Computer Vision on Rolling Shutter Cameras PART IV: RS & the Kinect

Per-Erik Forssén, Erik Ringaby, Johan Hedborg

Computer Vision Laboratory Dept. of Electrical Engineering Linköping University

Linköping University

Tutorial overview

1:30-2:00pm	Introduction	Per-Erik
2:00-2:15pm	Rolling Shutter Geometry	Per-Erik
2:15-3:00pm	Rectification and Stabilisation	Erik
3:00-3:30pm	Break	
3:30-3:45pm	Rolling Shutter and the Kinect	Erik
3:45-4:30pm	Structure from Motion	Johan

The Kinect sensor

- Designed for player interaction with the Xbox 360
- "You are the Controller"
- 3D scanner
- Accelerometer sensor
- Skeletal tracking

Stationary in your living room

The Kinect sensor

The H/W gained popularity in the research community

Quasi-dense depth maps in 30 Hz

Cheap (~100 USD)

The Kinect sensor

Range estimation by triangulation

A – structured NIR laser projector

B – CMOS Colour camera

© C – CMOS NIR camera

RS on Kinect

- Both Kinect cameras make use of rolling shutters
- Not a big problem when it is used for gaming:
 - Stationary in your living room
 - People are moving quite slowly far away from the sensor

6

 It is however also popular to use the Kinect sensor on mobile platforms
 → RS problems

Kinect footage

Linköping University

Kinect footage

Augmented reality by KinectFusion

[Izadi et al. SIGGRAPH'11]

RS on Kinect

A similar approach as for the video case, but now we also have the depth

③ 3D point correspondences enables us to estimate the full 3D motion (rotation and translation)

9

The 3D point cloud can be rectified

[Ringaby & Forssén, ICCV'11]

Synchronization problem

- RGB and depth map:
 - Different readout time
 - Different fields-of-view
 - Correspondence problematic under camera motion

Synchronization problem

RGB and depth map:

- Different readout time
- Different fields-of-view
- Correspondence problematic under camera motion

Solution:Use NIR images

NIR images

- In NIR and depth map from the same sensor
- In NIR camera uses shorter shutter speeds, less motion blur
- Trawback, we need to suppress the structured light pattern (SLP)

12

Suppressing the SLP

Source code available at: <u>http://users.isy.liu.se/cvl/perfo/software/</u>

Outlier rejection

14

Optimisation sensitive to point corr. outliers

Three rejection steps:
KLT cross-checking
Depth map edge detection

- Procrustes RANSAC

Depth map edge detection

15

CVPR 2012

E

10.00

Procrustes RANSAC

Sinect depth map is noisy

 Estimate global translation and rotation between point clouds with Procrustes alg. [Viklands06] (RANSAC)

When finished, reject those point correspondences which are above a threshold

Point correspondences

Sensor Geometry

A 3D point X relates to its corresponding homogenous image point x as:

$\mathbf{x} = \mathbf{K}\mathbf{X}$, and $\mathbf{X} = z(\mathbf{x})\mathbf{K}^{-1}\mathbf{x}$

where K is the intrinsic camera matrix and z(x) is the point's value in the depth image

We model the camera motion as a seq. of rotation matrices R(t) and translation vectors d(t)

Sensor motion estimation

 ${\ensuremath{ \ o \ }}$ A point in image 1, at row N_{x} corr. to 3D point X_{1} and

A point in image 2, at row N_y corr. to 3D point X₂.
They can be transformed to X₀:

$\mathbf{X}_{0} = \mathbf{R}(N_{1})\mathbf{X}_{1} + \mathbf{d}(N_{1})$ $\mathbf{X}_{0} = \mathbf{R}(N_{2})\mathbf{X}_{2} + \mathbf{d}(N_{2})$

 $\$ X₀ is the position the point should have, if it was imaged the same time as the first row in image 1

Sensor motion estimation

We use this cost function to solve for the rotation and translation:

$J = \sum_{k=1}^{N} ||\mathbf{R}(N_{1,k})\mathbf{X}_{1,k} + \mathbf{d}(N_{1,k}) - \mathbf{R}(N_{2,k})\mathbf{X}_{2,k} - \mathbf{d}(N_{2,k})||^2$

where K is the number of point corr.

I2 unknowns, 3 equations per point corr.

R "key-rotations" as before, and d "key-translations"

Sensor motion estimation

"Key-rotations" and "key-translations"

SLERP for rotations and

Linear interpolation for translations

Rectification

When the camera motion has been estimated the
 3D point clouds can be rectified with

$\mathbf{X}' = \mathbf{R}_{ref}(\mathbf{R}(N_1)\mathbf{X}_1 + \mathbf{d}(N_1)) + \mathbf{d}_{ref}$

 By projecting the points through the camera, depth map and video frames can also be rectified:

 $\mathbf{x}' = \mathbf{K}[\mathbf{R}_{ref}(\mathbf{R}(N_1)\mathbf{X}_1 + \mathbf{d}(N_1)) + \mathbf{d}_{ref}]$

Rectification

Original

Rectification

24

CVPR 2012

State Contractor of the

E

Summary

When the Kinect is used on a mobile platform rolling-shutter distortions will be present

- Using correspondences in the NIR images avoids depth-to-image registration problem
- Depth map noisy, optimisation in 3D more sensitive than "video approach"
- Full 6-DOF motion can be estimated and corrected for

References

- Viklands, "Algorithms for the Weighted Orthogonal Procrustes Problem and Other Least Squares Problems", Umeå University 2006
- Ringaby, Forssén, "Scan Rectification for Structured Light Range Sensors with Rolling Shutters", ICCV'11
- Izadi et-al "KinectFusion: Real-Time Dynamic 3D Surface Reconstruction and Interaction", SIGGRAPH'11

