T1 + T2 inherits this property, i.e.,
e is an eigenvector with eigenvalue = 0 also relative to Ta.

Show that if both T1 and T2 are rank one tensors, then Ta =
T1 + T2 is of rank one if and only if T1 and T2 share the same
eigenvector with non-zero eigenvalue.

Hint Solution
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Hint to exercise 15

The first task is simple: apply Ta onto e and verify that the
result is the zero vector.

Since T1 and T2 are rank one tensor they can be written

T1 = λ ê êT (248)

and
T2 = σ f̂ f̂T (249)

The second assertion to prove states that Ta = T1 + T2 is too
a rank one tensor if and only if ê and f̂ are parallel, otherwise
it is of rank two. Note that it is straightforward to show that Ta
is of rank one if ê and f̂ are parallel. To prove the second part
of the assertion, assume that Ta is of rank one, i.e.,

Ta = γ ĝ ĝT (250)

and that ê and f̂ are not parallel. From this follows that Ta h =
αh, i.e., the result of applying the linear mapping Ta onto an
arbitrary vector h is always a multiple of ĝ. In particular this is
true if h is either ê or f̂. On the other hand, Ta = T1+T2, so the
result can also be written as a linear combination of ê and f̂.
Analyzing the relations that come from these considerations
leads to the conclusion that ê and f̂ in fact are parallel, a
contraction to the initial condition.
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Solution to exercise 15

It follows immediately that
Ta e = (T1 + T2) e = T1 e + T2 e = 0 + 0 = 0 (251)

Hence, e is an eigenvector of Ta with corresponding eigen-
value = 0.

Refer to the notation presented in the hints, and note that
it is safe to assume that both λ and σ are non-zero. To show
that Ta is of rank one only if ê and f̂ are parallel, assume that
Ta is of rank one and that ê and f̂ are not parallel and show
that this leads to a contradiction.

From the assumption it follows that

Ta ê =
[
γ ĝ ĝT

]
ê = γ (ĝT ê) ĝ (252)

Ta f̂ =
[
γ ĝ ĝT

]
f̂ = γ (ĝT f̂) ĝ (253)

which shows that Taê and Ta f̂ are parallel. On the other hand,
these two vectors can also be expressed as

Ta ê =
[
λ ê êT + σ f̂ f̂T

]
ê = λ ê + σ (êT f̂) f̂ (254)

Ta f̂ =
[
λ ê êT + σ f̂ f̂T

]
f̂ = λ (êT f̂) ê + σ f̂ (255)

They are parallel, i.e., Ta ê = κ Ta f̂, whereas ê and f̂ are not,
which implies {

λ = κ λ (êT f̂)

σ (êT f̂) = κ σ
(256)
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Since λ and σ are non-zero, these two equations can be
rewritten as {

1 = κ (êT f̂)

(êT f̂) = κ
(257)

leading to
(êT f̂)2 = 1 (258)

Both ê and f̂ are normalized, so the only way for this equation
to be true is for ê and f̂ to be parallel. This a contradicts the
initial conditions, and the only way to resolve the contradiction
is to accept that Ta is of rank one only if ê and f̂ are parallel.
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Exercise 16

An image sequence, represented as a 3D volume, has been
processed to produce a 3D orientation tensor at each point of
the volume. The numerical values of the orientation tensor is
sampled at four different points in the volume, as presented
in exercise 14. Using the assumption that the image volume
represents an image sequence, what type of local motion is
described by each of the four tensors, and what is the corre-
sponding velocity.

Note that not all four tensors can give an estimate of the true
local velocity, or not even an estimate of any type of velocity.

Hint Solution
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Hint to exercise 16

Refer to Section 7.3. According to this ”recipe”, you need
first the eigenvalues and eigenvectors for each of the tensors.
Each tensor is then classified as describing either the plane
case, the line case, or neither of the two. This has already
been done in solution 14. Depending on which case, a nor-
mal velocity, a true velocity, or no velocity can be estimated.
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Solution to exercise 16

Tensor T1 represents the plane case (rank one) which cor-
responds to a moving linear structure, e.g., a moving line or
edge. In this case only the normal velocity relative to the lin-
ear structure can be determined. It is given by ê1, the eigen-
vector of T1 with largest corresponding eigenvalue. Here,

ê1 =

x1
x2
x3

 ≈ ±
0.8385

0.5022
0.2115

 (259)

According to Equation (150), the normal velocity vector ṽ then
has the following value

ṽ =
(

v1
v2

)
= − x3

x2
1 + x2

2

(
x1
x2

)
≈
(

0.19
0.11

)
(260)

Hence, the normal velocity of the linear structure is

≈ (0.19 0.11) (261)

spatial units (in the 2D image) per time unit. In practice, the
spatial units are normally measured in pixels, and the cor-
responding time unit is the time between each consecutive
image in the sequence.

Note that ṽ, apart from representing local motion, also de-
scribes local orientation since it is a normal vector to the local
linear structure.

Tensor T2 represents the line case (rank two) which corre-
sponds to a moving point. In this case, an estimate of the

174



true velocity can be determined. It is given by ê, the eigen-
vector corresponding to the eigenvector of T2 with smallest
corresponding eigenvalue. Here,

ê3 =

x1
x2
x3

 ≈ ±
 0.0179
−0.3959
0.9181

 (262)

According to Equation (152), the true velocity vector ṽ has
the following value.

ṽ =
(

v1
v2

)
=

1
x3

(
x1
x2

)
≈
(

0.02
−0.43

)
(263)

The tensors T3 and T4 belongs to neither the plane nor the
line case. Therefore, no estimate of velocity can be given for
the corresponding two points in the image volume. However,
this does not imply that there is no motion at these points,
i.e., the velocity vector is zero. It is rather the case that the
local structure does not comply with the models used here for
motion estimation, which is either a linear structure or point
moving with a velocity that is relatively constant over at least
some few frames. Consequently, rather than setting the es-
timated velocity to zero at these points, it is taken to be un-
known.
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Exercise 17

Consider an image sequence represented as a 3D volume
(2D spatial plus time), and a local neighborhood of this vol-
ume which describes a moving linear structure. Let n be a 2D
normal vector of the linear structure, and let corresponding v
be the spatio-temporal motion vector. The motion generates
a planar 3D structure which can be represented by an orien-
tation tensor T of rank one. Show that the projection of ê1, a
normalized eigenvector of T with largest eigenvalue, onto the
image plane is a normal vector to the linear structure.

Hint Solution
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Hint to exercise 17

You need two 3D vectors that are linearly independent and
both lie in the plane generated by the motion. From these you
can easily construct a vector which is perpendicular to both of
them, and therefore a normal vector to the plane. This vector
is parallel to ê1. Project this vector onto the image plane and
consider the result.
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Solution to exercise 17

Let the non-zero 3D vector m,

m =

m1
m2
0

 (264)

be parallel to the linear structure and lie in the image plane.
This vector lies also in the plane that is generated by the mo-
tion of the linear structure. This is true also for v,

v =

v1
v2
1

 (265)

the spatio-temporal velocity vector. They are linearly inde-
pendent, and a vector perpendicular to both, i.e., a normal
vector to the plane, is found by taking their cross product

m× v =

 m2
−m1

m1 v2 −m2 v1

 (266)

This vector is then parallel to ê1. The projection of ê1 onto the
image plane gives the vector

n = ±

 m2
−m1

0

 (267)

which apparently is perpendicular to m. Hence, n is a normal
vector to the linear structure.
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Exercise 18

A 2D image neighborhood is described by the function f ,

f (ξ) = g(ξT x̂) ξ =
(
ξ1
ξ2

)
x̂ =

(
0.8
−0.6

)
(268)

where
g(y ) = 0.3 cos(0.7y ) + 0.6 sin(1.4y ) (269)

Hence, f complies with the model stated for estimation of lo-
cal orientation according to Section 4. For this neighborhood,
compute the corresponding orientation tensor, represented
as a matrix with numerical values, according to one of the
two procedures described in Section 5.1. Examine the re-
sulting tensor to see if it is of rank one, and if the eigenvector
corresponding to the largest eigenvalue is parallel to x̂. As
a radial function of the quadrature filters, use the lognormal
function described in Section 4.8, with

ρ0 = 1.2 B = 2 (270)

Hint Solution
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Hint to exercise 18

You need to compute the filter outputs of all filters. This is
done very easily by drawing a picture of the the signal in the
Fourier domain. Since f is simple its Fourier transform is con-
centrated to a line which passes through the origin, and along
that line it varies as G, the Fourier transform of g. In this pic-
ture, also the filters and their filter directing vectors can be
drawn, and from this the filter outputs can be derived imme-
diately. Note that the filter output is the integral of the product
between signal and the filter taken in the Fourier domain (or
in the spatial domain). The outputs are complex since the
quadrature filters are complex filters. The absolute value of
the filter outputs are then used in a linear combination with
the dual tensors {Ñk}, according to Equation (87). The dual
tensors are given by Equations (91) and (95), respectively.

To find out whether or not the resulting tensor in fact rep-
resents the correct orientation, compute its eigenvalues and
eigenvectors. You will then find that one eigenvalue (λ2) is
very close to zero while the other (λ1) is of significant value.
Furthermore, the eigenvector ê1 (corresponding to λ1) is al-
most parallel to x̂.
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Solution to exercise 18

The function f is simple, and therefore its Fourier transform
can be written

F (u) = 2π G(uT x̂) δline
x̂ (u) (271)

where u is the frequency coordinate, δline
x̂ is an impulse line

which passes through the origin in the direction of x̂, and G
is the one-dimensional Fourier transform of g.

G(u)=0.3π[δ(u+0.7 )+δ(u–0.7 )]+0.6πi [δ(u+1.4)–δ(u–1.4)]
(272)

The Fourier transform of f is illustrated in the figure below

u1

u2

0.7

1.4

x̂
−0.6πi

0.6πi

0.3π

0.3π

Note in particular the change in phase sign (sign of the argu-
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ment) of the sinus term compared to the non-changing phase
of the cosine term in the Fourier domain. This effect has con-
sequences when determining the filter outputs.

In the following, we consider only the case of using three
quadrature filters for the estimation of the orientation. The
calculations are similar in the case of four filters. According to
Section 5.1.1, the filters can have directing vectors according
to Equation (89). This is illustrated in Figure 17, which shows
the filter directing vector of the corresponding filter together
with the Fourier transform of the signal. Furthermore, the
zero half of each filter’s Fourier transform is shaded. Note
that different impulses show up in the non-zero part of the
quadrature filters.

n̂1

n̂2

n̂3

Figure 17: Three quadrature filters with directions given by
the vectors n̂1,n̂2,n̂3. The zero half of each filter’s Fourier
transform is shaded.
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With these figures in mind, it is straightforward to calcu-
late the three filter outputs. They are the integrals of sig-
nal’s Fourier transform times the Fourier transform of the fil-
ter, the integral is taken over the entirety of the Fourier do-
main. However, since the Fourier transform of the signal is
just a few impulses, the integral collapses into a sum over the
impulses, where each term is the product of the correspond-
ing impulse’s ”amplitude” and the value of the filter function
at that point. Note that half of the impulses are in the zero-
half of each filter, and can therefore be omitted in the sum.
Furthermore, each filter is separable into a radial function, R,
and an angular function, D. The radial function is presented
in Equation (88), and the angular function is simply

D(u) = (ûT n̂k )2 (273)

This gives (with four significant digits)

q′1 = 0.64 · [ 0.3 R(0.7 )− 0.6i R(1.4) ] (274)

q′2 = 0.8457 · [ 0.3 R(0.7 ) + 0.6i R(1.4) ] (275)

q′3 = 0.0143 · [ 0.3 R(0.7 )− 0.6i R(1.4) ] (276)

We also need

R(0.7 ) = 0.6576 R(1.4) = 0.9663 (277)
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which sets numerical values to all filter outputs
q′1 = 0.1263 − 0.3711i

q′2 = 0.1668 + 0.4903i

q′3 = 0.0028 − 0.0083i

(278)

and, finally, to their absolute values
q1 = |q′1| = 0.3920

q2 = |q′2| = 0.5179

q3 = |q′3| = 0.0088

(279)

With the absolute values of the filter outputs at hand, it is
now possible to construct the orientation tensor as a linear
combination of these absolute values and the dual tensors
corresponding to the filter directions according to

T = q1 Ñ1 + q2 Ñ2 + q3 Ñ3 (280)

The dual tensors are listed in Equation (91), which gives the
orientation tensor

T =
(

0.3920 −0.2940
−0.2940 0.2205

)
(281)

The eigenvalues of the tensor are

λ1 = 0.6124 λ2 = 0 (282)

and a normalized eigenvector corresponding to λ1 is

ê1 = ±
(

0.8000
−0.6000

)
(283)
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Hence, T is indeed a rank one tensor, and ê1 represents the
local orientation of the neighborhood as described in Sec-
tion 3.

Try to make the same calculations also for four filters.
In that case, both the filter output magnitudes qk and the
dual tensors Ñk are different. The resulting tensor, however,
should be the same.
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Exercise 19

A signal neighborhood is described by the simple signal f ,

f (ξ) = g(ξT x̂) (284)

where
g(y ) = cos(ωy + ϕ) = cos(ω[y +

ϕ

ω
]) (285)

Let this signal be subject to a filtering by a quadrature filter,
e.g., a spherically separable filter as described in Section 4.4.
Show that the filter output q′ of this filter has an absolute value
q which is independent of ϕ.

The consequence of this property is that q is invariant to ϕ,
the local phase of the signal. From a more practical perspec-
tive, this mean that the filter output is invariant to position,
as long a the local signal model is simple and g contains
only one frequency component, or has narrow band-width.
The orientation tensor T is constructed as the linear combi-
nation of the absolute value of several filter outputs at the
same point, Equation (87). Consequently, also the tensor is
phase-invariant or position-invariant in this case.

Hint Solution
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Hint to exercise 19

Follow the steps for computing the filter output q presented
in Sections 4.3 and 4.4, resulting in Equation (81). Using the
g presented above, it is straightforward to obtain the scalar
a, and it turns out that |a| is independent of ϕ. As a conse-
quence, so is q.
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Solution to exercise 19

The scalar a is defined as

a =
1

2π

∞∫
0

G(u) R(u) du (286)

and from the definition of g follows that

G(u) = π [ δ(u + ω) + δ(u − ω) ] eiuϕ/ω =

= π
[
δ(u + ω) e−iϕ + δ(u − ω) eiϕ

] (287)

which gives

a =
1
2

R(ω) eiφ and |a| = 1
2

R(ω) (288)

Furthermore, we have

q = |a| [D(−x̂) + D(x̂)] (289)

where the second factor only depends on x̂ (and not on g),
which finally shows that q is invariant relative to ϕ.
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9 Computer Exercises

The Computer Exercises part of this package contains the
following exercises

• CE 1: Computing the 2D orientation tensor
All exercises are executed in Matlab.
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MATLAB AND IMAGES

There are some things that you need to know about when
using (generating and displaying) images in Matlab.

1. All images are represented in terms of matrices. Hence,
a typical gray-scale image is conveniently represented as
a matrix of real numbers.

2. When the image is to be displayed this is no quite the
truth. The standard mechanism for image display (the
function image) uses the matrix elements as indices in
a color table, which can be set by the user or by some
program. Therefore, to display an image you need to set
the color table (using the function colormap) and then ren-
der the image (by means of image). Along with this pack-
age there are some display functions which actually takes,
e.g., an image (matrix) of gray-scale values and displays it
properly (normimage). Other functions can display images
of real numbers, both positive and negative (grimage),
and even images of complex numbers (gopimage).

3. The indices of a Matlab matrix are such that the first index
runs vertically and the second runs horizontally, starting
at the top left corner with index (1,1) and increasing the
coordinates downwards, and to the right, respectively. Im-
ages, on the other hand, have a coordinate system where
the first coordinate runs horizontally and the second ver-
tically, with the origin at the center of the image, and in-
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creasing the coordinates to the left, and upwards, respec-
tively. This image coordinate may not be universally ac-
cepted, but at least it is convenient in the following exer-
cises. Consequently, the coordinate system of an image
is not the same as the indices of the corresponding ma-
trix, so this has to be taken care of. The easiest way to do
this, is to construct images that contain the coordinates of
the image coordinate system.

4. The the images used in the exercise can in principle be
of arbitrary size. Neither the estimation procedures nor
Matlab sets any hard limitations on the size. On the
other hand, you computer has a limited amount of pri-
mary memory and processing power, which means that
you have to limit the image size to something it can cope.
The examples shown here uses the image size 512×512,
which is a fairly commonly used image size in image
processing. Depending on the memory and processing
power offered by your computer this size may have to be
decreased (or it can even by increased), which has to be
taken into account when you do the exercise. It should be
noted, though, that images sizes which are integer pow-
ers of two are to be preferred when Matlab’s implemen-
tation of the DFT (fft) is used. The same goes for the
resolution of the color table used for image display. This
exercise assumes 24-bit color resolution, thereby allow-
ing each figure to be displayed using its own color table. If
you computer has a lower color resolution (e.g., 8-bit) also
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this may imply that different images can not be displayed
properly at the same time.

5. When an image is displayed, its size on the screen may
not be determined by its natural size in pixels (number of
row and columns of the corresponding image matrix), but
rather by the size of the display window. Hence, a pixel
in the image may not correspond to a pixel on the screen.
If the size of the window changes, the size of the image
change as well. This may seem like a nice feature, but the
result can be confusing since the apparent change of im-
age size is achieved by resampling the image. If the image
is not band-limited or subject to any other restriction, dis-
playing it in something else than its natural size can cause
artifacts to appear or structures in the image to disappear.
This is the case regardless of whether the displayed size
is smaller or larger than the natural size. The display func-
tions presented here (normimage, grimage, gopimage) al-
ways display an image in its natural size, and by using
them you can avoid this problem. However, this assumes
that the size of the display window is not changed after an
image is rendered.

6. Images are not portable, not even on the same computer.
Of course, there are a number of image formats (tiff, gif,
jpeg, etc) which are portable in terms of storing and re-
trieving. However, when one and the same image is dis-
played on the screen, it may not look quite the same on
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another computer or even on the same computer but with
a different display software. Normally the differences lie
in dynamic of the image intensity and in the color satu-
ration. One part of the problem lies in the video monitor
of you computer which typically is slightly different from
that of another computer, but also in how various soft-
ware interpret color information encoded in the images
and how this is mapped into colors on the screen. Con-
sequently, an image which looks perfectly nice in one sit-
uation may look much darker or brighter, or exhibit differ-
ent color saturation, when displayed in a different environ-
ment. This effect does not cause that much of a problem
in these exercises, unless you intend to use images pro-
duced elsewhere and run some processing on them, or
you want to save some result images produced in Matlab
for later rendering in other environments. In those cases,
you should not be surprised if images imported into Mat-
lab look slightly different when they are displayed there, or
if images exported from Matlab look different elsewhere.
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9.1 COMPUTER EXERCISE 1:
2D ORIENTATION ESTIMATION

The goal of this exercise is to get an understanding of how
a representation of local orientation in terms of a tensor can
be estimated for 2D images. The orientation tensor is here
described as symmetric 2 × 2 matrix, according to

T =
(

T11 T12
T12 T22

)
(290)

The tensor is estimated at each point of the image, the result
of the estimation procedure is therefore a new image which
contains a 2 × 2 matrix at each point. Since there are three
independent (at least in practice) elements in the matrix, the
result can conveniently be represented as three images, one
each for T11,T12, and T22, respectively. At the end of the exer-
cise you should be able to write a Matlab-function which take
an image as input and computes the resulting tensor images.

The filtering operations that are defined for the estimation
is here made by means of multiplication in the Fourier do-
main. This is usually not the most practical or even the fastest
way of implementing a filtering process. Furthermore, certain
edge effects will occur due to the corresponding cyclic convo-
lution. However, with this approach, instead of using discrete
a spatially truncated filters, no attention needs to be payed to
choosing the filter coefficients in an optimal way.
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9.1.1 COMPUTER EXERCISE 1: Preparations

First, generate two images which hold the first and second
image coordinate.

x1=ones(512,1)*(-256:255);

x2=(255:-1:-256)’*ones(1,512);

You will also need to corresponding coordinates in the Fourier
domain

u1=ones(512,1)*(-256:255)*pi/256;

u2=(255:-1:-256)’*ones(1,512)*pi/256;

It will prove convenient to have also the polar coordinates in
the Fourier domain at hand

rho=sqrt(u1.*u1+u2.*u2);

psi=angle(u1+i*u2);
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9.1.2 COMPUTER EXERCISE 1: The quadrature filters

We are now going to generate the three quadrature filters
needed for the estimation procedure. These are described in
the Fourier domain as spherically (polar) separable functions

Fk (u) = R(ρ) Dk (û), ρ = ‖u‖ û =
u
ρ

(291)

As was mentioned in Section 4.8, R can be chosen quite arbi-
trary, but considerations related to simultaneous localization
in the spatial and Fourier domain lead to

R(ρ) = e−
4

B2 ln2
ln2(ρ/ρi) (292)

where B is the relative bandwidth and ρ0 is the center fre-
quency of the filter. Just to set some values to these param-
eters, try B = 3 and ρ0 = π

2
√

2
(radians per pixel). The radial

function can now be computed as

B=3;

rho0=0.7;

R=exp(-4/(B*B*log(2))*(log((rho+eps)/rho0)).^2);

The term eps (which is the smallest positive number that Mat-
lab can represent) is added to the radial variable to avoid tak-
ing the logarithm of zero.
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The directional functions of the filters are defined as (see
Section 4.5)

Dk (û) =

{
(ûT n̂k )2 ûT n̂k > 0

0 otherwise
(293)

where n̂k is the directing vector of the corresponding filter.
Note that the scalar product between û and n̂ amounts to the
cosine of the angular difference between the two vectors. The
filter directing vectors are (see Section 5.1.1)

n̂1 =

(
1
0

)
n̂2 =

(
−1/2
√

3/2

)
n̂3 =

(
−1/2

−
√

3/2

)
(294)

which corresponds to the direction angles 0◦,±120◦ (or 0 and
±2π

3 radians) relative to the u1-axis of the coordinate system
in the Fourier domain. The three angular functions can now
be computed

an1=0;an2=2*pi/3;an3=-2*pi/3;

F1=R.*(cos(psi-an1).^2).*(cos(psi-an1)>0);

F2=R.*(cos(psi-an2).^2).*(cos(psi-ans2)>0);

F3=R.*(cos(psi-an3).^2).*(cos(psi-ans3)>0);

You can now display the three filter functions, e.g., each in its
own figure window

figure(1);normimage(F1);
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figure(2);normimage(F2);

figure(3);normimage(F3);

Note that the origin of the Fourier domain is at the center of
each image. The quadrature property of the filters implies
that they are all equal to zero at one half-plane, which is visu-
alized in a better way using contour plots

figure(1);contour(F1);

figure(2);contour(F2);

figure(3);contour(F3);
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9.1.3 COMPUTER EXERCISE 1: Filtering the image

At this point it is time to consider the image on which the
orientation estimation should be made. For example, try the
test image called ploop.

load ploop;

figure(4);normimage(ploop);

This test image contains a circular pattern consisting of a ra-
dial sine function, hence any possible orientation is present
in the image, and also any phase. Furthermore, the spatial
frequency increases when going toward the center of the im-
age, and a large range of frequencies are represented (from
≈ 0.25 to π radians per pixel). This test image has been
designed to allow performance evaluation of this or other es-
timation procedures.

To compute the filter output when each filter is applied to
this image we can Fourier transform the test image, multiply
by the Fourier transform of the filters (given by F1, F2, F3),
and then do an inverse Fourier transform. Finally, the abso-
lute value of the filter outputs is computed. It should be noted
that this filtering approach has some disadvantages, e.g., it
introduces edge effects and it may not be as fast compared
to a straightforward convolution with localized and discrete fil-
ters. However, it is simple and we do not have to get involved
into the filter design needed to create the discrete filters.
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It should be noted that Matlab’s standard implementation of
the discrete Fourier transform implies that the origin of both
the spatial and the Fourier domains are located at the top
right corner. To shift the origin to the center of the domains,
use the function fftshift.

Ploop=fftshift(fft2(fftshift(ploop)));

q1=abs(fftshift(ifft2(fftshift(F1.*Ploop))));

q2=abs(fftshift(ifft2(fftshift(F2.*Ploop))));

q3=abs(fftshift(ifft2(fftshift(F3.*Ploop))));

We now have the absolute value of the filter outputs in three
images q1, q2, q3. Before we proceed, take a look at them,
e.g., using the function normimage.

figure(1);normimage(q1);

figure(2);normimage(q2);

figure(3);normimage(q3);

As you can see, the output from each filter indicates that each
filter is sensitive to a particular orientation range (not direc-
tion) of the signal, according to the directional function Dk .
Furthermore, the absolute value of the filter outputs is more
or less invariant to the phase of the signal.
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9.1.4 COMPUTER EXERCISE 1: Generating the dual
tensors

To obtain the final orientation tensor, the three scalars q1,q2,
and q3 are to be combined, at each point of the image,
with the dual tensors Ñ1,Ñ2, and Ñ3, respectively, see Equa-
tion (87). The dual tensor are listed in Equation (91), and their
derivation is discussed in exercise 9. To get the full picture,
however, the computation of these tensors are included here
as well.

First, define the three direction vectors

n1=[cos(an1);sin(an1)];

n2=[cos(an2);sin(an2)];

n3=[cos(an3);sin(an3)];

Then the corresponding filter tensors are formed as the outer
product of the filter directing vectors

N1=n1*n1’

N2=n2*n2’

N3=n3*n3’

By treating these tensors (or matrices) as vectors, the compu-
tation of the dual tensors is considerably simplified. Matlab’s
operator (:) reshapes a matrix to a column vector by con-
catenating the columns of matrix, one under the other, in the
same order as they appear in the matrix.
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N1=N1(:)

N2=N2(:)

N3=N3(:)

Form a basis matrix B which contains these vectors in its
columns

B=[N1 N2 N3]

The dual basis matrix is the given by (see Section 2.8)

dualB=B*inv(B’*B)

This matrix contains the dual tensors in its column (and in the
same way as B contains the original tensors in its columns),
and they can be reshaped into matrices again

dualN1=reshape(B(:,1),2,2)

dualN2=reshape(B(:,2),2,2)

dualN3=reshape(B(:,3),2,2)

If you have followed the above steps correctly, the three matri-
ces dualN1, dualN2, and dualN3 have their values according
to Equation (91).
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9.1.5 COMPUTER EXERCISE 1: Generating the orien-
tation tensor

With both filter outputs and dual tensors at hand, the only
remaining step is their linear combination. This should be
done point-wise, so the result can be considered as an im-
age containing 2 × 2 symmetric matrices. Any such matrix
contains three independent elements (at least linearly inde-
pendent elements), hence the tensor image can be repre-
sented as three images of scalars, one for T11, one for T12,
and one for T22. Each element image is then a linear com-
bination of the qk images and the corresponding element of
the dual matrices. For example, we get

T11 = q1 Ñ1,11 + q2 Ñ2,11 + q3 Ñ3,11 (295)

where N1,11 is the (1,1) element of Ñ1, etc. Hence,
T11=q1*dualN1(1,1)+q2*dualN2(1,1)+q3*dualN3(1,1);

T12=q1*dualN1(1,2)+q2*dualN2(1,2)+q3*dualN3(1,2);

T22=q1*dualN1(2,2)+q2*dualN2(2,2)+q3*dualN3(2,2);

We now have the orientation tensor at each point for the test
image, and the three components of the tensor can now be
displayed
figure(1);grimage(T11);

figure(2);grimage(T12);

figure(3);grimage(T22);
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9.1.6 COMPUTER EXERCISE 1:
Examining the orientation tensor

Having calculated the orientation tensor at each point of the
image, it is now time to examine it an see if it has the expected
properties. The three images previously displayed give some
indications on this issue, although in a qualitative manner.
Given this particular test image, and the coordinate system, it
is evidently so that a neighborhood around point x is a simple
function where x̂ is normal to the parallel lines of constancy.
Hence, from a theoretical point of view, the orientation tensor
should proportional to x̂x̂T at point x. Therefore, if the angular
coordinate of point x is α, the orientation tensor at that point
has the following dependency with respect to α

T11 = A cos2 α

T12 = A cosα sinα
T22 = A sin2 α

(296)

(see Section 3.3). Returning to the three images that depict
these three tensor components, you will find that the tensor
has both a variation along the radial component, which is due
to the radial frequency function of the filters, and an angular
variation according to the above expressions. So far so good.

To get a more precise feeling for the qualities of the result-
ing tensor, use the Matlab function tensorview2D. It allows
you to use the screen cursor as a probe in the tensor field; but
clicking on a point in the test image it presents facts about the
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corresponding orientation tensor, e.g., the eigenvalues. Do

help tensorview2D

to get more information on what it does. Now, use it on the
tensor fields derived from the test image

figure(1);normimage(ploop);

tensorview2D(1,2,T11,T12,T22);

You will find that each time you click in the area where the
local orientation is well-defined, the eigenvalues are such that
λ2 is very small compared to λ1, something that is reflected
in c1 which takes values very close to unity. Furthermore, the
line at the bottom (representing ±ê1) is perpendicular to the
linear structure of each neighborhood.

To get a more global view of the tensor field, compute ‖T‖,
the norm of the tensor, and its two eigenvalues λ1 and λ2.

normT=sqrt(T11.*T11+T22.*T22+2*T12.*T12);

l1=(T11+T22)/2+sqrt(((T11-T22)/2).^2+T12.^2);

l2=(T11+T22)/2-sqrt(((T11-T22)/2).^2+T12.^2);

figure(1);normimage(normT);

figure(2);grimage(l1);

figure(3);grimage(l2);
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Note that the three images does not present absolute values
of these three entities; the range of each variable is scaled
differently so, for example, you can not compare the images
of λ1 and λ2 directly. However, the first image show that ‖T‖
is practically constant with respect to orientation, i.e., if you
choose a point and follow the corresponding circle centered
at the image origin, the norm is more or less constant. There
is a variation in the radial direction, but that effect is due to the
radial frequency function of the filters combined with the vari-
ation of the local spatial frequency in the test image. These
observations are valid also for λ1. Finally, for λ2 it should
be noted that this eigenvalue in general is at approximately
two orders of magnitude smaller than λ1, this can be seen by
computing the mean of the absolute value of each of the two
eigenvalues

mean2(abs(l1))

mean2(abs(l2))

In the image which presents λ2 (figure 3), you can also see
that this eigenvalue is not exactly zero at all points. In fact, it
even takes negative values (although small negative values)
at some points, and the general properties of this eigenvalue
seems to be quite dependent on orientation. To be sure, the
first two images are not entirely invariant with respect to ori-
entation. To see this, produce an image which indicates the
pixels where ‖T‖ is larger than 99% of the maximum value of
the norm.
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figure(1);normimage(normT>max2(normT)*0.99);

As this image shows, the set of points which match the con-
dition are not aggregated along a perfect circle, but rather as
some few blobs. Take some time to try and figure out one or
two reasons why.
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