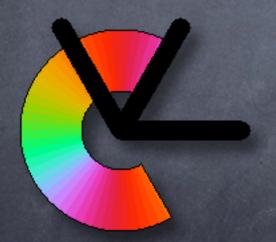
Computer Vision on Rolling Shutter Cameras PART II: Rolling Shutter Geometry

Per-Erik Forssén, Erik Ringaby, Johan Hedborg



Computer Vision Laboratory Dept. of Electrical Engineering Linköping University

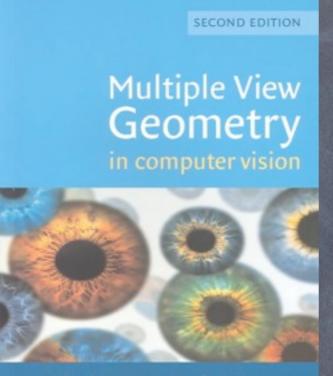
Linköping University

Tutorial overview

1:30-2:00pm	Introduction	Per-Erik
2:00-2:15pm	Rolling Shutter Geometry	Per-Erik
2:15-3:00pm	Rectification and Stabilisation	Erik
3:00-3:30pm	Break	
3:30-3:45pm	Rolling Shutter and the Kinect	Erik
3:45-4:30pm	Structure from Motion	Johan

Projective Geometry

Textbook material



Richard Hartley and Andrew Zisserman



THREE-DIMENSIONAL COMPUTER VISION

OLIVIER FAUGERAS

Hartley & Zisserman Multiple View Geometry 2nd ed 2004

CVPR 2012

in the second

Faugeras Three-Dimensional Computer Vision 1993

Linköping University

Pin-hole camera model

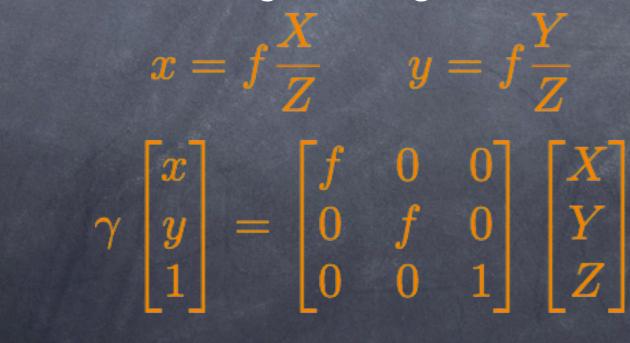
Pin-hole camera model

A brightly illuminated scene will be projected onto a wall opposite of the pin-hole.

The image is rotated 180°.

The pin-hole camera Optical Centre $x = \begin{pmatrix} x \\ y \end{pmatrix}$

From similar triangles we get:



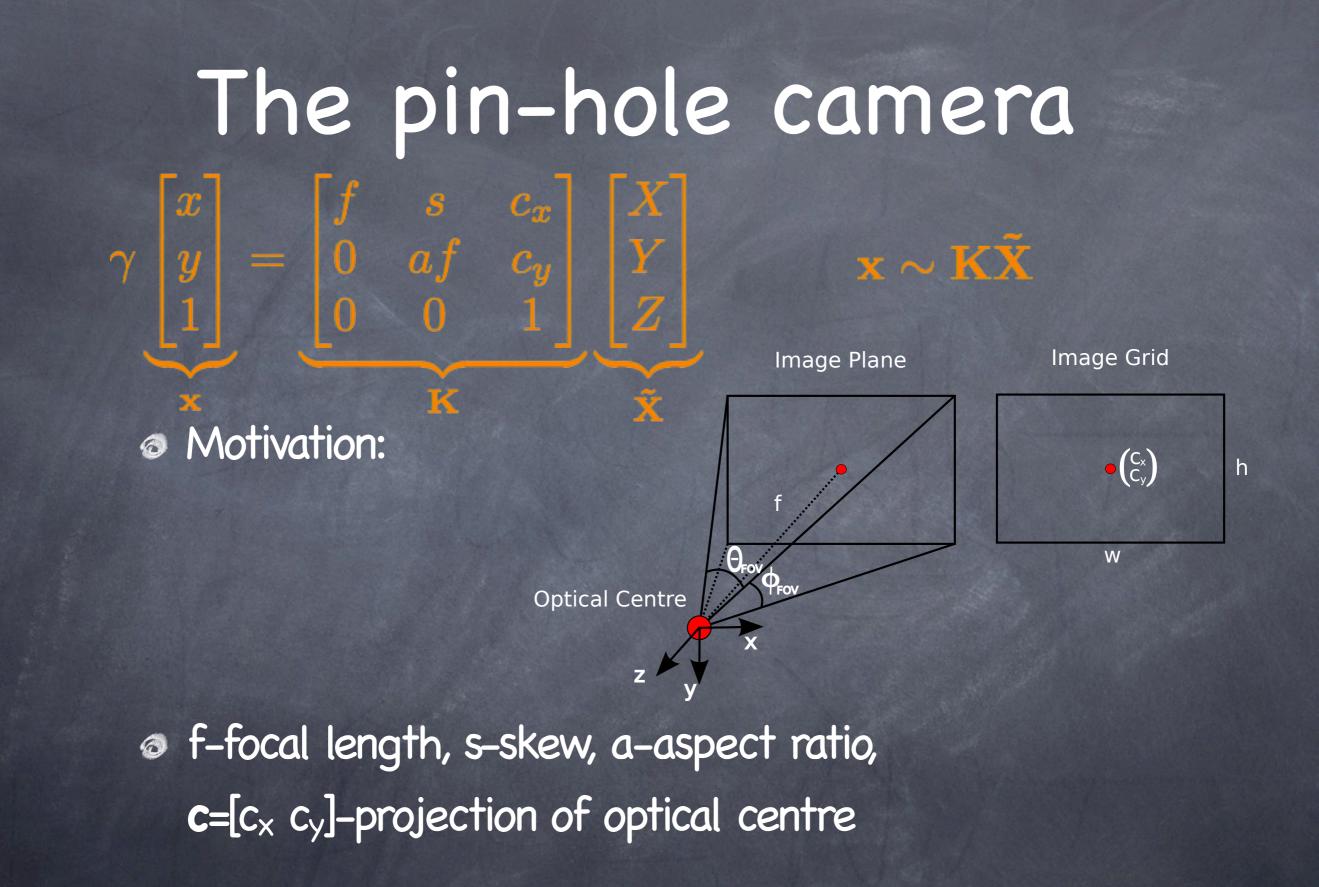
6

The pin-hole camera $\gamma \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$

More generally we write:

$\gamma egin{bmatrix} x \ y \ 1 \end{bmatrix} = egin{bmatrix} f & s & c_x \ 0 & af & c_y \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} X \ Y \ Z \end{bmatrix}$

In f-focal length, s-skew, a-aspect ratio, $\mathbf{c} = [\mathbf{c}_{\mathsf{x}} \ \mathbf{c}_{\mathsf{y}}] - \text{projection of optical centre}$



CVPR 2012

Projection of 3D points X_c in the camera coordinate system:
x ~ KX_c

In order to relate several camera poses, we need to use a common world coordinate system (WCS):

The second seco

 $\mathbf{x} \sim \mathbf{K} \mathbf{R}^T (\tilde{\mathbf{X}}_{\mathbf{w}} - \mathbf{d}) \Rightarrow \mathbf{x} \sim \mathbf{P} \mathbf{X}_{\mathbf{w}}$

where P is a 3x4 matrix, and $\mathbf{X}_{\mathbf{w}} = \begin{bmatrix} \mathbf{\tilde{X}}_{\mathbf{w}}^T & 1 \end{bmatrix}^T = \begin{bmatrix} X Y Z & 1 \end{bmatrix}^T$

The can simplify this to a single projection operation on the 3D points X_W :

 $\mathbf{x} \sim \mathbf{K} \mathbf{R}^T (\mathbf{\tilde{X}}_{\mathbf{w}} - \mathbf{d}) \Rightarrow \mathbf{x} \sim \mathbf{P} \mathbf{X}_{\mathbf{w}}$

where P is a 3x4 matrix, and $\mathbf{X}_{\mathbf{w}} = \begin{bmatrix} \mathbf{\tilde{X}}_{\mathbf{w}}^T & 1 \end{bmatrix}^T = \begin{bmatrix} X Y Z & 1 \end{bmatrix}^T$

This matrix P has the explicit form:

 $\mathbf{P} = \mathbf{K} \left[\mathbf{R}^T | - \mathbf{R}^T \mathbf{d} \right]$

nköping Univ

The can simplify this to a single projection operation on the 3D points X_W :

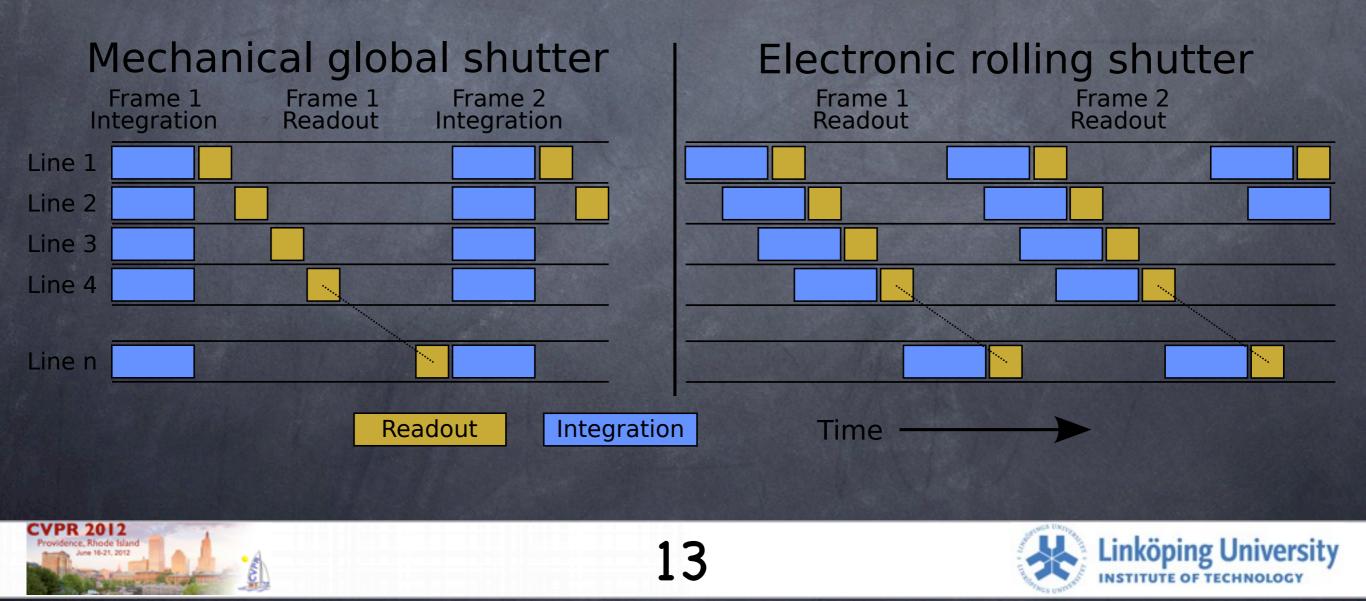
 $\mathbf{x} \sim \mathbf{K} \mathbf{R}^T (\mathbf{\tilde{X}}_{\mathbf{w}} - \mathbf{d}) \Rightarrow \mathbf{x} \sim \mathbf{P} \mathbf{X}_{\mathbf{w}}$

where P is a 3x4 matrix, and $\mathbf{X}_{\mathbf{w}} = \begin{bmatrix} \mathbf{\tilde{X}}_{\mathbf{w}}^T & 1 \end{bmatrix}^T = \begin{bmatrix} X Y Z & 1 \end{bmatrix}^T$

This matrix P has the explicit form: $\mathbf{P} = \mathbf{K} \left[\mathbf{R}^T | - \mathbf{R}^T \mathbf{d} \right] = \mathbf{K} \mathbf{R}^T \left[\mathbf{I} | - \mathbf{d} \right]$

Rolling shutter model

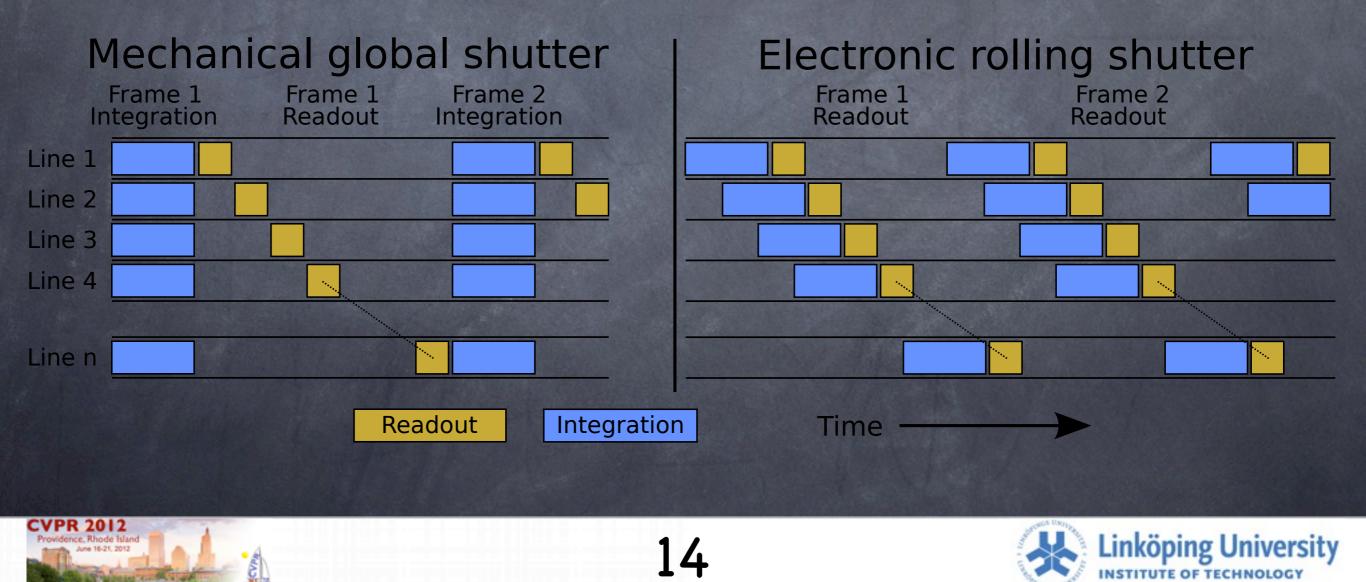
Now recall the rolling shutter readout:



Rolling shutter model

For a moving camera, projection in frame k becomes:

$\mathbf{x}_k \sim \mathbf{K} \mathbf{R}_k^T \left[\mathbf{I} \right] - \mathbf{d}_k \mathbf{X} \qquad \mathbf{x}_k \sim \mathbf{K} \mathbf{R}(x_2)^T \left[\mathbf{I} \right] - \mathbf{d}(x_2) \mathbf{X}$



Rolling shutter model

For a moving camera, projection in frame k becomes:

 $\mathbf{x}_k \sim \mathbf{K} \mathbf{R}_k^T \left[\mathbf{I} | - \mathbf{d}_k \right] \mathbf{X} \qquad \mathbf{x}_k \sim \mathbf{K} \mathbf{R}(x_2)^T \left[\mathbf{I} | - \mathbf{d}(x_2) \right] \mathbf{X}$

In the global shutter case, we have one pose (Rk,dk) per frame

In the rolling shutter case, we instead get one pose $(R(x_2),d(x_2))$ per image row, x_2

Time coordinate

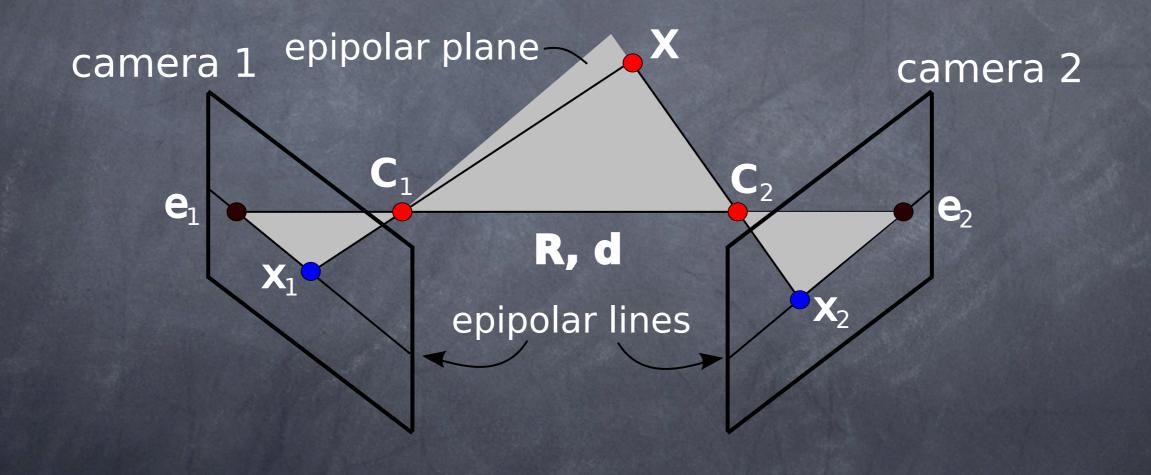
- When interpolating the camera pose based on the image row, x₂ it is convenient to express time in number of rows, instead of seconds.
- Recall that the frame period T, is divided into readout time t_r and inter-frame delay t_d. $1/f = T = t_r + t_d$

 $\textcircled{\sc tr}$ corresponds to number of image rows N_r , and t_d corresponds to number of blank-rows N_b .

 $N_b = N_r t_d / t_r = N_r (t_r / f - 1)$

Triangulation

Triangulation is the process of estimating a 3D point \times from two projections \times_1 and \times_2 .



E

Triangulation

For the two points, we have:

 $\mathbf{x}_1 \sim \mathbf{P}_1 \mathbf{X}$ $\mathbf{x}_2 \sim \mathbf{P}_2 \mathbf{X}$

Triangulation

For the two points, we have: x₁ ~ P₁X x₂ ~ P₂X
Triangulation is typically solved by so called optimal triangulation [Hartley&Zisserman'O4] X* = arg min [d²(x₁, P₁X) + d²(x₂, P₂X)] The point X is sought, for which the squared reprojection error in both images is minimized.

There exists a closed form solution, that is found by solving a 3rd degree polynomial.

Rolling shutter triangulation

If we generalize triangulation to a (moving) rolling shutter rig, we get:

 $\mathbf{X}^* = \arg\min\left[d^2(\mathbf{x}_1, \mathbf{P}_1\mathbf{X}(t_1)) + d^2(\mathbf{x}_2, \mathbf{P}_2\mathbf{X}(t_2))\right]$

This has an unique solution, if, and only if t₁-t₂, which happens if the point is projected in both images at the same time.

That is, when the two points have the same ycoordinate. (Very rare!)

Rolling shutter SfM

Suggestion from [Ait-Aider & Berry, ICCV'09]: Solve for triangulation of all points, and the object motion at the same time (structure-from-motion SfM).

The projection constraints for a correspondence now assumes the form: $x_1 \sim K[R(t_1)|d(t_1)] X$ $x_2 \sim KR_2[R(t_2)|d_2 + d(t_2)] X$

The set of all such triangulation constraints can uniquely define the solution, if we assume a parametric form for R(t) and d(t). The most simple one is a linear motion(6dof).

The full optimization problem now looks like this:

 $\{\mathbf{X}_{k}^{*}\}_{1}^{K}, \mathbf{R}, \mathbf{d} = \arg \min_{\{\mathbf{X}_{k}\}_{1}^{K}, \mathbf{R}, \mathbf{d}} \left| \sum_{k=1}^{K} d^{2}(\mathbf{x}_{1,k}, \mathbf{P}_{1}\mathbf{X}_{k}) + d^{2}(\mathbf{x}_{2,k}, \mathbf{P}_{2}\mathbf{X}_{k}) \right|$

where $\begin{aligned} \mathbf{P}_1 &= \mathbf{K} \left[\mathbf{R}(t_1) | \mathbf{d}(t_1) \right] \\ \mathbf{P}_2 &= \mathbf{K} \mathbf{R}_2 \left[\mathbf{R}(t_2) | \mathbf{d}_2 + \mathbf{d}(t_2) \right] \end{aligned}$

This problem has a unique solution when the motion is different from a pure translation along the x-axis.

That is, when $t_1 \neq t_2$ for most points. (Otherwise we never observe point motion.)

For a translation parallel to the line between the optical centra, there is an equivalent stationary structure

 π_i

Illustration by Ait-Aider and Berry

So For a translation parallel to the line between the optical centra, there is an equivalent stationary structure

 π_i

-Translating structure

Illustration by Ait-Aider and Berry

For a translation parallel to the line between the optical centra, there is an equivalent stationary structure

 π_i

-Equivalent stationary structure

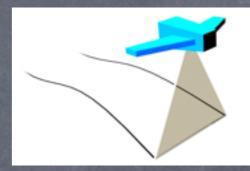
-Translating structure

Illustration by Ait-Aider and Berry

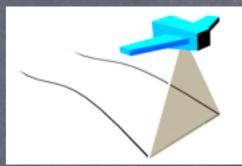
- Structure and motion (SfM) from two frames is unstable for sideways motion, when both cameras have the same readout speed (or are the same).
- If one of the cameras has a global shutter, both structure and motion can be obtained [Ait-Aider&Berry ICCV'09]
- If multiple frames are used, rolling shutter structure from motion (SfM) becomes stable again [Hedborg et al. CVPR'12].

26

Ø Pushbroom [Gupta and Hartley PAMI'97] Single line camera that is moving.

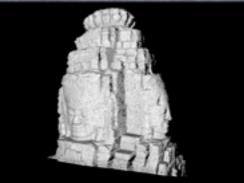


Ø Pushbroom [Gupta and Hartley PAMI'97] Single line camera that is moving.



Work on scanning LIDARs, e.g. archeological reconstruction work by [Ikeuchi et al.]





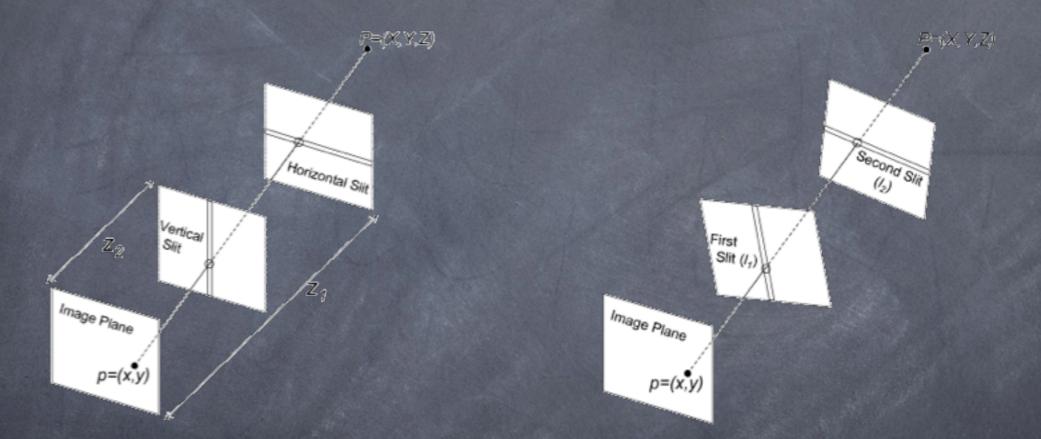
Images from lab of Katsushi Ikeuchi [Bosse ICRA'09] e.g. rotating, and bouncing LIDARs.

28

Crossed slits [Zomet et al. PAMI'03]

PR 2012

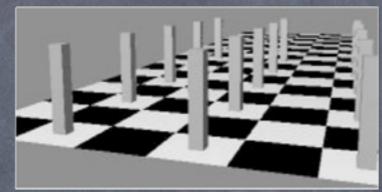
Ê



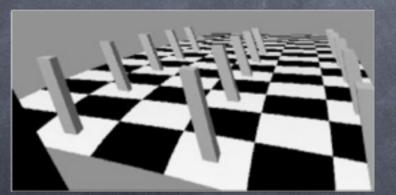
projection rays from 3D points to the image plane are defined as intersections of two "slit planes".

Crossed slits [Zomet et al. PAMI'03]

horizontal/vertical slits



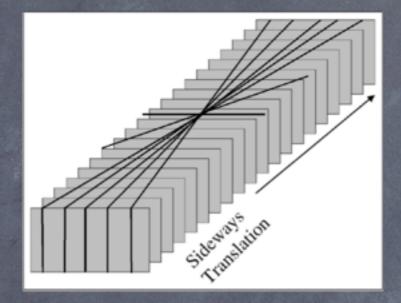
pin-hole camera rendering

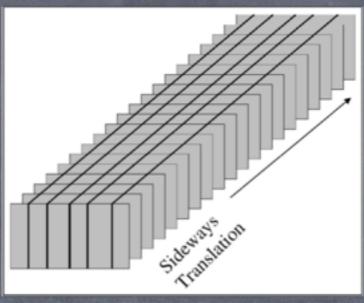


Z rotation of vertical slit

X rotation of vertical slit

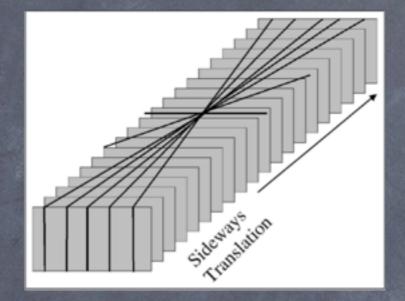
Crossed slits [Zomet et al. PAMI'03]





sweeping push-broom mosaic standard push-broom mosaic

Crossed slits [Zomet et al. PAMI'03]



sweeping push-broom mosaic



Sideways

pin-hole camera image

rendered image

Crossed slits [Zomet et al. PAMI'03]

Gever et al. OMNIVIS'05] demonstrate that a rolling shutter camera is equivalent to a crossed-slits camera for a pure translation parallel to the image plane. (but not in general)

A crossed-slits camera can thus be seen as a special case of the rolling shutter camera.

Summary

In rolling shutter geometry, the camera trajectory is best modelled as continuous

There is an ambiguity between structure and sideways motion for two-frame rolling-shutter geometry.

Other types of scanning geometries (push-broom and moving LIDAR) do not have the temporal regularity of rolling shutter geometry.

References

- Zomet, Feldman, Peleg, Weinshall, "Mosaicing New Views: The Crossed-Slits Projection", PAMI'03
- Hartley, Zisserman, "Multiple View Geometry for Computer Vision"
- Geyer, Meingast, Sastry, "Geometric Models of Rolling Shutter Cameras", OMIVIS'05
- Gupta, Hartley, "Linear Pushbroom Cameras", PAMI'97
- Ait-Aider, Berry, "Structure and Kinematics Triangulation from a Rolling Shutter Stereo Rig", ICCV'09
- Bosse, Zlot "Continuous 3D Scan-Matching with a Spinning 2D Laser", ICRA'09
- Hedborg, Forssén, Felsberg, Ringaby, "Rolling Shutter Bundle Adjustment", CVPR'12

