## TSBB06 Multi-Dimensional Signal Analysis, Solutions 2021-01-12

1. (a) We compute the distances

$$
\begin{aligned}
& d_{\mathrm{PD}}\left(\mathbf{x}_{1}, \mathbf{l}\right)=\left|\left(\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{1}\right)^{\top}\left(\operatorname{norm}_{\mathrm{D}} \mathbf{l}\right)\right|=\left|(1,2,1) \cdot \frac{1}{13}(12,-5,26)\right|=\frac{28}{13}, \\
& d_{\mathrm{PD}}\left(\mathbf{x}_{2}, \mathbf{l}\right)=\left|\left(\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{2}\right)^{\top}\left(\operatorname{norm}_{\mathrm{D}} \mathbf{l}\right)\right|=\left|(2,-1,1) \cdot \frac{1}{13}(12,-5,26)\right|=\frac{55}{13}, \\
& d_{\mathrm{PD}}\left(\mathbf{x}_{3}, \mathbf{l}\right)=\left|\left(\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{3}\right)^{\top}\left(\operatorname{norm}_{\mathrm{D}} \mathbf{l}\right)\right|=\left|(-1,5,1) \cdot \frac{1}{13}(12,-5,26)\right|=\frac{11}{13} .
\end{aligned}
$$

Since $\mathbf{x}_{4}$ is an ideal point and $\mathbf{l}^{\top} \mathbf{x}_{4} \neq 0$, it lies infinitely far away from the line.
Answer: Of the four points, the point $\mathbf{x}_{3}$ lies closest to the line $\mathbf{l}$.
(b) All points on the line are formed as a linear combination of $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$, and since both of those are proper points, the ideal point can be computed as

$$
\mathbf{x}_{\infty} \sim \operatorname{norm}_{\mathrm{P}} \mathbf{x}_{2}-\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{1}=(1,-3,0) .
$$

Answer: The ideal point on the line through $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ is $\mathbf{x}_{\infty}=(1,-3,0)$.
(c) The points (in the extended Euclidean plane) with homogeneous coordinates $\mathbf{x}_{1}$, $\mathbf{x}_{2}$, and $\mathbf{x}_{3}$ lie on a line if and only if their triple product is zero, i.e. $\mathbf{x}_{3}^{\top}\left(\mathbf{x}_{1} \times \mathbf{x}_{2}\right)=0$. If $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ are distinct, then $\mathbf{l}_{12}=\mathbf{x}_{1} \times \mathbf{x}_{2}$ represents the line through $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$, and $\mathbf{x}_{3}^{\top} \mathbf{l}_{12}=\mathbf{x}_{3}^{\top}\left(\mathbf{x}_{1} \times \mathbf{x}_{2}\right)=0$ means that $\mathbf{x}_{3}$ also lies on this line. If $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ are not distinct, the three points automatically lie on a line, and the triple product also clearly becomes zero.
Using the three points in the problem text, we get

$$
\mathbf{x}_{3}^{\top}\left(\mathbf{x}_{1} \times \mathbf{x}_{2}\right)=(-1,5,1) \cdot((1,2,1) \times(2,-1,1))=(-1,5,1) \cdot(3,1,-5)=-3 \neq 0,
$$

so the points do not lie on a line.
Answer: Three points lie on a line if their triple product is zero.
2. (a) Answer: A general element $\mathbf{T} \in \mathscr{A}$ can be written as

$$
\mathbf{T}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{t} \\
\mathbf{o}^{\top} & 1
\end{array}\right),
$$

where $\mathbf{A}$ is a non-singular $3 \times 3$ matrix and $\mathbf{t} \in \mathbb{R}^{3}$. It follows that $\mathbf{T}$ has $3 \cdot 3+3=12$ degrees of freedom.
(b) If points are transformed by the transformation $\mathbf{T}$, then planes are transformed using the dual transformation

$$
\widetilde{\mathbf{T}}=\mathbf{T}^{-\top}=\left(\begin{array}{cc}
\mathbf{A}^{-1} & -\mathbf{A}^{-1} \mathbf{t} \\
\mathbf{o}^{\top} & 1
\end{array}\right)^{\top}=\left(\begin{array}{cc}
\mathbf{A}^{-\top} & \mathbf{0} \\
-\mathbf{t}^{\top} \mathbf{A}^{-\top} & 1
\end{array}\right) .
$$

Transforming the plane at infinity, $\mathbf{p}_{\infty}=(\mathbf{o}, 1)$, we get $\widetilde{\mathbf{T}} \mathbf{p}_{\infty}=\mathbf{p}_{\infty}$, as desired.
(c) Each point correspondence $\mathbf{x}_{j} \leftrightarrow \mathbf{x}_{j}^{\prime}$ gives rise to four linear equations,

$$
\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{j}^{\prime}=\mathbf{T} \operatorname{norm}_{\mathrm{P}} \mathbf{x}_{j},
$$

where only the three first add anything useful. This means that we need at least four point correspondences to determine the $4 \cdot 3=12$ parameters in $\mathbf{T}$.

Answer: Four is the smallest number of point correspondences that are needed to uniquely determine $\mathbf{T}$.
3. (a) Answer: The common geometric cost function in this case sums the squared point-to-line distances, i.e.

$$
\varepsilon(\mathbf{l})=\sum_{k=1}^{n}\left(\left(\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{k}\right)^{\top}\left(\operatorname{norm}_{\mathrm{D}} \mathbf{l}\right)\right)^{2} .
$$

(b) To simplify the notation, assume that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are already P-normalised so that all $\mathbf{x}_{k}=\left(\overline{\mathbf{x}}_{k}, 1\right)$, where $\overline{\mathbf{x}}_{k}=\left(x_{k}, y_{k}\right)$ are the Euclidean coordinates. Assume we use the D-normalised representation $\mathbf{l}=(\hat{\mathbf{l}},-\Delta)$, where $\|\hat{\mathbf{l}}\|=1$ and $\Delta \geq 0$.
We can rewrite the cost function as

$$
\varepsilon(\mathbf{l})=\sum_{k=1}^{n}\left(\mathbf{x}_{k}^{\top} \mathbf{l}\right)^{2}=\sum_{k=1}^{n}\left(\overline{\mathbf{x}}_{k}^{\top} \hat{\mathbf{l}}-\Delta\right)^{2}
$$

The optimal value for $\Delta$ is found by setting $\frac{\partial \varepsilon}{\partial \Delta}=0$, which results in $\Delta=\hat{\mathbf{l}}^{\top} \overline{\mathbf{s}}$, where $\overline{\mathbf{s}}=\frac{1}{n} \sum_{k=1}^{n} \overline{\mathbf{x}}_{k}$ is the centroid of the points.
For the optimal $\Delta$, we get

$$
\varepsilon(\mathbf{l})=\sum_{k=1}^{n}\left(\overline{\mathbf{x}}_{k}^{\top} \hat{\mathbf{l}}-\Delta\right)^{2}=\sum_{k=1}^{n}\left(\left(\overline{\mathbf{x}}_{k}-\overline{\mathbf{s}}\right)^{\top} \hat{\mathbf{l}}\right)^{2}=\hat{\mathbf{l}}^{\top} \mathbf{A} \mathbf{A}^{\top} \hat{\mathbf{l}},
$$

where $\mathbf{A}=\left(\begin{array}{lll}\overline{\mathbf{x}}_{1}-\overline{\mathbf{s}} & \ldots & \overline{\mathbf{x}}_{n}-\overline{\mathbf{s}}\end{array}\right)$. Minimising $\hat{\mathbf{l}}^{\top} \mathbf{A A}^{\top} \hat{\mathbf{l}}$ over $\|\hat{\mathbf{1}}\|=1$ corresponds to computing the rightmost singular vector of $\mathbf{A}^{\top}$.
4. (a) Answer: Collecting the entries in $\mathbf{C}$ into

$$
\mathbf{c}=\left(c_{11}, c_{12}, c_{13}, c_{14}, c_{22}, c_{23}, c_{24}, c_{33}, c_{34}, c_{44}\right)
$$

and defining

$$
\mathbf{A}_{k}=\left(\begin{array}{llllllllll}
x_{k}^{2} & 2 x_{k} y_{k} & 2 x_{k} z_{k} & 2 x_{k} & y_{k}^{2} & 2 y_{k} z_{k} & 2 y_{k} & z_{k}^{2} & 2 z_{k} & 1,
\end{array}\right)
$$

we can estimate $\mathbf{c}$ as the null space to the data matrix

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{A}_{1} \\
\vdots \\
\mathbf{A}_{m}
\end{array}\right) \in \mathbb{R}^{m \times 10}
$$

(b) We want the data matrix to have a one-dimensional null space in order to have a unique (up to scale) solution. Since $\operatorname{rank} \mathbf{A} \leq \min (m, 10)$, the smallest number of points needed to determine $\mathbf{C}$ is $m=9$.

Answer: The smallest number of points needed to determine $\mathbf{C}$ is $m=9$.
5. (a) For $\mathbf{G}_{0}$ to define a valid scalar product, it must be symmetric and positive definite. Here, $\mathbf{G}_{0}$ is clearly symmetric, which means that we only need to find out which $a$ make it positive definite. This can be done in several ways, for example by rewriting (i.e., expanding and then completing the squares)

$$
\begin{aligned}
\mathbf{u}^{\top} \mathbf{G}_{0} \mathbf{u} & =\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & a \\
0 & a & 2
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
2 u_{2}+a u_{3} \\
a u_{2}+2 u_{3}
\end{array}\right)= \\
& =u_{1}^{2}+2 u_{2}^{2}+2 a u_{2} u_{3}+2 u_{3}^{2}=u_{1}^{2}+2\left(u_{2}+\frac{a}{2} u_{3}\right)^{2}+\left(2-\frac{a^{2}}{2}\right) u_{3}^{2} .
\end{aligned}
$$

We thus need $2-\frac{a^{2}}{2}>0 \Longleftrightarrow|a|<2$.
Answer: The matrix $\mathbf{G}_{0}$ defines a valid scalar product precisely when $|a|<2$.
(b) We compute the scalar products (we only need six of them, since $\mathbf{G}$ is symmetric), resulting in

$$
\begin{aligned}
\left\langle\mathbf{b}_{1} \mid \mathbf{b}_{1}\right\rangle & =\ldots=1 \\
\left\langle\mathbf{b}_{2} \mid \mathbf{b}_{2}\right\rangle & =\ldots=6 \\
\left\langle\mathbf{b}_{3} \mid \mathbf{b}_{3}\right\rangle & =\ldots=6 \\
\left\langle\mathbf{b}_{1} \mid \mathbf{b}_{2}\right\rangle & =\ldots=0 \\
\left\langle\mathbf{b}_{1} \mid \mathbf{b}_{3}\right\rangle & =\ldots=0 \\
\left\langle\mathbf{b}_{2} \mid \mathbf{b}_{3}\right\rangle & =\ldots=3
\end{aligned}
$$

The Gram matrix is

$$
\left.\mathbf{G}=\left(\begin{array}{ccc}
\left\langle\mathbf{b}_{1} \mid \mathbf{b}_{1}\right\rangle & \left\langle\mathbf{b}_{2} \mid \mathbf{b}_{1}\right\rangle & \left\langle\mathbf{b}_{3} \mid \mathbf{b}_{1}\right\rangle \\
\left\langle\mathbf{b}_{1} \mid \mathbf{b}_{2}\right\rangle & \left\langle\mathbf{b}_{2} \mid \mathbf{b}_{2}\right\rangle & \left\langle\mathbf{b}_{3}\right|
\end{array} \mathbf{b}_{2}\right\rangle\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\left\langle\mathbf{b}_{1} \mid \mathbf{b}_{3}\right\rangle & \left\langle\mathbf{b}_{2} \mid \mathbf{b}_{3}\right\rangle & \left\langle\mathbf{b}_{3} \mid \mathbf{b}_{3}\right\rangle
\end{array}\right) .
$$

Answer: The Gram matrix is $\mathbf{G}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 6 & 3 \\ 0 & 3 & 6\end{array}\right)$.
(c) Let $\mathbf{B}=\left(\begin{array}{ll}\mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right)$. The vector $\mathbf{u} \in U$ closest to $\mathbf{v}$ is given by

$$
\mathbf{u}=\mathbf{B} \mathbf{c}=\mathbf{B G}_{\mathbf{B}}^{-1} \widetilde{\mathbf{c}}=\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{G}_{0} \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{G}_{0} \mathbf{v}
$$

where $\mathbf{c}$ are the subspace coordinates of $\mathbf{v}$ and $\widetilde{\mathbf{c}}$ are the subspace dual coordinates of $\mathbf{v}$, and $\mathbf{G}_{\mathbf{B}}=\left(\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right)$ is the subspace Gram matrix with respect to $\mathbf{B}$. Carrying out the computations, we have

$$
\begin{aligned}
\mathbf{u} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 6
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)= \\
& =\frac{1}{6}\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
6 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
7 \\
8
\end{array}\right)= \\
& =\frac{1}{6}\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
6 & 0 \\
0 & 1
\end{array}\right)\binom{1}{15}=\frac{1}{6}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\binom{6}{15}=\frac{1}{2}\left(\begin{array}{l}
2 \\
5 \\
5
\end{array}\right) .
\end{aligned}
$$

Answer: $\quad$ The vector $\mathbf{u} \in U$ closest to $\mathbf{v}$ is $\mathbf{u}=\left(1, \frac{5}{2}, \frac{5}{2}\right)$.
6. (a) Answer: The frame operator is

$$
\mathbf{F}=\mathbf{B B}^{\top} \mathbf{G}_{\mathrm{O}}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
6 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
1 & 6
\end{array}\right)\left(\begin{array}{cc}
6 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
11 & -1 \\
0 & 5
\end{array}\right) .
$$

(b) The lower frame bound is the smallest eigenvalue of $\mathbf{F}$, and the upper frame bound is the largest eigenvalue of $\mathbf{F}$. In this case, when $\mathbf{F}$ is triangular, we can read the eigenvalues off of the diagonal, giving $L=5$ and $U=11$.

Answer: The lower frame bound is $L=5$ and the upper frame bound $U=11$.
(c) Answer: The dual frame vectors are given by

$$
\widetilde{\mathbf{B}}=\mathbf{F}^{-1} \mathbf{B}=\frac{1}{55}\left(\begin{array}{cc}
5 & 1 \\
\mathrm{o} & 11
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2
\end{array}\right)=\frac{1}{55}\left(\begin{array}{cccc}
5 & 6 & 1 & 2 \\
0 & 11 & 11 & 22
\end{array}\right) .
$$

7. (a) The only requirement here is the internal constraint $\operatorname{rank} \mathbf{F}=2$, which implies $\operatorname{det} \mathbf{F}=0$. It is clear by inspection that $\operatorname{rank} \mathbf{F} \geq 2$ for all values of $a$ and $b$ (the first two columns, for example, cannot be made parallel). This gives the constraint

$$
\operatorname{det} \mathbf{F}=\left|\begin{array}{ccc}
1 & 0 & -1 \\
a & 2 & b \\
a & 1 & 3
\end{array}\right|=6-a-b+2 a=6+a-b=0
$$

Answer: The values of $a$ and $b$ which make $\mathbf{F}$ a valid fundamental matrix are those satisfying $6+a-b=0$.
(b) If $\mathbf{x}_{1}$ and $\mathbf{x}_{1}^{\prime}$ satisfy the epipolar constraint, this means that

$$
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
a & 2 & b \\
a & 1 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
a+4+b \\
a+2+3
\end{array}\right)=2 a+b+9=0 .
$$

Together with the internal constraint $6+a-b=0$, this yields $a=-5$ and $b=1$. The epipolar line $\mathbf{l}_{2}$ is

$$
\mathbf{l}_{2}=\mathbf{F x}_{2}^{\prime}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
-5 & 2 & 1 \\
-5 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
4 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
4 \\
2
\end{array}\right),
$$

and we finally compute the distance as

$$
d_{\mathrm{PD}}\left(\mathbf{x}_{2}, \mathbf{l}_{2}\right)=\left|\left(\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{2}\right)^{\top}\left(\operatorname{norm}_{\mathrm{D}} \mathbf{l}_{2}\right)\right|=\left|\frac{1}{2}\left(\begin{array}{lll}
\mathrm{O} & 3 & 1
\end{array}\right)\left(\begin{array}{l}
\mathrm{o} \\
2 \\
1
\end{array}\right)\right|=\frac{7}{2} .
$$

Answer: The distance between $\mathbf{x}_{2}$ and the corresponding epipolar line is $\frac{7}{2}$.
8. (a) Since

$$
\begin{aligned}
\varepsilon & =\mathbb{E}\left[\left\|\mathbf{v}-\mathbf{B} B^{\top} \mathbf{v}\right\|^{2}\right]=\mathbb{E}\left[\left(\mathbf{v}-\mathbf{B B}^{\top} \mathbf{v}\right)^{\top}\left(\mathbf{v}-\mathbf{B B}^{\top} \mathbf{v}\right)\right]= \\
& =\mathbb{E}[\mathbf{v}^{\top} \mathbf{v}-2 \mathbf{v}^{\top} \mathbf{B} B^{\top} \mathbf{v}+\mathbf{v}^{\top} \mathbf{B} \underbrace{\mathbf{B}^{\top} \mathbf{B}}_{=\mathbf{I}} \mathbf{B}^{\top} \mathbf{v}]= \\
& =\mathbb{E}\left[\mathbf{v}^{\top} \mathbf{v}-\mathbf{v}^{\top} \mathbf{B} \mathbf{B}^{\top} \mathbf{v}\right]=\mathbb{E}\left[\|\mathbf{v}\|^{2}\right]-\mathbb{E}\left[\mathbf{v}^{\top} \mathbf{B} \mathbf{B}^{\top} \mathbf{v}\right]=\mathbb{E}\left[\|\mathbf{v}\|^{2}\right]-\varepsilon_{1},
\end{aligned}
$$

minimising $\varepsilon$ is equivalent to maximising $\varepsilon_{1}$.
(b) The objective is to find a subspace that minimises the expected norm (squared) of the difference between a vector and its projection on the subspace. If $\mathbf{c}$ are the subspace coordinates of $\mathbf{v}$ and $\tilde{\mathbf{c}}$ are the subspace dual coordinates of $\mathbf{v}$, and $\mathbf{G}_{\mathbf{B}}$ is the subspace Gram matrix, then

$$
\varepsilon=\mathbb{E}\left[\|\mathbf{v}-\mathbf{B} \mathbf{c}\|^{2}\right]=\mathbb{E}\left[\left\|\mathbf{v}-\mathbf{B G}_{\mathbf{B}}^{-1} \widetilde{\mathbf{c}}\right\|^{2}\right]=\mathbb{E}\left[\left\|\mathbf{v}-\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{G}_{0} \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{G}_{0} \mathbf{v}\right\|^{2}\right]
$$

It is also important to remember that the norm is induced by the scalar product, and thus also depends on $\mathbf{G}_{0}$.

Answer: The expression becomes $\varepsilon=\mathbb{E}\left[\left\|\mathbf{v}-\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{G}_{0} \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{G}_{0} \mathbf{v}\right\|^{2}\right]$.

