TSBBO6 Multi-Dimensional Signal Analysis, Final Exam 2020-08-28

Course module: TEN2
Date \& Time: 2020-08-28 14:00-18:00
Location: Distance mode due to the ongoing COVID-19 pandemic
Examiner: Mårten Wadenbäck
Phone: +46 13282775
Zoom: https://liu-se.zoom.us/j/64899181404
Material \& aids: All non-human resources are allowed. This means that during the exam you are not allowed to discuss the problems with anyone or to ask someone for help, but you are allowed to use any material (written, video, ...) or software you wish in order to solve the problems.

Scoring:

The maximum score on the exam is 36 points, split evenly between parts one and two (this time only approximately evenly!). Grade 3 requires at least 20 points, grade 4 requires at least 25 points, and grade 5 requires at least 30 points. (These limits may be lowered, but not raised.)

Part I: Geometry and Estimation

1. Consider four points in the extended Euclidean space (3D), with homogeneous coordinates given by

$$
\begin{array}{ll}
\mathbf{x}_{1}=(2,-3,-1,1), & \mathbf{x}_{2}=(1,3,4,2) \\
\mathbf{x}_{3}=(-1,0,2,1), & \mathbf{x}_{4}=(1,2,-1,1) .
\end{array}
$$

(a) The plane with dual homogeneous coordinates $\mathbf{p}=(-5,-1,-1,6)$ contains three of these points. Determine which of these points it is that does not lie in the plane, and then compute its (shortest) distance to the plane.
(b) Let ℓ be the line through \mathbf{x}_{2} and \mathbf{x}_{3}. Compute the ideal point \mathbf{x}_{∞} on ℓ.
(c) The ideal point \mathbf{x}_{∞} from (b) can in fact be read off directly from a particular place in the Plücker coordinates of the line ℓ. Show that this works in the general case.
2. Let \mathscr{H}_{0} be the set of (planar) homographies that map the origin to itself.
(a) Express a general element $\mathbf{H} \in \mathscr{H}_{0}$ in matrix form. (Hint: Map the origin with a general homography and see what falls out.)
(b) Suppose we wish to estimate a homography matrix $\mathbf{H} \in \mathscr{H}_{0}$ from a number of point correspondences $\mathbf{x}_{j} \leftrightarrow \mathbf{x}_{j}^{\prime}$. Construct a suitable data matrix \mathbf{A} for this problem. What is the smallest number of correspondences needed to uniquely determine \mathbf{H} ?
(c) Show that \mathscr{H}_{o} is a group with respect to composition.
3. Consider two points in the extended Euclidean plane (2D), with homogeneous coordinates given by $\mathbf{x}_{1}=(2,3,1)$ and $\mathbf{x}_{2}=(-4,1,1)$.
(a) Compute the Hartley normalisation of the point set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$, i.e. compute points $\left\{\widetilde{\mathbf{x}}_{1}, \widetilde{\mathbf{x}}_{2}\right\}$ that are appropriately scaled and translated versions of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$.
(b) Hartley normalisation can be achieved by applying a specific affine transformation to the points. What is the transformation matrix \mathbf{T} that achieves the Hartley normalisation in this case?
4. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be homogeneous coordinates for points in the extended Euclidean plane, and let \mathbf{l}_{1} be dual homogeneous coordinates of a line. Suppose we wish to estimate another line, \mathbf{l}_{2}, from the points, but that we do not care much about a point if it lies close to \mathbf{l}_{1}.
(a) Suggest an algebraic cost function $f_{A}\left(\mathbf{l}_{2}\right)$ that achieves this. (Hint: When is $\left|\mathbf{l}_{1}^{\top} \mathbf{x}\right| \cdot\left|\mathbf{I}_{2}^{\top} \mathbf{x}\right|=0$?)
(b) Suggest a geometric cost function $f_{G}\left(\mathbf{l}_{2}\right)$ that achieves this.

Part II: Linear Signal Representation, Analysis, and Applications

5. Let \mathbb{R}^{2} be equipped with a scalar product given by $\langle\mathbf{u} \mid \mathbf{v}\rangle=\mathbf{v}^{\top} \mathbf{G}_{0} \mathbf{u}$, and suppose that

$$
\mathbf{G}_{\mathrm{O}}=\left(\begin{array}{cc}
a & -1 \\
-1 & a
\end{array}\right)
$$

for some constant $a \in \mathbb{R}$.
(a) Which real numbers a result in \mathbf{G}_{o} defining a scalar product?
(Hint: Scalar products satisfy $\langle\mathbf{u} \mid \mathbf{u}\rangle \geq 0$, with equality if and only if $\mathbf{u}=\mathbf{o}$.)
(b) Suppose henceforth that $a=7$, and let $\mathbf{b}_{1}=(1,1)$ and $\mathbf{b}_{2}=(1,-1)$ be a basis in \mathbb{R}^{2}. Compute the corresponding dual basis vectors $\widetilde{\mathbf{b}}_{1}$ and $\widetilde{\mathbf{b}}_{2}$.
(c) Let $\mathbf{v}=(2,0)$. Find the vector \mathbf{u} parallel to \mathbf{b}_{1} that is closest to \mathbf{v} (as measured by the norm induced by the scalar product).
6. Let $\mathbf{B}=\left(\begin{array}{ccc}1 & -1 & 2 \\ 1 & 1 & 1\end{array}\right)$ be a matrix whose columns hold a set of frame vectors in \mathbb{R}^{2}.
(Let \mathbb{R}^{2} be equipped with the standard scalar product, i.e. $\mathbf{G}_{\mathrm{o}}=\mathbf{I}$.)
(a) Compute the frame operator \mathbf{F} corresponding to the frame vectors in \mathbf{B}.
(b) Compute the dual frame vectors corresponding to the frame vectors in \mathbf{B}.
(c) Show that (in the general case) a frame operator is self-adjoint.
7. By performing principal component analysis to a large number of signals in \mathbb{R}^{4}, it has been found that the main part of the signals always lies in the subspace spanned by $\mathbf{b}_{1}=(1,1,-1,-1) / 2$ and $\mathbf{b}_{2}=(1,-1,-1,1) / 2$.
(a) Suppose the the least significant principal component is $\mathbf{b}_{4}=(1,1,1,1) / 2$. Find \mathbf{b}_{3}, i.e. the second-but-least significant principal component.
(b) Compute the coefficients (with respect to the principal component vectors) of the signal $\mathbf{v}=(4,1,-2,0)$. How large is the error if \mathbf{v} is only represented using the first two principal components?
8. Let \mathbf{C}_{1} and \mathbf{C}_{2} be camera matrices given by

$$
\mathbf{C}_{1}=\left(\begin{array}{cccc}
1 & 0 & -2 & 1 \\
-1 & 1 & -1 & 1 \\
4 & -2 & -3 & 1
\end{array}\right), \quad \mathbf{C}_{2}=\left(\begin{array}{cccc}
0 & 2 & -2 & 0 \\
-1 & 1 & 2 & 1 \\
2 & 0 & 3 & -2
\end{array}\right) .
$$

(a) Which of these cameras has its centre at the 3 D point $(1,0,0)$?
(b) For the camera in (a), compute the epipole $\mathbf{e}_{?}$ in this view of the other camera.

