LOSNINGSFORSLAG TILL LEKTIONSUPPGIFTERNA — LEKTION 1 & 2

1.2-2. Refer to Figure S1.2-2.
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1.3-5. (a) By, = [20 yi(t)dt = [ = 122(2t)dt. Performing the change of variable t' = 2t

yields % 1z?(t) % dt’ £z Thus,

E, _1.041
B, =22 & 10T _ o570,

18 18

(b) Since yo(t) is just a (T, = 4)-periodic replication of z(t), the power is easily

obtained as
E,

P, = T, = -4—‘” ~=0.2604
1.4-2,
T1(t) = ‘(4t + 47)['u,(t +1) —u(t)] + (=2t + 4)[u(t) — u(t - 2)]

z2(t) = t*[u(t) — u(t — 2)] + (2t — 8)[u(t — 2) — u(t — 4)]

1.4-3. Using the fact that f(z)d(z) = f(0)é(z), we have

(a) O

(b) 28(w)

(c) 33(2)

(d) —%6(t-1)

(e) 7250(w +3)

(f) k6(w) (use L’ Hopital’s rule)
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1.4-4. In these problems remember that impulse é(z) is located at z = 0. Thus, an impulse
d(t — ) is located at T = t, and so on.

(b) The impulse is located at 7 = ¢ and z(7) at T = t is (t). Therefore

/00 z(7)6(t — 1) dr = z(t).

—0oQ

(a) The impulse 6(7) is at 7 =0 and z(t — 7) at 7 = 0 is z(¢). Therefore

/oo §(r)z(t — 7)dr = z(t).

Using similar arguments, we obtain
(¢) 1
(d) -1/2
(e) €3
(f) 5
(g) =(-1)
(h) —e?

1.4-10. For sketches, refer to Figure S1.4-10.

(a) s1,2 = %353
(b) e~3tcos 3t = 0.5[e=(3+53)t 4 ¢~ Therefore the frequencies are s; 5 =
3473 o
(c) Using the argument in (b), we find the frequencies s; 9 = 2 & 53
(d) s=-2
(e) s=2

(f) 5=5€% so that s = 0.
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Figure S1.4-10

1.7-1. Only (b), (f), and (h) are linear. All the remaining are nonlinear. This can be verified
by using the procedure discussed in Example 1.9.

1.7-2. (a) The system is time-invariant because the input z(t) yields the output y(t) =
z(t — 2). Hence, if the input is z(¢ — T'), the output is z(t — T — 2) =yt-1),
which makes the system time-invariant.

(b) The system is time-varying. The input z(¢) yields the output y(t) = z(-t).
Thus, the output is obtained by changing the sign of ¢ in z(t). Therefore, when
the input is z(¢t — T'), the output is z(—t — T) = z(~[t + T]) = y(t + T), which
represents the original output advanced by T (not delayed by T).

(c) The system is time-varying. The input z(t) yields the output y(t) = z(at), which

~ is a scaled version of the input. Thus, the output is obtained by replacing ¢ in
the input with at. Thus, if the input is z(t — T') (z(t) delayed by T), the output
is z(at —~ T) = z(a[t — Z]), which is z(at) delayed by T/a (not T). Hence the
system is time-varying.

(d) The system is time-varying. The input z(t) yields the output y(t) = tz(t). For
the input z(t —T'), the output is tz(t—T'), which is not ¢z(¢) delayed by T'. Hence
the system is time-varying.

f)
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(e) The system is time-varying. The output is a constant, given by the area under
z(t) over the interval |t| < 5. Now, if z(t) is delayed by T, the output, which is
the area under the delayed z(t), is another constant. But this output is not the
same as the original output delayed by 7. Hence the system is time-varying.

(f) The system is time-invariant. The input z(t) yields the output y(t), which is the

square of the second derivative of z(t). If the input is delayed by T, the output
is also delayed by T'. Hence the system is time-invariant.

1.7-7. (a) y(t) = z(t — 2). Thus, the output y(t) always starts after the input by 2 seconds
(see Figure S1.7-7a). Clearly, the system is causal.

(b) y(t) = z(—t). The output y(t) is obtained by time inversion in the input. Thus,
if the input starts at ¢ = 0, the output starts before t = 0 (see Figure S1.7-7b).
Hence, the system is not causal.

(c) y(t) = z(at), a > 1. The output y(t) is obtained by time compression of the input
by factor a. Hence, the output can start before the input (see Figure S1.7-7c),
and the system is not causal.

(d) y(t) =’:la:(at), a < 1. The output y(t) is obtained by time expansion of the input
by factor 1/a. Hence, the output can start before the input (see Figure S1.7-7d),
and the system is not causal.
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1.7-9. (a) Yes, the system is linear. Begin assuming y; (t) = 7(t)z1(¢) and ya(t) = r(t)z2(¢).
Applying az;(t) + bza(t) to the system yields y(t) = r(t) (az1(t) + bz2(t)) =
ar(t)z1(t) + br(t)z2(t) = ayi(t) + bya(t). ‘

(b) Yes, the system is memoryless. By inspection, it is clear that the system only
depends on the current input.

(c) Yes, the system is causal. Since the system is memoryless, the system cannot
depend on future values and must be causal.

(d) No, the system is not time-invariant. Since the system function depends on
the independent variable ¢, it is unlikely that the system is time-invariant. To
explicitly verify, let y(t) = r(t)z(t). Next, delay z(¢) by 7 to obtain a new
input 2 = z(t — 7). Applying z(t) to the system yields ya(t) = r(t)z2(t) =
r(t)z(t — 1) # r(t — 7)z(t — 7) = y(t — 7). Since, the system operator and the
time-shift operator do not commute, the system is not time-invariant.
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1.7-11. (a) No, the system is not BIBO stable. The system returns the time-delayed deriva-
tive, or slope, of the input signal. A square-wave is a bounded signal which, due
to point discontinuities, has infinite slope at certain instants in time. Thus, a

bounded input may not result in a bounded output, and the system cannot be
BIBO stable.

(b) Yes, the system is linear. Begin assuming y(t) = %xl(t — 1) and
y2(t) = Lzo(t — 1). Applying az1(t) + bza(t) to the system yields y(t) =
4 (az1(t — 1) + bza(t — 1)) = adzy(t— 1)+ bEza(t — 1) = ayi(t) + bya(t).

(c) No, the system is not memoryless. By inspection, it is clear that the system

depends on a past value of the input. For example, at ¢ = 0, the output y(0)
depends on the time-derivative of z(—1), a past value.

(d) Yes, the system is causal. By inspection, it is clear that the system does not
depend on future values.

(e) Yes, the system is time-invariant. To explicitly verify, let y(t) = a‘it-zc(t— 1). Next,
delay z(t) by 7 to obtain a new input z2 = z(t—7). Applying z5(t) to the system
yields y2(t) = $22(t) = £2(t — 1 —7) = y(t — 7). Since, the system operator
and the time-shift operator commute, the system is time-invariant. In more loose
terms, the derivative operator returns the delayed slope of a signal independent
of when that signal is applied.

1.8-3. The freebody diagram for the mass M is shown in Figure 1.8-3. From this ciiagram it
follows that

Mij = B(& - 9) + K(z —y)

> (MD? + BD + K)y(t) = (BD + K)z(t)

M

v o ' {\
B(x-Y) K-V

Figure S1.8-3
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2.2-1. The characteristic polynomial is A2+5)+6. The characteristic equation is A2+5A+6 =
0. Also A% +5A + 6 = (A + 2)(\ + 3). Therefore the characteristic roots are A\; = —2
and A\ = —3. The characteristic modes are e=2* and e—3t. Therefore

Yo(t) = c1e™% + cpe™ 3

and
Yo(t) = —2c1e7% — 3cye™ 3t
Setting ¢t = 0, and substituting initial conditions y,(0) = 2, 90(0) = —1 in this equation
yields
c1+cp=2 =5
—2c1 — 3¢cp = —1 }=¢ ¢ = -3
Therefore yo(t) = 5e~2 — 3¢=3t

2.4-7. In this problem, we use Table 2.1 to find the desired convolution. ! OBS: Anvind INTE tabell
I

(a) y(t) = h(t) * z(t) = e *ult) * u(t) = (1 — e t)u(t) :
(b) y(t) = h(t) * z(t) = e *u(t) x e tu(t) = te~tu(t) | Har skall du berakna y(t)

(¢) y(t) = e tu(t) * e 2u(t) = (e~ — e~2)u(t) I

I

(d) y(t) = sin3tu(t)xetu(t) 0 T—o-T-Toosssss---
Here we use pair 12 (Table 2.1) witha =0, 8 =3, § = —90° and A = —1. This

for att erhalla y(t) .

yields
¢ = tan™! [-}%] = —108.4°
and (cos 18.4°)e™* — cos(3¢ + 18.4°)
sin3tu(t)  e~tu(t) = oS S2)e  — CoSiot + IS, t
(t) (t) 710 u(t)
0.9486e~* — cos(3t + 18.4°) )
= u

2.4-11. (a) y(t) = e~tu(t) * e~ Zu(t) = (€7 — e7*)u(t)
(b) e~20t=3y(t) = efe~2u(t), and y(t) = €8 [e~tu(t) x e~ 2u(t)] = e®(e™ —e™*)u(t)
(c) e~2tu(t—3) = e~Se~2(¢~3uy(t — 3). Now from the result in part (a) and the shift
property of the convolution [Eq. (2.34)]: y(t) = e~® [e=*~uty— e~ 23] u(t-
3)
(d) z(t) = u(t) — u(t — 1). Now yy(t), the system response to u(t) is given by

yi(t) = e tu(t) xut) = (1 — e u(t)

,:/I‘he system response to u(t — 1) is y1(t — 1) because of time-invariance property.
j/ Therefore the response y(t) to z(t) = u(t) — u(t — 1) is given by

]
H

y(&) =) — vt 1) = (1 - e u(t) - 1 —e V- 1)
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The response is shown in Figure S2.4-11d.

2.4-12. (a)

v(t) = [0 +2etu()] * tu(—1)
= —8(t) * e*u(—t) + 2e"tu(t) * etu(—t)
= —e'u(—t) + [e7tu(t) + etu(—t)]

= e tu(t)
(b) Refer to Figure S2.4-12b.
. ’ cutpy
in (m,( + ®
t L 4 =5
e‘ .
Figure S2.4-12b
2.4-16. For ¢ < 2m (see Figure S2.4-16)
¢
c(t)=m(t)*g(t)=/ sinTdr =1 — cost 0<t<or
0
For ¢ > 2m, the area of one cycle is zero and
z(t) * g(t) = 0 t22r and t<0

Figure S2.4-16
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2.4-17. For 0 < ¢ < 2 (see Figure 52.4-17a)
t
‘E(t)*g(t)=/ sintdr =1 —cost o<t 2n
0

For 27 < t < 4r (Figure S2.4-17b)
2\

27

ef" ft\ z(t) * g(t) =/ sinTdr =cost —1 r<t<drw
t—2m
% L For t > 4 (also for t < 0), z(t) * g(t) = 0. Figure $2.4-17c shows c(2).
/ t =27 + 2T
3
4
?—
-2t o 2T
(d) (b)Y Figure 52.4-17 (¢ \

2.4-28.

Since the system step response is s(t) = e~*u(t)—e~2*u(t), the system impulse response
is h(t) = £s(t) = —e~tu(t) + 0(t) + 2e~2u(t) — 6(t) = (262t — e~*)u(t). The input
z(t) = 6(t — m) — cos(v3)u(t) is just a sum of a shifted delta function and a scaled
step function. Since the system is LTI, the output is quickly computed using just h(t)
and s(t). That is,

y(t) = h(t—m)—cos(v3)s(t) = (2e~ 2™ — = G-yt —7) —cos(V3) (et —e~H)u(t).

OBS: Anvind g(7) for att beteckna stegsvaret, inte s(f) som i losningsforslaget for 2.4-28,
ovan!

Fortydligad 16sning pa 2.4-28:
x()=x(t)+x,(t) dir x,(t)=8(t—7), x,(¢)=cosv3-u(r)
=

y(t)=x(t)xn(t)=x(¢)*h(t)+x,(¢)*h(t)=5(t = )% h(t)+cos3-u(t) = h(t)

= h(t—ﬂ)+cosx/§-g(t) = /Se svaret ovan!/
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2.4-31. Since h(t) is only provided for over (0 < ¢ < 0.5), it is not possible to determine with
certainty whether or not the system is causal or stable. However, when looking at
h(t) the waveform appears to have a DC offset. This apparent DC offset can be very
troubling if A(t) is truly an impulse response function. If a DC offset is present, the
system is neither causal nor stable. Imagine, a non-causal, unstable heart! Something
is probably wrong.

One simple explanation is that a blood-filled heart always has some ventricular pres-
sure. Unless removed, this relaxed-state pressure would likely appear as a DC offset
to any measurements. It would likely be most appropriate to subtract this offset when
trying to measure the impulse response function.

Another problem is that the impulse response function is most appropriate in the
study of linear, time-invariant systems. It is quite unlikely that the heart is either
linear or time-invariant. Even if the impulse response could be reliably measured at a
particular time, it might not provide much useful information.

2.4-39.

(a) Yes, the system is causal since h(t) = 0 for (¢ < 0).

(b) To compute the zero-state response y;(t), the convolution of two rectangular
pulses is required: a pulse of amplitude 7 and width two and a pulse of amplitude
one and a width of one. The convolution involves several regions.

For t < 0, y1(t) = 0.
For 0 <t <1, yy1(¢) —-fotjdr—_yt
For1<t<2, y(t)= ftljdr— JE—=(t—-1)) =12

For 2 <t <3, yi(t) = ft Ljdt=3(2—-(t-1)=703-1).
For (>3, y1(¢t) = 0.

Thus,
gt 0<t«1
3 7 1<t<?2
nM=9 ,;6-¢ 2<t<3
0 otherwise

(c) To compute yo(t), first note that z9(t) = 2z;(t — 1) 4 z1(t —2). Using the system
properties of linearity and time-invariance, the output y»(t) is given by

Y2(t) = 2y1(t — 1) + ya(t — 2).

Anm: A(?) kan ocksé uttryckas som A(f) = j*(u(t) — u(z-2))

hH 17 A Ye (1)
. {LM R e i/ N w,_szl ‘;/:N gl B Jg\(
& & .
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2.6-1. (a) A2+8XA+12=(A+2)(\+6)
Both roots are in LHP. The system is BIBO stable and also asymptotically stable.
)  AAZ+3A+2) = A+1)(\+2)
Roots are 9, —1, —2. One root on imaginary axis and none in RHP. The system
is BIBO ustable and marginally stable.

(€) AW +2)=NA+jV2)(A-jVv2)
Roots are 0 (repeated twice) and £3j+/2. Multiple roots on imaginary axis. The
system is BIBO unstable and asymptotically unstable.

(d) A+ =6A+5)=A+1)(A=-1)(A-5)
Roots are —1, 1 and 5. Two roots in RHP. The system is BIBO unstable and
asymptotically unstable.

(Anm: Hdr forutsdtts — precis som for ovriga system i boken, om inget annat framgar eller sdgs —
att systemen dr kausala!)

2.6-3. (a) Because u(t) = e u(t), the characteristic root is 0.

e ey Goesiven pga. tt
The system is BIBO unstable. I I\'\L&)l 2 =0 wen (k(é)) <n V{.

(d) The integral of d(t) is u(t). The system response to 8(t) is u(t). Clearly, the
system is an ideal integrator.

Anm: Hdr utgar man i [6sningen frdan att det givna impulssvaret dr systemets “sanna’ impulssvar,
dvs. att systemets alla karakteristiska termer (bara en hdr, dock) finns i h(t). Det dr ddrfor vi
dven kan dra slutsatser om systemets interna stabilitet, inte bara dess externa stabilitet.

2.6-5
(BIBO-stable)

e
(b) Yes, the system is stable since [ h(t) =4 < oo. 505‘!&
No, the system is not causal since h(t) # 0 for 2 t < 0.

Anm: 12.6-5 & 2.5-7 dir det systemets externa (insignal-utsignal-)stabilitet som avses!

2.6-7. Expanding
= (0.5)'6(t —4)
1=0
yields
h(t) = (8(t) +0.58(t — 1) + 0.256(£ =+2) + 0.1255(¢ — 3) + - --)
(a) Yes, the system is causal since h(t) = 0 for t < 0.

(b) Yes, the system is stable since the impulse response is absolutely 1ntegrable That

is, f. 2iz0(0:8)"8(t — )dt = T3Z0(0.5)" [72 8(t — i) = T525(0.5)" = 5% =
2<oo

(hér menas ”BIBO-stable”)
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6.1-7.
a b ¢ d e f g h i
periodic? yes yes no yes no yes yes yes yes
wo 1 1 ™ H 4 1 2
period 2r 27 2 140 8% 27
6.3-1. (a) To = 4,wp = 7/2. Also Dy = 0 (by inspection).
1 o, 3 2 . nw
D, = — e Im /Dt gy [ =i/ Dt gy = = gip = In] > 1
4 Ja 1 -

™ 2
(b) To = 107, wo = 2w/10mr =1/5

o0
z(t) = Z Dnej%t,

n=-—oo

™

1 :n j nmw 1 nw
h D, = — AL =—~"—-‘—"_.(
where n 10”/ e dt ( 27 sin 5) sin

x 2™
(c) T,=2r sek, @, =1rad/s

o0
x(t) = Z D,e’™, where, by inspection

Dy =0.5
n=—oo
D,=— —e I = !
" om Jo o at 2mn’ n#0
1 2 n>0
that |D,|= — = 2
so that |Dy| oy and <D, 2 on<o
(d) To =7, wo =2 and Dy=0
z(t) = Z Dpel?nt
n=-—o
1 [ 4 . —j [ 2
where D, = —/ Zeimt gy I (——- sin % _ cos Tl)
(L ™ \ TN 2 2
0 n#0!
(e) To=3,wo=%. Dy=1/6 -
z(t) = Z D, &*5"t,
1 Y 2, 3 _i2zn (G200
where Dnzgfo te 773 dt:47r2n2 [e’ﬂ (T+1>—1]
n#0!

10
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3 47r2n2 2mn  4nn . 27n
‘Dn'=m[\ﬁ+ g "2°°ST'TS“‘T1

Therefore

2mn 2rn 2nn
_ -1 5 Cos 5= — sin <& 3
and ZD,, = tan 2m o rn
cos =5= + 55— I gin <£& 5 — 1

(f) T0=6, UJ()=7T/3 D0=0.5

z(t) = 0.5+ Z D, e %"

n=—oo

2
nw 2mn
= 5 (cos-—éu — COS —3—) n=0!
(@) ’ P ‘)ﬂ
/ I'\.
-u:!:‘;k_“é = |¥ ;‘L‘,gﬂ'f.‘a"
"o.su}“l <Dy ¥t
¥ RN P ()
o] F177] o
a2 (D,l F| <Dn
. "“‘ﬁ [] rLr‘_{Ilnm
ol H“}’g =11 1]~ ©
T a “~ 6 F oS> -l
Lo,|
02¢ 'Dn' 1 T Qo (e)
» .-]. J. ' 1 - L ¢ . i .
‘ -aw -] |4 l VLS
-IC" rI-gI ay ‘.’ - 3 3
'5” 3 3 "’EI -3 "40'1r L 1!

11
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s b (£

Tips: Alternativt kan D, i de olika deluppgifterna i 6.3-1 beraknas utgdende fran de komplexa
fourierseriekoefficienterna till den deriverade signalen, m.h.a. sambandet D, = D, /jnax.

z{t) = im/dy —53¢ 1 - ,
(t) = (2v2eTm /4635 o geinsz, Jt+3+26-1"/2€jt+(2\/§e‘j"/4)ejat

e €

gll H

compact trigonometric Fourier series as

z(t) = 3+ 4cos (t — g) + 4v/2 cos (St— %)

(c) Since, the trigonometric series in part (b) is obtained from the exponential series
in part (a), the two series are equivalent.

(d) The lowest frequency in the spectrum is 0 and the highest frequency is 3. There-
fore the bandwidth is 3 rad/s or = Hz.

3 LDn

2 ] -T2
t 1 [ 1)?’4 R
! i i
"3-2-1V 1 2 3 O = =3 5;1 Ii% W -
~Tr/2

[ ¢ T2

A
. On

f L
‘Tf‘*“f l

-Tla 1

—
! 23 w> Figure 56.3-5

12
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6.3-7. (a) The exponential Fourier series, as found by inspection of Figure P6.3-7 is
x(t)=-2 + 2eIE+E) | 9—i(t+5) | o3 (26+5) | o—i(2t+5)
(b) To find the corresponding trigonometric series, we consider only the positive

frequency components, then double the exponential amplitudes (except for dc,
which is kept the same), and maintain the same phase values to obtain the

trigonometric spectrum, Figure S6.3-7.
(c¢) By inspection of the trigonometric spectra

2 T
x(t):—2 + 4cos (t-{- —:0’-) -+ 2cos (Zt + §)

(d)
27 T
x(t) = -2+4cos (t-!-?) + 2cos (2t+§)
= 2 426/t | 9 IHT) . oi(2+T) 4 o=i(2t+5)
. )
O‘\ 6 «P‘. . 99\ n*
AR i TR .
8 , ‘.' ZWB...-.-’,.'
2,810 B A
‘ | ® _+ | .
o i 2 3 (D= o 4 2 3 W.-

Figure 56.3-7

6.3-8. (a) The period is Tp = 8 and wy = n/4. Also Dy = 0 (by inspection), and

(o o]
z(t) = Z D,ein%t

n=—od
0 4
D, = .}. / ;b.+ 1 e—jn(ﬂ/4)t dt+[ (_E + 1) e—jn(n/4)t dt] —
This yields
—  n=£1,£3,+5, %7, .
D, = _
0 otherwise
Therefore -~
4 o=
z(t) = Z 7_15-7;58]7&4 Fel i losningen:
n=1 Summera frdn n = —o<!
n odd
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(b) Observe that Z(t) is the same as x(t) in Figure P6.3-8a delayed by 2 seconds.
Therefore

o0 (o ]
E(t)=z(t—2) = Z Dpefni(t-2) — Z D,e~inm/2ein%t

n=1 n=1
n odd n odd
Therefore o0 Fel i losningen:
£(t) = Z D, ein%t Summera frén n = —o<!
n=1
n odd
where
A g 4 —_—anm
Dyp=Dpe7 = ——e™ 7%
min

(c) Observe that #(t) is the same as z(t) in Figure P6.2-8a time-compressed by a
factor 2. Therefore

F(t) = z(2t) = Y Dne™i® = Y D,e"E

n=1 n=1
n odd n odd
Therefore o) Fel i lﬁsningen:
T (t) = Z ﬁnej ngt Summera fran n = —o<!
n=1
n odd
where )
6.3-9. (a)
o0
z(t) = Z D, einwot
n=-~-00
o0 oo -
&(t) = zt—-T) = Z Dnejnwo(t—T) = Z (Dne—jnon)ejnwut - Z f)nejn“"’t
n=—oo ne—oo

n=—0oo
Dy = Dpe™™%* o that |D,|=|Dn|, and /D, =Dy — jnw,T
(b)

o0
z(t) = Z D, einwot

n=—oo

)
() = z(at) = Z Dnejnwo(at)

n=—0oo

14
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6.3-10. (a) From Exercise E6.1a

3

C.OIr-a

cosnmt -1<t<1

4 o0
+ Z
The power of z(t) is

1/t 1
2/_1t 5

Moreover, from Parseval’s theorem Eq. (6.40)
o0 oo
c? 4(~1)m 1 81 1 8 1
= 2 —_ = ~— - —_— — = - — T —
Fs C“;z () 2Z(w2n2) =stm = otw =3

(b) If the N-term Fourier series is denoted by w(t), then

The power P, is required to be 99%P, = 0.198. Therefore

For N =1, P, = 0.1111; for N = 2, P, = 0.19323, For N = 3, P, = 0.19837
which is greater than 0.198. Thus, N = 3.

)

6.3-11. (a) From Exercise E6.1b

A = '
z(t) = %—r—(-—l)"‘*'1 Z % sinnmt -rT<t<w

n=1

1/,
P, == (At) dt = —
2/

Moreover, from Parseval’s theorem [Eq. (6.40)]

The power of z(t) is

4 A2 242 L 1 A2
Py = C°+Z—=—Z7r2n2—7r2 l;z-gz?

(b) If the N-term Fourier series is denoted by w(t), then

w(t) = ( 1)+ Z sin nrt —r<t<m

n-—-l

15
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The power P, is required to be no less than 0.90‘%2 = 0.3A2. Therefore

2
Py, = ‘%Z 44 0.3A2
1

For N = 1, P, = 0.2026A42; for N = 2, P, = 0.2533A4%, for N = 5, P, =
0.2965842, for N = 6, P, = 0.30222A2, which is greater than 0.3A42%. Thus,
N =6.

6.3-12. The power of a rectified sine wave is the same as that of a sine wave, that is, 1/2.

6.4-1.

6.4-2.

Thus P, = 0.5. Let the 2N + 1 term truncated Fourier series be denoted by Z(t). The
power P; is required to be no less than 0.9975FP, = 0.49875. Using the Fourier series
coefficients in Exercise E6.5, we have

N
1
Z |Dnf? = Z s > 0.49875
= L=y (1—4n?)

Direct calculations using the above equation gives Py = 4/72 = 0.4053 for N = 0
(only dc), P; = 0.49535 for N = 1 (3 terms), and Pz = 0.49895 for N = 2 (5 terms).
Thus, a 5-term Fourier series yields a signal whose power is 99.79% of the power of
the rectified sine wave. The power of the error in the approximation of z(t) by Z(t) is
only 0.21% of the signal power P,.

Period Ty = 7, and wp = 2, and

Jjw 0.504
H = d f Eq. (6.30b D, =
(0)=Corrp o 2dfomBa (630)  Dn=mm
j1.008n ‘
Therefore, y(t) = Z D, H na)o M = Z j2nt
n=—oo n=eo  (I+j4n)(3-4n?+ jan)
Anm: Figur 6.2a, som uppgiftstexten hanvisar till, hor till Exempel 6.1, dar

forfattaren bl.a. berdknar a, och b,. Da erhalls, fran ekv. 6.30b pa sid. 625,
D, =0.5(a, —jb,) = uttrycket ovan.

Eftersom vi i kursen inte anvander oss av den allmanna trigonometriska
formen, sa bor du i stéllet berdkna D, direkt, enligt ekv. 6.29b.

(a)

cosbtsindt = —;— [sin 8t — sin 2¢]
1

= — [ej8t — I8t _ gi2t | e—th]
4j

(Alternativt: utveckla
cos(5t)sin(3t) = (e”+e7>)/2*(e*'~e7*")/2j )

16
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_ 4i [e,-(st-;) 4+ e—IB—=F) ej(2t+§)+e-j(2t+%>]

This is the desired exponential Fourier series.

(b) There are four spectral components at w = 48 and +2. The phases are either 3
or —%, as shown in the spectrum in Figure $6.4-2b. I

.. T
I ]
‘? L -5; i |w; ? L4 Al L i L} i
Figure S6.4-2b N (8
L }\ ] 0 <

(c) Since none of the spectral components of x(t) appear in the pass-band of the
filter, the output is y(t) = 0.

6.4-3.
1
- - —1)(1 - j27n)
D. = t —inw,t t = (e
" /o ¢ € d e(l + 47?n?2)
The frequency function of the R-C circuit is
H(o) = 1 . Jw

1+(55) Jw+1

The input z(t) can be expressed as a Fourier series

— (e=1)(1~-j72mn) .5 .
2(t) = Z (ee(l?+E47r2‘322)n)8321r

Hence the output y(t) is given by

o
Y DH(2mn)e "

n=—oo

— Z (e — 1)(1 — j2mn)(j2mn) ei2mnt
e(1 + 4n?n2?)(j2mn + 1)

y(t)

Anm: Uttrycket for utsignalens komplexa fourierseriekoefficienter bor aven forenklas...
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