
Computer Vision on Rolling Shutter Cameras

PART III: Rectification and
Stabilisation

Computer Vision Laboratory
Dept. of Electrical Engineering

Linköping University

Per-Erik Forssén, Erik Ringaby, Johan Hedborg

Tutorial overview

2

1:30-2:00pm Introduction Per-Erik

2:00-2:15pm Rolling Shutter Geometry Per-Erik

2:15-3:00pm Rectification and Stabilisation Erik

3:00-3:30pm Break

3:30-3:45pm Rolling Shutter and the Kinect Erik

3:45-4:30pm Structure from Motion Johan

Distortion examples

3

Camera pan Camera rotation

Fast moving object Camera vibration (wobble)

The full rectification problem
A full rectification model requires motion segmentation
as fast moving objects must be treated differently
from camera motion

Multiple frames are needed to be able to handle
occlusions

Camera translation gives distortions which depend on
scene depth
(parallax effects)

4

Image plane models
Model image deformation as caused by a globally
constant translational motion across the image [chang05,
nicklin07, chun08]

Improvement by giving each row a different motion,
that is found by interpolating between constant global
inter-frame motions using a Bézier curve [liang08]

5

Image plane methods
Model distortions as a global affine deformation
parametrised by the scan-line index [Cho et al. TCE’07]

Blend linearly between many translational models across
a frame to deal with wobble [Baker et al. CVPR’10]

Mixture model of homographies, where some parts are
constant across the frame [Kim et al. CSVT’11] and
[Grundmann et al. ICCP’12]

6

Wobble correction
[Baker et al. CVPR’10] have experimented with dense
flow and many motion models across a frame e.g. 30.

Preferred translational image plane models.

7

Independent Motions
[Baker et al. CVPR’10] have experimented with
separate reconstructions for multiple indepentent
motions.

Clear improvement compared to input videos, but
small difference compared to frame-global
rectification.

Distortions at object boundaries visible in still
frames. These are however difficult to see in the
video.

8

Independent Motions

9

Independent Motions
Work on different rectifications for multiple motions
by [Baker et al. CVPR’10]

10

Independent Motions
Work on different rectifications for multiple motions
by [Baker et al. CVPR’10]

Relies accurate dense flow [Black and Anandan
CVIU’96]

Independent motion model is 50x more expensive
than their translational model. (102.4 sec instead of
2.1 sec/frame at 320x240)

11

Rotational model
Most rectification models assume that the distortion
takes place in the image plane

We know that for hand held motion, the dominant
source is 3D rotations.

12

Euler’s rotation theorem states that any 3D rotation
may be expressed as a three element rotation axis,
and a rotation angle about that axis.

Rotation representation

13

The rotation axis n and angle are related to a
rotation matrix according to the matrix exponent
and matrix logarithm:

Rotation representation

14

R = expm(n) = I+ [n̂]x sinφ+ [n̂]2x(1− cosφ)

n = logm(R) = φn̂ , where






ñ =




r32 − r23
r13 − r31
r21 − r12





φ = tan−1(||ñ||, trR− 1)

n̂ = ñ/||ñ|| .

φ

SO(3) and SE(3)
SO(3) is the group of 3D rotations (3dof)

15

SO(3) =
�
R ∈ R3×3|RT R = I,det(R) = 1

�

SO(3) and SE(3)
SO(3) is the group of 3D rotations (3dof)

SE(3) is the group of Euclidean rigid body
transformations (3D rotation+3Dtranslation)
(6dof)

For SE(3) we can similarly define an exponential map
and a log map.

16

SO(3) =
�
R ∈ R3×3|RT R = I,det(R) = 1

�

SE(3) = SO(3)× R3

SO(3) and SE(3)
An element has the matrix form

It is the exponential of a twist

17

G ∈ SE(3)

G =
�
R t
0 1

�
R ∈ SO(3) , t ∈ R3

G = exp(ξ̂θ) ξ̂ =
�
logm(R) v

0 0

�
θ ∈ R

SO(3) and SE(3)
An element has the matrix form

It is the exponential of a twist

One could do smoothing and interpolation of rigid
body motions using the geodesic distance on SE(3)
(via the log map). However...

18

G ∈ SE(3)

G =
�
R t
0 1

�
R ∈ SO(3) , t ∈ R3

G = exp(ξ̂θ) ξ̂ =
�
logm(R) v

0 0

�
θ ∈ R

SO(3) and SE(3)
It turns out that physically meaningful motions do
not follow geodesics in SE(3). Rather (if no external
force):

 The centre of mass moves linearly

 Rotation happens about the centre of mass

Thus we should represent R(t) in object centered
coordinates, and interpolate R(t) and t(t) separately.

19

SO(3) and SE(3)
A very good treatment of SO(3) and SE(3) can be
found in the book:
Murray et al. A Mathematical Introduction to
Robotic Manipulation, CRC Press. 1994

http://www.cds.caltech.edu/~murray/mlswiki/

20

http://www.cds.caltech.edu/~murray/mlswiki/
http://www.cds.caltech.edu/~murray/mlswiki/

SLERP (Spherical Linear intERPolation) is used to
interpolate rotations

Rotation representation

21

!" !#!$

%

ndiff = logm (expm(−n1)expm(n2))

Rinterp = expm(n1)expm(τndiff)

SLERP
The SLERP construction is a
geodesic on SO(3),
i.e. a walk along the shortest
path, on the manifold, between
the two rotations.

If we use unit quaternions, the
geodesic lies on a 4D sphere.

22

Geodesic on the sphere

Interest point selection
For sparse optical flow, the state of the art in global
shutter cameras is to use either of:

Harris points [Harris&Stephens 86]

Good features to track [Shi&Tomasi CVPR’94]

FAST points [Rosten&Drummond ECCV’06]

All of these compute a constrast sensitive measure
of ”cornerness”, and select the N strongest such
points in the image.

23

Interest point selection

Motion estimation for an RS camera benefits from a
uniform distribution of interest points.

Thresholding on corner strength is slightly
problematic on RS cameras, as low contrast regions
(e.g. sky and road above) will get very few points.

24

Interest point selection
For sparse

Adaptive thesholding of good features to track, by
[Grundmann et al. ICCP’12]

Divide image into blocks, and require similar number
of interest points in each block.

25

uniform threshold locally adapted threshold
by Grundmann et al.

3D solution
Assume the camera is moving in a static scene

Estimate 3D camera motion from a sparse optical
flow

Use 3D motion to rectify each row separately

Better models the cause of the distortions

26

[Forssén, Ringaby CVPR’10]
[Ringaby, Forssén IJCV’12]

Algorithm overview
1. Find inter-frame correspondences using point

detection and tracking

2. Define reprojection error cost function using scene
rigidity constraints

3. Solve for 3D camera motion over short frame
intervals

4. Rectify each row separately e.g. using camera
motion relative to middle row

27

Good features to track

KLT-tracker

Track short frame
interval, 2-4 frames,
then detect
points again

Point correspondences

28

Cross-checking
Tracking sometimes fail

Cross-checking step in order to minimize incorrect
point matches

Green: accepted

Red: rejected

29

Previously we introduced the pinhole camera model

Also, for a moving rolling-shutter camera, the
external parameters will be time dependent

Camera models

30

x ∼ KR(x2)T [I| − d(x2)]X

We have seen that camera rotation is the major
cause of distortions

Simplify the model to only take rotation into account

Model valid if the distance to scene objects is large
compared to the baseline

We use short frame interval → small translation

Camera models

31

x ∼ KR(x2)X

Since the image rows are exposed at different
times, one would like to have the camera pose for
each of them
→ high number of parameters to be estimated

Instead, model the motion as a sequence of “key-
rotations” !" !#!$

%

Camera motion estimation

32

Examples with configurations with less good results:

Knot positions

33

[Ringaby IJCV’12]

Examples with configurations with good results:

Knot positions

34

[Ringaby IJCV’12]

A 3D point X will project into two consecutive
frames as
 and

where the time parameter t has been exchanged
to the point’s corresponding row number N

Camera motion estimation

35

x ∼ KR(x2)X y ∼ KR(y2)X

A 3D point X will project into two consecutive
frames as

 and

This gives us a relationship between the two
corresponding points x and y

Camera motion estimation

36

x ∼ KR(x2)X y ∼ KR(y2)X

x = KR(x2)RT (y2)K−1
y = Hy

Spline parameters are solved for using iterative
optimisation on the cost function

K is the number of point correspondences

Camera motion estimation

37

J =
K�

k=1

d(xk,Hyk)
2 + d(yk,H

−1
xk)

2,

where d(x,y)2 = (x1/x3 − y1/y3)
2 + (x2/x3 − y2/y3)

2

x = KR(x2)RT (y2)K−1
y = Hy

Camera motion estimation

38

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

−0.05

0

0.05

0.1

0.15

Estimated camera motion

RGB represents
the 3 rotation
parameters

When the camera motion has been estimated, i.e.
the “key-rotation”,
all the image rows can be transformed to a
common coordinate system

x’ is the rectified position of x

Rref is a reference rotation corresponding to a certain
row, e.g. the middle one

Image rectification

39

x� = KRrefRT (x2)K−1x

Rectification transformation

This is a forward mapping of the points

Image rectification

40

x� = KRrefRT (x2)K−1x

Forward vs. Inverse interp.

When to use forward interpolation?

Sometimes inverse mapping not available

Here only an approximate inverse mapping exists

41

Forward vs. Inverse interp.
Neighbouring pixels within a row in the rectified
image do not necessarily have the same homography

42

Interpolation comparison

Example with fast motion:

43

RS frame Forward interpolation Inverse
interpolation

Image rectification

44

Image rectification

45

High-end 3D computer graphics and 3D modeling
software

Possible to create ground-truth images

MEL (Maya Embedded Language)

Easy to automate,
extract camera
parameters etc.

Synthetic dataset, Maya

46

Synthetic dataset

47

RS frame Ground-truth frame Mask

Available at: http://www.cvl.isy.liu.se/research/rs-dataset

http://www.cvl.isy.liu.se/research/rs-dataset
http://www.cvl.isy.liu.se/research/rs-dataset

Motion from sensors
Instead of estimating the camera motion from video data
(optical flow), additional sensors can be used

Many smartphones have both accelerometers and
gyroscopes

Using sensor fusion techniques, the camera / device
orientation can be estimated [Törnqvist 08]
+ Faster than doing non-linear optimisation
+ Not sensitive to dynamic scene when est. camera motion
- Can not compensate for moving objects
- Bias
- Need to synchronize sensors to video

48
[Hanning et.al. IWMV’11]

Instead of using Rref directly in the rectification

one can rectify to a (temporal) smoothed version for
efficient video stabilisation

Stabilisation

49

x� = KRrefRT (x2)K−1x

Rotation Smoothing
Problem: We have a sequence of noisy rotations, and
want a smoother trajectory.

50
0 50 100 150

−0.2

0

0.2

0.4

0.6

0.8
Axis−angle parameters before and after smoothing

Rotation Smoothing
For each temporal window, this can be solved by ML
as:

Where

51

R∗ = arg min
R∈SO(3)

�

k

dgeo(R,Rk)2

dgeo(R1,R2)2 =
1
2

||logm(RT
1 R2)||2fro

Rotation Smoothing
For each temporal window, this can be solved by ML
as:

Where

Expensive, and maybe too slow :-(

There are fast and almost as good alternatives :-)

52

R∗ = arg min
R∈SO(3)

�

k

dgeo(R,Rk)2

dgeo(R1,R2)2 =
1
2

||logm(RT
1 R2)||2fro

Rotation Smoothing
For a sequence of unit quaternions

Note that and represent the same rotation
(double folding property)

We need to first ensure that

Now we can simply average them!

53

qk , qk+1 , qk+2 , . . .

qk = (cos
θk

2
, sin

θk

2
n̂)

qk −qk

qk · ql > 0

Rotation Smoothing
If we have a sequence of unit quaternions

Apply a temporal convolution, followed by a
normalisation to unit length.

54

qk , qk+1 , qk+2 , . . .

qk = (cos
θk

2
, sin

θk

2
n̂)

q̃k =
2�

l=−2

wlqk+l , q̂k = q̃k/
�

q̃2
1 + q̃2

2 + q̃2
3 + q̃2

4

Rotation Smoothing
If we have a sequence of rotation matrices

We could apply a temporal convolution, followed by
an orthogonalisation.

55

Rk , Rk+1 , Rk+2 , . . .

R̃k =
2�

l=−2

wlRk+l

UDVT = svd(Rk) , R̂k = U




1 0 0
0 1 0
0 0 |UV|



VT

Rotation Smoothing
Both versions can be shown to be 2nd order Taylor
approximations of the geodesic distance. [Gramkow
IJCV’01]

Gramkow also compares both against ML.
Both are very accurate (<5% relative error at 40deg)

The quaternion variant is slightly closer to the ML
solution, and also significantly faster.

56

Rotation Smoothing
Result (both methods indistinguishable)

57
0 50 100 150

−0.2

0

0.2

0.4

0.6

0.8
Axis−angle parameters before and after smoothing

RS correction

58

Video examples

59

Video examples

60

Video examples

61

Video examples

62

Video examples

63

Video examples

64

Summary
No current algorithm solves the full rectification
problem

Independent motions and parallax effects are not
fully solved

Camera motion can be super-resolved and corrected
for based on optical flow

Evaluation dataset with ground-truth exists

65

References
M. Grundmann, V. Kwatra, D. Castro, I. Essa, ”Calibration-Free Rolling Shutter Removal”, ICCP’12

Chang, Liang, Chen, “Analysis and Compensation of Rolling Shutter Distortion for CMOS Image Sensor Arrays”, ISCOM'05

Nicklin et.al. “Rolling Shutter Image Compensation”, Robocup 2006

Chun et.al. “Suppressing rolling-shutter distortion of {CMOS} image sensors by motion vector detection”, TCE’08

Liang et.al. “Analysis and Compensation of Rolling Shutter Effect”, Transaction on Image Processing 08

Cho, Kong, “Affine Motion Based {CMOS} Distortion Analysis and {CMOS} Digital Image Stabilization”, TCE’07

S. Baker, E. Bennet, S.B. Kang, R. Szeliski, ”Removing Rolling Shutter Wobble”, CVPR’10

Kim, Jayanthi, Kweon, "System-on-Chip Solution of Video Stabilization for CMOS Image Sensors in Hand-Held Devices",
CSVT'11

Forssén, Ringaby, “Rectifying rolling shutter video from hand-held devices”, CVPR’10

Ringaby, Forssén, “Efficient Video Rectification and Stabilisation for Cell-Phones”, IJCV’12

Hanning et.al. “Stabilizing Cell Phone Video using Inertial Measurement Sensors”, IWMV’11

Törnqvist, “Estimation and Detection with Applications to Navigation”, PhD Thesis, Linköping University 2008

C. Gramkow, “On Averaging Rotations”, IJCV’01

66

