

TSBB06 Multi-Dimensional Signal Analysis, Final Exam 2020-08-28

Course module:	TEN2
Date & Time:	2020-08-28 14:00-18:00
Location:	Distance mode due to the ongoing COVID-19 pandemic
Examiner:	Mårten Wadenbäck Phone: +46 13 28 27 75 Zoom: https://liu-se.zoom.us/j/64899181404
Material & aids:	All non-human resources are allowed. This means that during the exam <i>you are not allowed to discuss the problems with anyone or to ask someone for help</i> , but you are allowed to use any material (written, video,) or software you wish in order to solve the problems.
Scoring:	The maximum score on the exam is 36 points, split evenly between parts one and two (this time only approximately evenly!). Grade 3 re- quires at least 20 points, grade 4 requires at least 25 points, and grade 5 requires at least 30 points. (These limits may be lowered, but not raised.)

(2 p)

Part I: Geometry and Estimation

1. Consider four points in the extended Euclidean space (3D), with homogeneous coordinates given by

- (a) The plane with dual homogeneous coordinates $\mathbf{p} = (-5, -1, -1, 6)$ contains three of these points. Determine which of these points it is that *does not* lie in the plane, and then compute its (shortest) distance to the plane. (2 p)
- (b) Let ℓ be the line through \mathbf{x}_2 and \mathbf{x}_3 . Compute the *ideal point* \mathbf{x}_{∞} on ℓ . (1 p)
- (c) The ideal point \mathbf{x}_{∞} from (b) can in fact be read off directly from a particular place in the Plücker coordinates of the line ℓ . Show that this works in the general case. (2 p)
- **2.** Let \mathcal{H}_0 be the set of (planar) homographies that map the origin to itself.
 - (a) Express a general element $\mathbf{H} \in \mathcal{H}_0$ in matrix form.(Hint: Map the origin with a general homography and see what falls out.)(1 p)
 - (b) Suppose we wish to estimate a homography matrix H ∈ ℋ₀ from a number of point correspondences x_j ↔ x'_j. Construct a suitable data matrix A for this problem. What is the smallest number of correspondences needed to uniquely determine H?
 - (c) Show that \mathcal{H}_{0} is a *group* with respect to composition.
- **3.** Consider two points in the extended Euclidean plane (2D), with homogeneous coordinates given by $\mathbf{x}_1 = (2, 3, 1)$ and $\mathbf{x}_2 = (-4, 1, 1)$.
 - (a) Compute the *Hartley normalisation* of the point set $\{\mathbf{x}_1, \mathbf{x}_2\}$, i.e. compute points $\{\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2\}$ that are appropriately scaled and translated versions of $\{\mathbf{x}_1, \mathbf{x}_2\}$. (2 p)
 - (b) Hartley normalisation can be achieved by applying a specific affine transformation to the points. What is the transformation matrix **T** that achieves the Hartley normalisation in this case? (1 p)
- **4.** Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be homogeneous coordinates for points in the extended Euclidean plane, and let \mathbf{l}_1 be dual homogeneous coordinates of a line. Suppose we wish to estimate another line, \mathbf{l}_2 , from the points, but that we do not care much about a point if it lies close to \mathbf{l}_1 .
 - (a) Suggest an algebraic cost function $f_A(\mathbf{l}_2)$ that achieves this. (Hint: When is $|\mathbf{l}_1^{\mathsf{T}}\mathbf{x}| \cdot |\mathbf{l}_2^{\mathsf{T}}\mathbf{x}| = 0$?) (2 p)
 - (b) Suggest a geometric cost function $f_G(\mathbf{l}_2)$ that achieves this. (1 p)

Part II: Linear Signal Representation, Analysis, and Applications

5. Let \mathbb{R}^2 be equipped with a scalar product given by $\langle \mathbf{u} | \mathbf{v} \rangle = \mathbf{v}^\top \mathbf{G}_0 \mathbf{u}$, and suppose that

$$\mathbf{G}_{\mathbf{O}} = \begin{pmatrix} a & -\mathbf{1} \\ -\mathbf{1} & a \end{pmatrix}$$

for some constant $a \in \mathbb{R}$.

- (a) Which real numbers *a* result in \mathbf{G}_0 defining a scalar product? (Hint: Scalar products satisfy $\langle \mathbf{u} | \mathbf{u} \rangle \ge 0$, with equality if and only if $\mathbf{u} = \mathbf{0}$.) (1 p)
- (b) Suppose henceforth that a = 7, and let $\mathbf{b}_1 = (1, 1)$ and $\mathbf{b}_2 = (1, -1)$ be a basis in \mathbb{R}^2 . Compute the corresponding dual basis vectors $\tilde{\mathbf{b}}_1$ and $\tilde{\mathbf{b}}_2$. (2 p)
- (c) Let $\mathbf{v} = (2, 0)$. Find the vector \mathbf{u} parallel to \mathbf{b}_1 that is closest to \mathbf{v} (as measured by the norm induced by the scalar product). (3 p)
- 6. Let $\mathbf{B} = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$ be a matrix whose columns hold a set of frame vectors in \mathbb{R}^2 .

(Let \mathbb{R}^2 be equipped with the standard scalar product, i.e. $\mathbf{G}_0 = \mathbf{I}$.)

- (a) Compute the frame operator **F** corresponding to the frame vectors in **B**. (2 p)
- (b) Compute the dual frame vectors corresponding to the frame vectors in **B**. (2 p)
- (c) Show that (in the general case) a frame operator is self-adjoint. (2 p)
- 7. By performing *principal component analysis* to a large number of signals in \mathbb{R}^4 , it has been found that the main part of the signals always lies in the subspace spanned by $\mathbf{b}_1 = (1, 1, -1, -1)/2$ and $\mathbf{b}_2 = (1, -1, -1, 1)/2$.
 - (a) Suppose the the least significant principal component is $\mathbf{b}_4 = (1, 1, 1, 1)/2$. Find \mathbf{b}_3 , i.e. the second-but-least significant principal component. (2 p)
 - (b) Compute the coefficients (with respect to the principal component vectors) of the signal v = (4, 1, -2, 0). How large is the error if v is only represented using the first two principal components? (2 p)
- **8.** Let C_1 and C_2 be camera matrices given by

$$\mathbf{C}_1 = \begin{pmatrix} 1 & 0 & -2 & 1 \\ -1 & 1 & -1 & 1 \\ 4 & -2 & -3 & 1 \end{pmatrix}, \qquad \mathbf{C}_2 = \begin{pmatrix} 0 & 2 & -2 & 0 \\ -1 & 1 & 2 & 1 \\ 2 & 0 & 3 & -2 \end{pmatrix}.$$

- (a) Which of these cameras has its centre at the 3D point (1, 0, 0)? (1 p)
- (b) For the camera in (a), compute the epipole $\mathbf{e}_{?}$ in this view of the other camera. (2 p)