TSBB06 Multi-Dimensional Signal Analysis, Solutions 2020-08-28

1. (a) Since

$$
\mathbf{p}^{\top} \mathbf{x}_{1}=\mathbf{p}^{\top} \mathbf{x}_{2}=\mathbf{p}^{\top} \mathbf{x}_{4}=0 \quad \text { and } \quad \mathbf{p}^{\top} \mathbf{x}_{3}=9
$$

it must be \mathbf{x}_{3} that lies outside the plane. The distance between \mathbf{p} and \mathbf{x}_{3} is

$$
d_{\mathrm{PD}}\left(\mathbf{x}_{3}, \mathbf{p}\right)=\left|\operatorname{norm}_{\mathrm{D}}(\mathbf{p})^{\top} \operatorname{norm}_{\mathrm{P}}\left(\mathbf{x}_{3}\right)\right|=\left|\frac{-1}{\sqrt{(-5)^{2}+(-1)^{2}+(-1)^{2}}} \cdot \mathbf{p}^{\top} \mathbf{x}_{3}\right|=\sqrt{3} .
$$

Answer: The point \mathbf{x}_{3} lies at a distance $\sqrt{3}$ from the plane.
(b) All points on ℓ can be written as $\mathbf{x}\left(\lambda_{2}, \lambda_{3}\right)=\lambda_{2} \mathbf{x}_{2}+\lambda_{3} \mathbf{x}_{3}$, where $\lambda_{2}^{2}+\lambda_{3}^{2} \neq 0$. Any representation on this form that has zero as its final coordinate represents the ideal point, e.g. $\mathbf{x}_{\infty} \sim \mathbf{x}(1,-2)=(3,3,0,0) \sim(1,1,0,0)$.

Answer: The ideal point on ℓ is $\mathbf{x}_{\infty} \sim(1,1,0,0)$.
(c) The ideal point can be read off as the rightmost column in the Plücker coordinates of the line, which can be shown as foolows.
Consider two arbitrary distinct points $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. The line through \mathbf{x} and \mathbf{y} will have Plücker coordinates $L=\mathbf{x y}^{\top}-\mathbf{y x}^{\top}$. This means that the columns in \mathbf{L} are linear combinations of \mathbf{x} and \mathbf{y}, and thus represent points on the line. The rightmost column of \mathbf{L} is $y_{4} \mathbf{x}-x_{4} \mathbf{y}$, and it clearly has its last coordinate equal to zero, which means that it represents an ideal point.
2. (a) The origin is represented by $\mathbf{x}_{0}=(0,0,1)$, and the requirement that an element $\mathbf{H} \in \mathscr{H}_{0}$ maps the origin to itself can be expressed as $\mathbf{H} \mathbf{x}_{0}=\lambda \mathbf{x}_{0}$ for some $\lambda \neq 0$ (i.e. \mathbf{x}_{0} is an eigenvector of \mathbf{H}). We see that

$$
\mathbf{H x}=\left(\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right)\left(\begin{array}{l}
\mathrm{o} \\
\mathrm{o} \\
1
\end{array}\right)=\left(\begin{array}{l}
h_{13} \\
h_{23} \\
h_{33}
\end{array}\right),
$$

so we have the constraints $h_{13}=h_{23}=0$. (Additionally, for \mathbf{H} to be invertible, we must have $h_{33} \neq \mathbf{0}$ and $h_{11} h_{22}-h_{12} h_{21} \neq 0$.) Since \mathbf{H} is only determined up to scale, we can set $h_{33}=1$.

Answer: A general element $\mathbf{H} \in \mathscr{H}_{0}$ can be written as $\mathbf{H}=\left(\begin{array}{lll}h_{11} & h_{12} & 0 \\ h_{21} & h_{22} & 0 \\ h_{31} & h_{32} & 1\end{array}\right)$.
(b) Let $\mathbf{x}_{j}=\left(u_{j}, v_{j}, w_{j}\right)$ and $\mathbf{x}_{j}^{\prime}=\left(u_{j^{\prime}}^{\prime}, v_{j}^{\prime}, w_{j}^{\prime}\right)$. Each correspondence $\mathbf{x}_{j} \leftrightarrow \mathbf{x}_{j}^{\prime}$ gives rise to a constraint consisting of three linear equations, namely

$$
\begin{aligned}
& \mathbf{x}_{j}^{\prime} \sim \mathbf{H} \mathbf{x}_{j} \Longleftrightarrow \mathbf{x}_{j}^{\prime} \times \mathbf{H} \mathbf{x}_{j}=\mathbf{o} \Longleftrightarrow\left[\mathbf{x}_{j}^{\prime}\right]_{\times} \mathbf{H} \mathbf{x}_{j}=\mathbf{o} \Longleftrightarrow \\
& \left(\begin{array}{ccc}
\mathrm{o} & -w_{j}^{\prime} & v_{j}^{\prime} \\
w_{j}^{\prime} & \mathrm{o} & -u_{j}^{\prime} \\
-v_{j}^{\prime} & u_{j}^{\prime} & \mathrm{o}
\end{array}\right)\left(\begin{array}{lll}
h_{11} & h_{12} & \mathrm{o} \\
h_{21} & h_{22} & \mathrm{o} \\
h_{31} & h_{32} & 1
\end{array}\right)\left(\begin{array}{c}
u_{j} \\
v_{j} \\
w_{j}
\end{array}\right)=\left(\begin{array}{l}
\mathrm{o} \\
\mathrm{o} \\
\mathrm{o}
\end{array}\right) \Longleftrightarrow \\
& \left(\begin{array}{ccc}
\mathrm{o} & -w_{j}^{\prime} & v_{j}^{\prime} \\
w_{j}^{\prime} & \mathrm{o} & -u_{j}^{\prime} \\
-v_{j}^{\prime} & u_{j}^{\prime} & \mathrm{o}
\end{array}\right)\left(\begin{array}{c}
u_{j} h_{11}+v_{j} h_{12} \\
u_{j} h_{21}+v_{j} h_{22} \\
u_{j} h_{31}+v_{j} h_{32}+w_{j}
\end{array}\right)=\left(\begin{array}{l}
\mathrm{o} \\
\mathrm{o} \\
\mathrm{o}
\end{array}\right) \Longleftrightarrow \\
& \left(\begin{array}{c}
-u_{j} w_{j}^{\prime} h_{21}-v_{j} w_{j}^{\prime} h_{22}+u_{j} v_{j}^{\prime} h_{31}+v_{j} v_{j}^{\prime} h_{32}+w_{j} v_{j}^{\prime} \\
u_{j} w_{j}^{\prime} h_{11}+v_{j} w_{j}^{\prime} h_{12}-u_{j} u_{j}^{\prime} h_{31}-v_{j} u_{j}^{\prime} h_{32}-w_{j} u_{j}^{\prime} \\
-u_{j} v_{j}^{\prime} h_{11}-v_{j} v_{j}^{\prime} h_{12}+u_{j} u_{j}^{\prime} h_{21}+v_{j} u_{j}^{\prime} h_{22}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow \\
& \underbrace{\left(\begin{array}{ccccccc}
\mathrm{o} & -u_{j} w_{j}^{\prime} & u_{j} v_{j}^{\prime} & \mathrm{o} & -v_{j} w_{j}^{\prime} & v_{j} v_{j}^{\prime} & w_{j} v_{j}^{\prime} \\
u_{j} w_{j}^{\prime} & \mathrm{o} & -u_{j} u_{j}^{\prime} & v_{j} w_{j}^{\prime} & \mathrm{o} & -v_{j} u_{j}^{\prime} & -w_{j} u_{j}^{\prime} \\
-u_{j} v_{j}^{\prime} & u_{j} u_{j}^{\prime} & \mathrm{o} & -v_{j} v_{j}^{\prime} & v_{j} u_{j}^{\prime} & \mathrm{o} & \mathrm{o}
\end{array}\right)}_{\mathbf{A}_{j}}\left(\begin{array}{l}
h_{11} \\
h_{21} \\
h_{31} \\
h_{12} \\
h_{22} \\
h_{32} \\
1
\end{array}\right)=\left(\begin{array}{l}
\mathrm{o} \\
\mathrm{o} \\
\mathrm{o}
\end{array}\right) .
\end{aligned}
$$

(Those who know the Kronecker product and the vec operation can go directly from $\left[\mathbf{x}_{j}^{\prime}\right]_{\times} \mathbf{H} \mathbf{x}_{j}=\mathbf{o}$ to the final step!) A suitable data matrix \mathbf{A} for estimating $\mathbf{H} \in \mathscr{H}_{\mathbf{o}}$ is

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{A}_{1} \\
\vdots \\
\mathbf{A}_{n}
\end{array}\right)
$$

Since $\operatorname{rank} \mathbf{A}_{j}=2$ (because rank $\left[\mathbf{x}_{j}^{\prime}\right]_{\times}=2$), it follows that $\operatorname{rank} \mathbf{A}=\min (2 n, 7)$. To uniquely determine \mathbf{H}, we thus need at least $n=3$ point correspondences.

Answer: A suitable data matrix \mathbf{A} for estimating $\mathbf{H} \in \mathscr{H}_{0}$ from point correspondences $\left(u_{j}, v_{j}, w_{j}\right) \leftrightarrow\left(u_{j}^{\prime}, v_{j}^{\prime}, w_{j}^{\prime}\right)$ is

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{A}_{1} \\
\vdots \\
\mathbf{A}_{n}
\end{array}\right), \quad \text { where } \quad \mathbf{A}_{j}=\left(\begin{array}{ccccccc}
\mathrm{o} & -u_{j} w_{j}^{\prime} & u_{j} v_{j}^{\prime} & \mathrm{o} & -v_{j} w_{j}^{\prime} & v_{j} v_{j}^{\prime} & w_{j} v_{j}^{\prime} \\
u_{j} w_{j}^{\prime} & \mathrm{o} & -u_{j} u_{j}^{\prime} & v_{j} w_{j}^{\prime} & \mathrm{o} & -v_{j} u_{j}^{\prime} & -w_{j} u_{j}^{\prime} \\
-u_{j} v_{j}^{\prime} & u_{j} u_{j}^{\prime} & \mathrm{o} & -v_{j} v_{j}^{\prime} & v_{j} u_{j}^{\prime} & \mathrm{o} & \mathrm{o}
\end{array}\right) .
$$

At least three point correspondences are needed to uniquely determine \mathbf{H}.
(c) To show that \mathscr{H}_{0} is a group with respect to composition, we need to show closure, associativity, existence of identity, and existence of inverse.
Closure: Let

$$
\mathbf{H}_{1}=\left(\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{o} \\
\mathbf{c}_{1}^{\top} & 1
\end{array}\right) \quad \text { and } \quad \mathbf{H}_{2}=\left(\begin{array}{cc}
\mathbf{A}_{2} & \mathbf{o} \\
\mathbf{c}_{2}^{\top} & 1
\end{array}\right)
$$

be two homographies in \mathscr{H}_{0}. We now verify that

$$
\mathbf{H}_{1} \mathbf{H}_{2}=\left(\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{o} \\
\mathbf{c}_{1}^{\top} & 1
\end{array}\right)\left(\begin{array}{cc}
\mathbf{A}_{2} & \mathbf{o} \\
\mathbf{c}_{2}^{\top} & 1
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A}_{1} \mathbf{A}_{2} & \mathbf{o} \\
\mathbf{c}_{1}^{\top} \mathbf{A}_{2}+\mathbf{c}_{2}^{\top} & 1
\end{array}\right) \in \mathscr{H}_{0}
$$

since $\operatorname{det}\left(\mathbf{A}_{1} \mathbf{A}_{2}\right)=\operatorname{det} \mathbf{A}_{1} \cdot \operatorname{det} \mathbf{A}_{\mathbf{2}} \neq 0$.

Associativity: This follows from the associativity of matrix multiplication.
Existence of identity: The identity homography $\mathbf{H}_{\mathrm{id}} \sim \mathbf{I}$ exists and maps all points to themselves. In particular, it maps the origin to itself, so $\mathbf{H}_{\mathrm{id}} \in \mathscr{H}_{0}$.
Existence of inverse: It is clear by definition that every $\mathbf{H} \in \mathscr{H}_{0}$ is invertible (it is a homography), but it is not immediately clear that the inverse also lies in \mathscr{H}_{0}. Let $\mathbf{H}=\left(\begin{array}{cc}\mathbf{A} & \mathbf{o} \\ \mathbf{c}^{\top} & 1\end{array}\right) \in \mathscr{H}_{\mathrm{o}}$ and let $\mathbf{H}^{-1}=\left(\begin{array}{cc}\mathbf{U} & \mathbf{v} \\ \mathbf{w}^{\top} & z\end{array}\right)$. Since

$$
\mathbf{I}_{3}=\mathbf{H H}^{-1}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{o} \\
\mathbf{c}^{\top} & 1
\end{array}\right)\left(\begin{array}{cc}
\mathbf{U} & \mathbf{v} \\
\mathbf{w}^{\top} & Z
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A U} & \mathbf{A v} \\
\mathbf{c}^{\top} \mathbf{U}+\mathbf{w}^{\top} & \mathbf{c}^{\top} \mathbf{v}+z
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{I}_{2} & \mathbf{o} \\
\mathbf{o}^{\top} & 1
\end{array}\right),
$$

it follows that $\mathbf{v}=\mathbf{o}, z=1, \mathbf{U}=\mathbf{A}^{-1}$, and $\mathbf{w}^{\top}=-\mathbf{c}^{\top} \mathbf{A}^{-1}$. Thus we must have $\mathbf{H}^{-1}=\left(\begin{array}{cc}\mathbf{A}^{-1} & \mathbf{0} \\ -\mathbf{c}^{\top} \mathbf{A}^{-1} & 1\end{array}\right) \in \mathscr{H}_{0}$.
3. (a) The centroid of the point set is $\overline{\mathbf{x}}=\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) / 2=(-1,2,1)$. Now, the mean distance from the origin to the centred points is

$$
\frac{1}{2}\left(\left\|\mathbf{x}_{1}-\overline{\mathbf{x}}\right\|+\left\|\mathbf{x}_{2}-\overline{\mathbf{x}}\right\|\right)=\frac{1}{2}\left(\sqrt{3^{2}+1^{2}}+\sqrt{(-3)^{2}+(-1)^{2}}\right)=\sqrt{10} .
$$

To transform this distance to $\sqrt{2}$, we need to apply the scale factor $\frac{\sqrt{2}}{\sqrt{10}}=\frac{1}{\sqrt{5}}$ in both the x direction and the y direction. Thus,

$$
\tilde{\mathbf{x}}_{1}=\left(\begin{array}{c}
\frac{2-(-1)}{\sqrt{5}} \\
\frac{3^{-2}}{\sqrt{5}} \\
1
\end{array}\right)=\left(\begin{array}{c}
\frac{3}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} \\
1
\end{array}\right) \quad \text { and } \quad \tilde{\mathbf{x}}_{2}=\left(\begin{array}{c}
\frac{-4-(-1)}{\sqrt{5}} \\
\frac{1-2}{\sqrt{5}} \\
1
\end{array}\right)=\left(\begin{array}{c}
\frac{-3}{\sqrt{5}} \\
\frac{-1}{\sqrt{5}} \\
1
\end{array}\right) .
$$

Answer: The normalised points are $\widetilde{\mathbf{x}}_{1}=\left(\frac{3}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 1\right)$ and $\widetilde{\mathbf{x}}_{2}=\left(-\frac{3}{\sqrt{5}},-\frac{1}{\sqrt{5}}, 1\right)$.
(b) Answer: The transformation in question is a similarity transformation, formed as a composition of the centring translation and the uniform scaling, as

$$
\mathbf{T}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{5}} & 0 & 0 \\
0 & \frac{1}{\sqrt{5}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\
0 & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\
0 & 0 & 1
\end{array}\right) .
$$

4. (a) The product $\left(\mathbf{l}_{1}^{\top} \mathbf{x}\right) \cdot\left(\mathbf{l}_{2}^{\top} \mathbf{x}\right)=0$ precisely when \mathbf{x} lies on (at least) one of the lines. A possible algebraic cost function is therefore

$$
f_{A}\left(\mathbf{l}_{2}\right)=\sum_{j=1}^{n}\left(\mathbf{l}_{1}^{\top} \mathbf{x}_{j}\right)^{2} \cdot\left(\mathbf{l}_{2}^{\top} \mathbf{x}_{j}\right)^{2} .
$$

Answer: One can use the algebraic cost function $f_{A}\left(\mathbf{l}_{2}\right)=\sum_{j=1}^{n}\left(\mathbf{l}_{1}^{\top} \mathbf{x}_{j}\right)^{2} \cdot\left(\mathbf{l}_{2}^{\top} \mathbf{x}_{j}\right)^{2}$.
(b) Answer: To measure geometric distances, we need to appropriately normalise all points and the two lines. Additionally, in a geometric cost function it makes sense to measure the only distance to the closest line for each point. One option is thus to use

$$
f_{G}\left(\mathbf{l}_{2}\right)=\sum_{j=1}^{n} \min \left(\left(\operatorname{norm}_{\mathrm{D}} \mathbf{l}_{1}\right)^{\top}\left(\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{j}\right),\left(\operatorname{norm}_{\mathrm{D}} \mathbf{l}_{2}\right)^{\top}\left(\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{j}\right)\right)^{2}
$$

5. (a) The Gramian \mathbf{G}_{0} must be positive definite, which is equivalent to its two eigenvalues being positive (since it is symmetric, and hence diagonalisable). In the 2×2 case, this is clearly equivalent to

$$
\left\{\begin{array} { r }
{ \lambda _ { 1 } + \lambda _ { 2 } > 0 } \\
{ \lambda _ { 1 } \lambda _ { 2 } > 0 }
\end{array} \Longleftrightarrow \left\{\begin{array} { r }
{ \operatorname { t r } \mathbf { G } _ { \mathrm { o } } > 0 } \\
{ \operatorname { d e t } \mathbf { G } _ { \mathrm { o } } > 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{r}
2 a>0 \\
a^{2}-1>0
\end{array} \Longleftrightarrow a>1 .\right.\right.\right.
$$

Answer: For \mathbf{G}_{o} to define a scalar product, we must have $a>1$.
(b) If we let $\mathbf{B}=\left(\begin{array}{ll}\mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right)$ and $\widetilde{\mathbf{B}}=\left(\begin{array}{ll}\widetilde{\mathbf{b}}_{1} & \widetilde{\mathbf{b}}_{2}\end{array}\right)$, then $\left\{\widetilde{\mathbf{b}}_{1}, \widetilde{\mathbf{b}}_{2}\right\}$ is the dual basis of $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ precisely when

$$
\tilde{\mathbf{B}}^{\top} \mathbf{G}_{0} \mathbf{B}=\mathbf{I} \Longleftrightarrow \mathbf{B}^{\top} \mathbf{G}_{0} \tilde{\mathbf{B}}=\mathbf{I} \Longleftrightarrow \widetilde{\mathbf{B}}=\left(\mathbf{B}^{\top} \mathbf{G}_{\mathrm{o}}\right)^{-1}
$$

Substituting the given values, we get

$$
\widetilde{\mathbf{B}}=\left(\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
7 & -1 \\
-1 & 7
\end{array}\right)\right)^{-1}=\left(\begin{array}{cc}
6 & 6 \\
8 & -8
\end{array}\right)^{-1}=\frac{1}{48}\left(\begin{array}{cc}
4 & 3 \\
4 & -3
\end{array}\right) .
$$

Answer: The dual basis vectors are $\tilde{\mathbf{b}}_{1}=\left(\frac{1}{12}, \frac{1}{12}\right)$ and $\tilde{\mathbf{b}}_{2}=\left(\frac{1}{16},-\frac{1}{16}\right)$.
(c) Alternative 1: Let $\mathbf{u}=\lambda \mathbf{b}_{1}=\lambda(1,1)$, and let

$$
\varepsilon(\lambda)=\|\mathbf{u}-\mathbf{v}\|_{\mathbf{G}_{0}}^{2}=\langle\mathbf{u}-\mathbf{v} \mid \mathbf{u}-\mathbf{v}\rangle=(\mathbf{u}-\mathbf{v})^{\top} \mathbf{G}_{0}(\mathbf{u}-\mathbf{v})=\ldots=12 \lambda^{2}-24 \lambda+28
$$

This clearly has a minimum when $\varepsilon^{\prime}(\lambda)=0 \Longleftrightarrow \lambda=1$, so $\mathbf{u}=(1,1)$.
Alternative 2: We seek the orthogonal projection of $\mathbf{v}=(2,0)$ on the subspace spanned by \mathbf{b}_{1}, which is given by

$$
\mathbf{u}=\frac{\mathbf{b}_{1}^{\top} \mathbf{G}_{0} \mathbf{v}}{\mathbf{b}_{1}^{\top} \mathbf{G}_{0} \mathbf{b}_{1}} \mathbf{b}_{1}=\ldots=\mathbf{b}_{1}=\binom{1}{1} .
$$

Answer: The vector \mathbf{u} parallel to \mathbf{b}_{1} that is closest to \mathbf{v} is $\mathbf{u}=\mathbf{b}_{1}=(1,1)$.
6. (a) Answer: Since $\mathbf{G}_{0}=\mathbf{I}$, the frame operator is given by

$$
\mathbf{F}=\mathbf{B} \mathbf{B}^{\top}=\left(\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
6 & 2 \\
2 & 3
\end{array}\right) .
$$

(b) Answer: The dual frame vectors are given by the columns of the matrix

$$
\widetilde{\mathbf{B}}=\mathbf{F}^{-1} \mathbf{B}=\frac{1}{14}\left(\begin{array}{cc}
3 & -2 \\
-2 & 6
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & 1
\end{array}\right)=\frac{1}{14}\left(\begin{array}{ccc}
1 & -5 & 4 \\
4 & 8 & 2
\end{array}\right) .
$$

(c) The frame operator associated with a set of frame vectors $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is defined, for an arbitrary vector \mathbf{v}, as

$$
\mathbf{F v}=\sum_{k=1}^{n}\left\langle\mathbf{v} \mid \mathbf{b}_{k}\right\rangle \mathbf{b}_{k}
$$

To show that \mathbf{F} is self-adjoint, i.e. that $\langle\mathbf{F u} \mid \mathbf{v}\rangle=\langle\mathbf{u} \mid \mathbf{F v}\rangle$ for all \mathbf{u} and \mathbf{v}, we verify that

$$
\begin{aligned}
\langle\mathbf{F} \mathbf{v} \mid \mathbf{u}\rangle & =\left\langle\sum_{k=1}^{n}\left\langle\mathbf{v} \mid \mathbf{b}_{k}\right\rangle \mathbf{b}_{k} \mid \mathbf{u}\right\rangle=\sum_{k=1}^{n}\left\langle\left\langle\mathbf{v} \mid \mathbf{b}_{k}\right\rangle \mathbf{b}_{k} \mid \mathbf{u}\right\rangle= \\
& =\sum_{k=1}^{n}\left\langle\mathbf{v} \mid \mathbf{b}_{k}\right\rangle\left\langle\mathbf{b}_{k} \mid \mathbf{u}\right\rangle=\sum_{k=1}^{n}\left\langle\mathbf{v} \mid\left\langle\mathbf{b}_{k} \mid \mathbf{u}\right\rangle^{*} \mathbf{b}_{k}\right\rangle= \\
& =\sum_{k=1}^{n}\left\langle\mathbf{v} \mid\left\langle\mathbf{u} \mid \mathbf{b}_{k}\right\rangle \mathbf{b}_{k}\right\rangle=\left\langle\mathbf{v} \mid \sum_{k=1}^{n}\left\langle\mathbf{u} \mid \mathbf{b}_{k}\right\rangle \mathbf{b}_{k}\right\rangle=\langle\mathbf{v} \mid \mathbf{F u}\rangle .
\end{aligned}
$$

7. By performing principal component analysis to a large number of signals in \mathbb{R}^{4}, it has been found that the main part of the signals always lies in the subspace spanned by $\mathbf{b}_{1}=(1,1,-1,-1) / 2$ and $\mathbf{b}_{2}=(1,-1,-1,1) / 2$.
(a) The principal components must make up an orthonormal basis, so \mathbf{b}_{3} must be orthogonal to $\mathbf{b}_{1}, \mathbf{b}_{2}$, and \mathbf{b}_{4}. Letting $\mathbf{b}_{3}=(x, y, z, w)$, we have

$$
\begin{gathered}
\left(\begin{array}{l}
\mathbf{b}_{1}^{\top} \\
\mathbf{b}_{2}^{\top} \\
\mathbf{b}_{4}^{\top}
\end{array}\right) \mathbf{b}_{3}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & -1 & -1 \\
1 & 1 & 1 \\
\hline
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow \\
\Longleftrightarrow\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
0 & 2 & 0 & -2 \\
0 & 0 & -2 & -2
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\lambda\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right) \text { for any } \lambda \in \mathbb{R} .
\end{gathered}
$$

We need to choose λ such that $\left\|\mathbf{b}_{3}\right\|=1$, and there are two valid choices which achieve this, namely $\lambda= \pm \frac{1}{2}$.
Answer: The second-but-least significant principal component can be chosen as either $\mathbf{b}_{3}=(-1,1,-1,1) / 2$ or $\mathbf{b}_{3}=(1,-1,1,-1) / 2$.
(b) (We assume here that $\left.\mathbf{b}_{3}=(-1,1,-1,1) / 2.\right)$ Let $\mathbf{B}=\left(\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4}\end{array}\right)$. The coefficients of \mathbf{v} (with respect to the principal component vectors) are the coordinates \mathbf{c} with respect to the basis in \mathbf{B}, given by

$$
\mathbf{c}=\mathbf{B}^{\top} \mathbf{v}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
-1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
4 \\
1 \\
-2 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
7 \\
5 \\
-1 \\
3
\end{array}\right) .
$$

This means that the projection of \mathbf{v} on the subspace spanned by the first two principal components is

$$
\mathbf{v}_{2}=\frac{7}{2} \mathbf{b}_{1}+\frac{1}{2} \mathbf{b}_{2}=\frac{7}{4}\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right)+\frac{5}{4}\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}
12 \\
2 \\
-12 \\
-2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
6 \\
1 \\
-6 \\
-1
\end{array}\right) .
$$

The error (measured by the norm) when using this representation is

$$
\varepsilon(\mathbf{v})=\left\|\mathbf{v}-\mathbf{v}_{2}\right\|=\left\|\left(1, \frac{1}{2}, 1, \frac{1}{2}\right)\right\|=\frac{1}{2}\|(2,1,2,1)\|=\frac{\sqrt{2^{2}+1^{2}+2^{2}+1^{2}}}{2}=\frac{\sqrt{10}}{2} .
$$

Answer: The coefficients are $\mathbf{c}=\frac{1}{2}(7,5,-1,3)$, and the error when \mathbf{v} is represented only using the first two principal components is $\varepsilon(\mathbf{v})=\frac{\sqrt{10}}{2}$.
8. (a) We recall that the null vector of a camera matrix is a homogeneous representation of its camera centre (i.e., the camera centre is the only point in the extended Euclidean space which does not have a well defined image). Letting $\mathbf{n}=(1,0,0,1)$ be a homogeneous representation of the 3 D point $(1,0,0)$, it is readily verified that $\mathbf{C}_{1} \mathbf{n}=(2,0,5)$ and $\mathbf{C}_{2} \mathbf{n}=(0,0,0)$.

Answer: It is camera \mathbf{C}_{2} that has its centre at ($1,0,0$).
(b) Let $\mathbf{n}_{1}=(x, y, z, w)$ be a homogeneous representation of the centre of \mathbf{C}_{1}. We seek the epipole $\mathbf{e}_{21} \sim \mathbf{C}_{2} \mathbf{n}_{1}$, but to compute it we need first to find \mathbf{n}_{1}. As \mathbf{n}_{1} represents the null space of \mathbf{C}_{1}, we have

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & -2 & 1 \\
-1 & 1 & -1 & 1 \\
4 & -2 & -3 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left(\begin{array}{cccc}
1 & 0 & -2 & 1 \\
0 & 1 & -3 & 2 \\
0 & -2 & 5 & -3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow \\
& \Longleftrightarrow\left(\begin{array}{llll}
1 & 0 & -2 & 1 \\
0 & 1 & -3 & 2 \\
0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\lambda\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \quad \text { for any } \lambda \in \mathbb{R} .
\end{aligned}
$$

Now,

$$
\mathbf{e}_{21} \sim \mathbf{C}_{2} \mathbf{n}_{1} \sim\left(\begin{array}{cccc}
0 & 2 & -2 & 0 \\
-1 & 1 & 2 & 1 \\
2 & 0 & 3 & -2
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
3
\end{array}\right) \sim\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

Answer: The sought epipole is $\mathbf{e}_{21} \sim(0,1,1)$.

