
2021­01­12 1(5)

TSBB06 Multi-Dimensional Signal Analysis, Solutions 2021-01-12

1. (a) We compute the distances

dPD(x1, l) = |(normP x1)⊤(normD l)| = |(1,2, 1) ⋅
1

13
(12, −5,26)| = 28

13
,

dPD(x2, l) = |(normP x2)⊤(normD l)| = |(2, −1, 1) ⋅
1

13
(12, −5,26)| = 55

13
,

dPD(x3, l) = |(normP x3)⊤(normD l)| = |(−1, 5, 1) ⋅
1

13
(12, −5,26)| = 11

13
.

Since x4 is an ideal point and l
⊤x4 ≠ 0, it lies infinitely far away from the line.

Answer: Of the four points, the point x3 lies closest to the line l.

(b) All points on the line are formed as a linear combination of x1 and x2, and since
both of those are proper points, the ideal point can be computed as

x∞ ∼ normP x2 − normP x1 = (1, −3,0).

Answer: The ideal point on the line through x1 and x2 is x∞ = (1, −3,0).
(c) The points (in the extended Euclidean plane) with homogeneous coordinates x1,

x2, and x3 lie on a line if and only if their triple product is zero, i.e. x
⊤
3 (x1×x2) = 0.

If x1 and x2 are distinct, then l12 = x1 × x2 represents the line through x1 and x2,
and x⊤3 l12 = x⊤3 (x1 × x2) = 0 means that x3 also lies on this line. If x1 and x2 are
not distinct, the three points automatically lie on a line, and the triple product also
clearly becomes zero.
Using the three points in the problem text, we get

x⊤3 (x1 × x2) = (−1, 5, 1) ⋅ 􏿴(1,2, 1) × (2, −1, 1)􏿷 = (−1, 5, 1) ⋅ (3, 1, −5) = −3 ≠ 0,

so the points do not lie on a line.

Answer: Three points lie on a line if their triple product is zero.

2. (a) Answer: A general element T ∈ 𝒜 can be written as

T = 􏿶
A t
0⊤ 1􏿹 ,

whereA is a non­singular 3×3matrix and t ∈ ℝ3. It follows thatT has 3 ⋅3+3 = 12
degrees of freedom.
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(b) If points are transformed by the transformation T, then planes are transformed
using the dual transformation

T̃ = T−⊤ = 􏿶
A−1 −A−1t
0⊤ 1 􏿹

⊤

= 􏿶
A−⊤ 0

−t⊤A−⊤ 1 􏿹 .

Transforming the plane at infinity, p∞ = (0, 1), we get T̃p∞ = p∞, as desired.

(c) Each point correspondence xj ↔ x′j gives rise to four linear equations,

normP x
′
j = TnormP xj,

where only the three first add anything useful. This means that we need at least
four point correspondences to determine the 4 ⋅ 3 = 12 parameters in T.

Answer: Four is the smallest number of point correspondences that are needed
to uniquely determine T.

3. (a) Answer: The common geometric cost function in this case sums the squared
point­to­line distances, i.e.

ε(l) =
n

􏾜
k=1

􏿴(normP xk)⊤(normD l)􏿷
2
.

(b) To simplify the notation, assume that x1, … ,xn are already P­normalised so that
all xk = (x̄k, 1), where x̄k = (xk,yk) are the Euclidean coordinates. Assume we use
the D­normalised representation l = (l̂, −Δ), where 􏿎l̂􏿎 = 1 and Δ ≥ 0.

We can rewrite the cost function as

ε(l) =
n

􏾜
k=1

􏿴x⊤
k
l􏿷
2
=

n

􏾜
k=1

􏿴x̄⊤
k
l̂ − Δ􏿷

2
.

The optimal value for Δ is found by setting
∂ε

∂Δ
= 0, which results in Δ = l̂⊤s̄, where

s̄ = 1

n
∑n

k=1 x̄k is the centroid of the points.

For the optimal Δ, we get

ε(l) =
n

􏾜
k=1

􏿴x̄⊤
k
l̂ − Δ􏿷

2
=

n

􏾜
k=1

􏿴(x̄k − s̄)⊤l̂􏿷
2
= l̂⊤AA⊤l̂,

where A = 􏿴x̄1 − s̄ … x̄n − s̄􏿷. Minimising l̂⊤AA⊤l̂ over 􏿎l̂􏿎 = 1 corresponds to
computing the rightmost singular vector of A⊤.

4. (a) Answer: Collecting the entries in C into

c = (c11, c12, c13, c14, c22, c23, c24, c33, c34, c44)
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and defining

Ak = 􏿴x2k 2xkyk 2xkzk 2xk y2
k

2ykzk 2yk z2
k

2zk 1,􏿷

we can estimate c as the null space to the data matrix

A =

⎛
⎜⎜⎜⎜⎜⎝
A1
⋮
Am

⎞
⎟⎟⎟⎟⎟⎠ ∈ ℝ

m×10.

(b) We want the data matrix to have a one­dimensional null space in order to have a
unique (up to scale) solution. Since rankA ≤ min(m, 10), the smallest number of
points needed to determine C ism = 9.

Answer: The smallest number of points needed to determine C ism = 9.

5. (a) For G0 to define a valid scalar product, it must be symmetric and positive defi­
nite. Here, G0 is clearly symmetric, which means that we only need to find out
which a make it positive definite. This can be done in several ways, for example
by rewriting (i.e., expanding and then completing the squares)

u⊤G0u = 􏿴u1 u2 u3􏿷

⎛
⎜⎜⎜⎜⎜⎝
1 0 0
0 2 a
0 a 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
u1
u2
u3

⎞
⎟⎟⎟⎟⎟⎠ = 􏿴u1 u2 u3􏿷

⎛
⎜⎜⎜⎜⎜⎝

u1
2u2 + au3
au2 + 2u3

⎞
⎟⎟⎟⎟⎟⎠ =

= u21 + 2u22 + 2au2u3 + 2u23 = u21 + 2􏿵u2 +
a

2
u3􏿸

2

+ 􏿵2 − a2

2
􏿸u23.

We thus need 2 − a2

2
> 0 ⟺ |a| < 2.

Answer: The matrixG0 defines a valid scalar product precisely when |a| < 2.

(b) We compute the scalar products (we only need six of them, sinceG is symmetric),
resulting in

⟨b1 ∣ b1⟩ = … = 1

⟨b2 ∣ b2⟩ = … = 6

⟨b3 ∣ b3⟩ = … = 6

⟨b1 ∣ b2⟩ = … = 0

⟨b1 ∣ b3⟩ = … = 0

⟨b2 ∣ b3⟩ = … = 3

The Gram matrix is

G =

⎛
⎜⎜⎜⎜⎜⎝
⟨b1 ∣ b1⟩ ⟨b2 ∣ b1⟩ ⟨b3 ∣ b1⟩
⟨b1 ∣ b2⟩ ⟨b2 ∣ b2⟩ ⟨b3 ∣ b2⟩
⟨b1 ∣ b3⟩ ⟨b2 ∣ b3⟩ ⟨b3 ∣ b3⟩

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
1 0 0
0 6 3
0 3 6

⎞
⎟⎟⎟⎟⎟⎠ .

Answer: The Gram matrix isG =

⎛
⎜⎜⎜⎜⎜⎝
1 0 0
0 6 3
0 3 6

⎞
⎟⎟⎟⎟⎟⎠.
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(c) Let B = 􏿴b1 b2􏿷. The vector u ∈ U closest to v is given by

u = Bc = BG−1
B c̃ = B(B⊤G0B)−1B⊤G0v,

where c are the subspace coordinates of v and c̃ are the subspace dual coordinates

of v, and GB = 􏿶
1 0
0 6􏿹 is the subspace Gram matrix with respect to B. Carrying

out the computations, we have

u =

⎛
⎜⎜⎜⎜⎜⎝
1 0
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎠ 􏿶

1 0
0 6􏿹

−1

􏿶
1 0 0
0 1 1􏿹

⎛
⎜⎜⎜⎜⎜⎝
1 0 0
0 2 1
0 1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
1
2
3

⎞
⎟⎟⎟⎟⎟⎠ =

= 1

6

⎛
⎜⎜⎜⎜⎜⎝
1 0
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎠ 􏿶
6 0
0 1􏿹 􏿶

1 0 0
0 1 1􏿹

⎛
⎜⎜⎜⎜⎜⎝
1
7
8

⎞
⎟⎟⎟⎟⎟⎠ =

= 1

6

⎛
⎜⎜⎜⎜⎜⎝
1 0
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎠ 􏿶
6 0
0 1􏿹 􏿶

1
15􏿹 =

1

6

⎛
⎜⎜⎜⎜⎜⎝
1 0
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎠ 􏿶

6
15􏿹 =

1

2

⎛
⎜⎜⎜⎜⎜⎝
2
5
5

⎞
⎟⎟⎟⎟⎟⎠ .

Answer: The vector u ∈ U closest to v is u = 􏿴1, 5
2
, 5
2
􏿷.

6. (a) Answer: The frame operator is

F = BB⊤G0 = 􏿶
1 1 0 0
0 1 1 2􏿹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 1
0 1
0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏿶
6 −1
−1 1 􏿹 = 􏿶

2 1
1 6􏿹 􏿶

6 −1
−1 1 􏿹 = 􏿶

11 −1
0 5 􏿹 .

(b) The lower frame bound is the smallest eigenvalue ofF, and the upper frame bound
is the largest eigenvalue of F. In this case, when F is triangular, we can read the
eigenvalues off of the diagonal, giving L = 5 and U = 11.

Answer: The lower frame bound is L = 5 and the upper frame bound U = 11.

(c) Answer: The dual frame vectors are given by

B̃ = F−1B = 1

55 􏿶
5 1
0 11􏿹 􏿶

1 1 0 0
0 1 1 2􏿹 =

1

55 􏿶
5 6 1 2
0 11 11 22􏿹 .

7. (a) The only requirement here is the internal constraint rankF = 2, which implies
detF = 0. It is clear by inspection that rankF ≥ 2 for all values of a and b (the
first two columns, for example, cannot bemade parallel). This gives the constraint

detF =
|
|

1 0 −1
a 2 b
a 1 3

|
|
= 6 − a − b + 2a = 6 + a − b = 0.

Answer: The values of a and b which make F a valid fundamental matrix are
those satisfying 6 + a − b = 0.
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(b) If x1 and x
′
1 satisfy the epipolar constraint, this means that

􏿴1 1 1􏿷

⎛
⎜⎜⎜⎜⎜⎝
1 0 −1
a 2 b
a 1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
1
2
1

⎞
⎟⎟⎟⎟⎟⎠ = 􏿴1 1 1􏿷

⎛
⎜⎜⎜⎜⎜⎝

0
a + 4 + b
a + 2 + 3

⎞
⎟⎟⎟⎟⎟⎠ = 2a + b + 9 = 0.

Together with the internal constraint 6 + a − b = 0, this yields a = −5 and b = 1.

The epipolar line l2 is

l2 = Fx′2 =

⎛
⎜⎜⎜⎜⎜⎝
1 0 −1
−5 2 1
−5 1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
1
4
1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
0
4
2

⎞
⎟⎟⎟⎟⎟⎠ ,

and we finally compute the distance as

dPD(x2, l2) = |(normP x2)⊤(normD l2)| = 􏵶
1

2
􏿴0 3 1􏿷

⎛
⎜⎜⎜⎜⎜⎝
0
2
1

⎞
⎟⎟⎟⎟⎟⎠􏵶 =

7

2
.

Answer: The distance between x2 and the corresponding epipolar line is
7

2
.

8. (a) Since

ε = 𝔼􏿮􏿎v −BB⊤v􏿎
2􏿱 = 𝔼􏿮(v −BB⊤v)⊤(v −BB⊤v)􏿱 =

= 𝔼􏿮v⊤v − 2v⊤BB⊤v + v⊤BB⊤B􏿅
=I

B⊤v􏿱 =

= 𝔼􏿮v⊤v − v⊤BB⊤v􏿱 = 𝔼􏿮‖v‖2􏿱 − 𝔼􏿮v⊤BB⊤v􏿱 = 𝔼􏿮‖v‖2􏿱 − ε1,

minimising ε is equivalent to maximising ε1.

(b) The objective is to find a subspace that minimises the expected norm (squared)
of the difference between a vector and its projection on the subspace. If c are the
subspace coordinates of v and c̃ are the subspace dual coordinates of v, andGB is
the subspace Gram matrix, then

ε = 𝔼􏿮􏿎v −Bc􏿎
2􏿱 = 𝔼􏿮􏿎v −BG−1

B c̃􏿎
2􏿱 = 𝔼􏿮􏿎v −B(B⊤G0B)−1B⊤G0v􏿎

2􏿱.

It is also important to remember that the norm is induced by the scalar product,
and thus also depends on G0.

Answer: The expression becomes ε = 𝔼􏿮􏿎v −B(B⊤G0B)−1B⊤G0v􏿎
2􏿱.


