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Tutorial overview
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1:30-2:00pm Introduction Per-Erik

2:00-2:15pm Rolling Shutter Geometry Per-Erik

2:15-3:00pm Rectification and Stabilisation Erik

3:00-3:30pm Break

3:30-3:45pm Rolling Shutter and the Kinect Erik

3:45-4:30pm Structure from Motion Johan



Distortion examples
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Camera pan Camera rotation

Fast moving object Camera vibration (wobble)



The full rectification problem
A full rectification model requires motion segmentation 
as fast moving objects must be treated differently 
from camera motion

Multiple frames are needed to be able to handle 
occlusions

Camera translation gives distortions which depend on 
scene depth
(parallax effects)

4



Image plane models
Model image deformation as caused by a globally 
constant translational motion across the image [chang05, 
nicklin07, chun08]

Improvement by giving each row a different motion, 
that is found by interpolating between constant global 
inter-frame motions using a Bézier curve [liang08]
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Image plane methods
Model distortions as a global affine deformation 
parametrised by the scan-line index [Cho et al. TCE’07]

Blend linearly between many translational models across 
a frame to deal with wobble [Baker et al. CVPR’10] 

Mixture model of homographies, where some parts are 
constant across the frame [Kim et al. CSVT’11] and 
[Grundmann et al. ICCP’12]
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Wobble correction
[Baker et al. CVPR’10] have experimented with dense 
flow and many motion models across a frame e.g. 30.

Preferred translational image plane models.
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Independent Motions
[Baker et al. CVPR’10] have experimented with 
separate reconstructions for multiple indepentent 
motions.

Clear improvement compared to input videos, but 
small difference compared to frame-global 
rectification.

Distortions at object boundaries visible in still 
frames. These are however difficult to see in the 
video.
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Independent Motions

9



Independent Motions
Work on different rectifications for multiple motions 
by [Baker et al. CVPR’10]
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Independent Motions
Work on different rectifications for multiple motions 
by [Baker et al. CVPR’10]

Relies accurate dense flow [Black and Anandan 
CVIU’96]

Independent motion model is 50x more expensive 
than their translational model. (102.4 sec instead of 
2.1 sec/frame at 320x240)
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Rotational model
Most rectification models assume that the distortion 
takes place in the image plane

We know that for hand held motion, the dominant 
source is 3D rotations.
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Euler’s rotation theorem states that any 3D rotation 
may be expressed as a three element rotation axis, 
and a rotation angle about that axis.

Rotation representation
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The rotation axis n and angle     are related to a 
rotation matrix according to the matrix exponent 
and matrix logarithm:

Rotation representation
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R = expm(n) = I+ [n̂]x sinφ+ [n̂]2x(1− cosφ)

n = logm(R) = φn̂ , where






ñ =




r32 − r23
r13 − r31
r21 − r12





φ = tan−1(||ñ||, trR− 1)

n̂ = ñ/||ñ|| .

φ



SO(3) and SE(3)
SO(3) is the group of 3D rotations (3dof)
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SO(3) =
�
R ∈ R3×3|RT R = I,det(R) = 1

�



SO(3) and SE(3)
SO(3) is the group of 3D rotations (3dof)

SE(3) is the group of Euclidean rigid body 
transformations (3D rotation+3Dtranslation)
(6dof)

For SE(3) we can similarly define an exponential map 
and a log map.
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SO(3) =
�
R ∈ R3×3|RT R = I,det(R) = 1

�

SE(3) = SO(3)× R3



SO(3) and SE(3)
An element                   has the matrix form

It is the exponential of a twist
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G ∈ SE(3)

G =
�
R t
0 1

�
R ∈ SO(3) , t ∈ R3

G = exp(ξ̂θ) ξ̂ =
�
logm(R) v

0 0

�
θ ∈ R



SO(3) and SE(3)
An element                   has the matrix form

It is the exponential of a twist

One could do smoothing and interpolation of rigid 
body motions using the geodesic distance on SE(3) 
(via the log map). However...
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G ∈ SE(3)

G =
�
R t
0 1

�
R ∈ SO(3) , t ∈ R3

G = exp(ξ̂θ) ξ̂ =
�
logm(R) v

0 0

�
θ ∈ R



SO(3) and SE(3)
It turns out that physically meaningful motions do 
not follow geodesics in SE(3). Rather (if no external 
force):

 The centre of mass moves linearly

 Rotation happens about the centre of mass

Thus we should represent R(t) in object centered 
coordinates, and interpolate R(t) and t(t) separately.
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SO(3) and SE(3)
A very good treatment of SO(3) and SE(3) can be 
found in the book:
Murray et al. A Mathematical Introduction to 
Robotic Manipulation, CRC Press. 1994

http://www.cds.caltech.edu/~murray/mlswiki/
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http://www.cds.caltech.edu/~murray/mlswiki/
http://www.cds.caltech.edu/~murray/mlswiki/


SLERP (Spherical Linear intERPolation) is used to 
interpolate rotations 

Rotation representation
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!" !#!$

%

ndiff = logm (expm(−n1)expm(n2))

Rinterp = expm(n1)expm(τndiff)



SLERP
The SLERP construction is a
geodesic on SO(3),
i.e. a walk along the shortest
path, on the manifold, between
the two rotations.

If we use unit quaternions, the
geodesic lies on a 4D sphere.
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Geodesic on the sphere



Interest point selection
For sparse optical flow, the state of the art in global 
shutter cameras is to use either of:

Harris points [Harris&Stephens 86]

Good features to track [Shi&Tomasi CVPR’94]

FAST points [Rosten&Drummond ECCV’06]

All of these compute a constrast sensitive measure 
of ”cornerness”, and select the N strongest such 
points in the image. 
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Interest point selection

Motion estimation for an RS camera benefits from a 
uniform distribution of interest points. 

Thresholding on corner strength is slightly 
problematic on RS cameras, as low contrast regions 
(e.g. sky and road above) will get very few points. 
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Interest point selection
For sparse 

Adaptive thesholding of good features to track, by 
[Grundmann et al. ICCP’12]

Divide image into blocks, and require similar number 
of interest points in each block.
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uniform threshold locally adapted threshold
by Grundmann et al.



3D solution
Assume the camera is moving in a static scene

Estimate 3D camera motion from a sparse optical 
flow

Use 3D motion to rectify each row separately

Better models the cause of the distortions
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[Forssén, Ringaby CVPR’10]
[Ringaby, Forssén IJCV’12]



Algorithm overview
1.  Find inter-frame correspondences using point 

detection and tracking

2. Define reprojection error cost function using scene 
rigidity constraints

3. Solve for 3D camera motion over short frame 
intervals

4. Rectify each row separately e.g. using camera 
motion relative to middle row
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Good features to track 

KLT-tracker

Track short frame 
interval, 2-4 frames,
then detect 
points again

Point correspondences
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Cross-checking
Tracking sometimes fail

Cross-checking step in order to minimize incorrect 
point matches

Green: accepted

Red: rejected
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Previously we introduced the pinhole camera model

Also, for a moving rolling-shutter camera, the 
external parameters will be time dependent

Camera models
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x ∼ KR(x2)T [I|− d(x2)]X



We have seen that camera rotation is the major 
cause of distortions

Simplify the model to only take rotation into account

Model valid if the distance to scene objects is large 
compared to the baseline

We use short frame interval → small translation

Camera models
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x ∼ KR(x2)X



Since the image rows are exposed at different 
times, one would like to have the camera pose for 
each of them
→ high number of parameters to be estimated

Instead, model the motion as a sequence of “key-
rotations” !" !#!$

%

Camera motion estimation
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Examples with configurations with less good results:

Knot positions
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[Ringaby IJCV’12]



Examples with configurations with good results:

Knot positions
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[Ringaby IJCV’12]



A 3D point X will project into two consecutive 
frames as
                           and
 
where the time parameter t has been exchanged 
to the point’s corresponding row number N

Camera motion estimation
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x ∼ KR(x2)X y ∼ KR(y2)X



A 3D point X will project into two consecutive 
frames as

                           and

This gives us a relationship between the two 
corresponding points x and y 

Camera motion estimation
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x ∼ KR(x2)X y ∼ KR(y2)X

x = KR(x2)RT (y2)K−1
y = Hy



Spline parameters are solved for using iterative 
optimisation on the cost function

K is the number of point correspondences

Camera motion estimation
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J =
K�

k=1

d(xk,Hyk)
2 + d(yk,H

−1
xk)

2,

where d(x,y)2 = (x1/x3 − y1/y3)
2 + (x2/x3 − y2/y3)

2

x = KR(x2)RT (y2)K−1
y = Hy



Camera motion estimation
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When the camera motion has been estimated, i.e. 
the “key-rotation”,
all the image rows can be transformed to a 
common coordinate system

x’ is the rectified position of x 

Rref is a reference rotation corresponding to a certain 
row, e.g. the middle one

Image rectification
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x� = KRrefRT (x2)K−1x



Rectification transformation

This is a forward mapping of the points

Image rectification
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x� = KRrefRT (x2)K−1x



Forward vs. Inverse interp.

When to use forward interpolation?

Sometimes inverse mapping not available

Here only an approximate inverse mapping exists

41



Forward vs. Inverse interp.
Neighbouring pixels within a row in the rectified 
image do not necessarily have the same homography
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Interpolation comparison

Example with fast motion:
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RS frame Forward interpolation Inverse 
interpolation



Image rectification
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Image rectification
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High-end 3D computer graphics and 3D modeling 
software

Possible to create ground-truth images

MEL (Maya Embedded Language)

Easy to automate, 
extract camera 
parameters etc.

Synthetic dataset, Maya
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Synthetic dataset
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RS frame Ground-truth frame Mask

Available at: http://www.cvl.isy.liu.se/research/rs-dataset

http://www.cvl.isy.liu.se/research/rs-dataset
http://www.cvl.isy.liu.se/research/rs-dataset


Motion from sensors
Instead of estimating the camera motion from video data 
(optical flow), additional sensors can be used

Many smartphones have both accelerometers and 
gyroscopes

Using sensor fusion techniques, the camera / device 
orientation can be estimated [Törnqvist 08]
+ Faster than doing non-linear optimisation 
+ Not sensitive to dynamic scene when est. camera motion
- Can not compensate for moving objects
- Bias 
- Need to synchronize sensors to video
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[Hanning et.al. IWMV’11]



Instead of using Rref directly in the rectification

one can rectify to a (temporal) smoothed version for 
efficient video stabilisation

Stabilisation
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x� = KRrefRT (x2)K−1x



Rotation Smoothing
Problem: We have a sequence of noisy rotations, and 
want a smoother trajectory.
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Rotation Smoothing
For each temporal window, this can be solved by ML 
as:

Where
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R∗ = arg min
R∈SO(3)

�

k

dgeo(R,Rk)2

dgeo(R1,R2)2 =
1
2

||logm(RT
1 R2)||2fro



Rotation Smoothing
For each temporal window, this can be solved by ML 
as:

Where

Expensive, and maybe too slow :-(

There are fast and almost as good alternatives :-)
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R∗ = arg min
R∈SO(3)

�

k

dgeo(R,Rk)2

dgeo(R1,R2)2 =
1
2

||logm(RT
1 R2)||2fro



Rotation Smoothing
For a sequence of unit quaternions

Note that       and        represent the same rotation 
(double folding property) 

We need to first ensure that

Now we can simply average them! 
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qk , qk+1 , qk+2 , . . .

qk = (cos
θk

2
, sin

θk

2
n̂)

qk −qk

qk · ql > 0



Rotation Smoothing
If we have a sequence of unit quaternions

Apply a temporal convolution, followed by a 
normalisation to unit length.

54

qk , qk+1 , qk+2 , . . .

qk = (cos
θk

2
, sin

θk

2
n̂)

q̃k =
2�

l=−2

wlqk+l , q̂k = q̃k/
�

q̃2
1 + q̃2

2 + q̃2
3 + q̃2
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Rotation Smoothing
If we have a sequence of rotation matrices

We could apply a temporal convolution, followed by 
an orthogonalisation.

55

Rk , Rk+1 , Rk+2 , . . .

R̃k =
2�

l=−2

wlRk+l

UDVT = svd(Rk) , R̂k = U




1 0 0
0 1 0
0 0 |UV|



VT



Rotation Smoothing
Both versions can be shown to be 2nd order Taylor 
approximations of the geodesic distance. [Gramkow 
IJCV’01]

Gramkow also compares both against ML.
Both are very accurate (<5% relative error at 40deg)

The quaternion variant is slightly closer to the ML 
solution, and also significantly faster.
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Rotation Smoothing
Result (both methods indistinguishable)
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RS correction
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Video examples
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Video examples
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Video examples

61



Video examples
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Video examples
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Video examples
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Summary
No current algorithm solves the full rectification 
problem

Independent motions and parallax effects are not 
fully solved

Camera motion can be super-resolved and corrected 
for based on optical flow

Evaluation dataset with ground-truth exists 
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