TSBB06 Multi-Dimensional Signal Analysis, Final Exam 2021-10-25

Course module: TEN2
Date \& Time: 2021-10-25 14:00-18:00
Location: TER3
Examiner: Mårten Wadenbäck
Phone: +46 13282775
The examiner will make one visit, approximately one hour after the exam has started, and will be available on the phone the rest of the time.

Material \& aids: You are allowed to use any non-electronic reference material you like, as long as you do not bring solutions to previous exams or midterms. This means that you may bring books, printouts, your own notes, etc.

Scoring: The maximum score on the exam is 36 points, split evenly between Part I and Part II. Grade 3 requires at least 20 points, grade 4 requires at least 25 points, and grade 5 requires at least 30 points.

Instructions: Justify your solutions and answers with clear and concise arguments. All solutions and answers should be written on dedicated pages (i.e., not on the printed exam). Write your AID-number and the exam date on all pages that you hand in. Start each numbered problem on a new page. Right before you hand in, sort your solutions in consecutive order and add page numbers in the upper right corner.

Good luck!

Part I: Geometry and Estimation

1. Consider a plane in the extended Euclidean space (3D), with dual homogeneous coordinates $\mathbf{p}=(2,-1,-2,6)$. Additionally, let $\mathbf{x}_{1}=(3,1,1,1)$ and $\mathbf{x}_{2}=(1,-1,0,1)$ be homogeneous coordinates of two points.
(a) Show that \mathbf{x}_{1} and \mathbf{x}_{2} have the same distance to the plane \mathbf{p}. What is the distance?
(b) Let \mathbf{p}^{\prime} be the plane that is parallel to \mathbf{p} and contains \mathbf{x}_{1}. Determine the dual homogeneous coordinates of \mathbf{p}^{\prime}.
(c) Let ℓ be the line through \mathbf{x}_{1} and \mathbf{x}_{2}. Find the intersection \mathbf{x}_{0} between ℓ and \mathbf{p}.
(d) Show that the point \mathbf{x}_{0} defined in (c) also lies on \mathbf{p}^{\prime}.
2. Three points in the extended Euclidean plane (2D), with homogeneous coordinates

$$
\mathbf{x}_{1}=(5,1,1), \quad \mathbf{x}_{2}=(0,0,1), \quad \mathbf{x}_{3}=(12,5,1)
$$

are transformed into new points $\mathbf{x}_{k}^{\prime}=\mathscr{T}\left(\mathbf{x}_{k}\right)$, for an unspecified transformation \mathscr{T}, such that

$$
\mathbf{x}_{1}^{\prime}=(-1,2,1), \quad \mathbf{x}_{2}^{\prime}=(-2,-3,1), \quad \mathbf{x}_{3}^{\prime}=(-2,10,1) .
$$

(a) Is it possible that the transformation \mathscr{T} is a rigid transformation? An affine transformation? A homography transformation?
(b) If, additionally, $\mathbf{x}_{4}=(1,-1,1)$ is transformed by \mathscr{T} into $\mathbf{x}_{4}^{\prime}=(1,0,1)$, is it then possible that the transformation \mathscr{T} is a rigid transformation? An affine transformation? A homography transformation?
3. Let \mathscr{H}_{x} be the set of all homography matrices of the form

$$
\mathbf{H}=\left(\begin{array}{lll}
a & b & 0 \\
0 & c & \mathrm{o} \\
\mathrm{o} & d & a
\end{array}\right), \quad \text { with } a \neq \mathrm{o} \text { and } c \neq \mathrm{o}
$$

(a) Show that every point on the x-axis is mapped to itself by any $\mathbf{H} \in \mathscr{H}_{x}$.
(b) Is it true that $\mathbf{H}_{1}, \mathbf{H}_{2} \in \mathscr{H}_{x} \Longrightarrow \mathbf{H}_{2} \mathbf{H}_{1} \in \mathscr{H}_{x}$? (In other words, is \mathscr{H}_{x} closed under composition of the transformations?)
(c) Suppose we want to fit $\mathbf{H} \in \mathscr{H}_{x}$ to point correspondences $\left(x_{k^{\prime}}^{\prime} y_{k^{\prime}}^{\prime}, \mathbf{1}\right) \leftrightarrow\left(x_{k}, y_{k}, 1\right)$. Construct a data matrix \mathbf{A} such that the parameter vector (a, b, c, d) can be found as the (approximate) null space of \mathbf{A}.
Hint: Use the general DLT constraint $\left(\mathbf{x}_{k}^{\top} \otimes\left[\mathbf{x}_{k}^{\prime}\right]_{\times}\right)$vec $\mathbf{H}=\mathbf{o}$ to determine what the coefficients should be for the parameters.
4. Homogeneous representations of three distinct points in the extended Euclidean space (3D) are given as the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \in \mathbb{R}^{4}$. Assume that at least one of the points is a proper point (i.e., not an ideal point), and let π be the plane spanned by $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{3}.
(a) Describe a method for finding the horizon line of π, i.e. all ideal points on π.
(b) Define an algebraic cost function as

$$
\varepsilon_{A}(\mathbf{p})=\|\mathbf{A p}\|^{2}, \quad \text { where } \mathbf{A}=\left(\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\mathbf{x}_{2}^{\top} \\
\mathbf{x}_{3}^{\top}
\end{array}\right)
$$

How can this be changed into a geometric cost function ε_{G} ?

Part II: Linear Signal Representation, Analysis, and Applications

5. Consider three functions $\mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$, given by

$$
\begin{aligned}
& f_{1}(\mathbf{u}, \mathbf{v})=u_{1} u_{2}+v_{1} v_{2} \\
& f_{2}(\mathbf{u}, \mathbf{v})=u_{1} v_{2}+u_{2} v_{1} \\
& f_{3}(\mathbf{u}, \mathbf{v})=\mathbf{v}^{\top} \mathbf{u}+\left(v_{1}+v_{2}\right)\left(u_{1}+u_{2}\right)
\end{aligned}
$$

(a) Only one of the three functions above is a valid scalar product. Which one? Explain why the other two are not valid scalar products.
(b) Determine the Gram matrix \mathbf{G} for the valid scalar product in (a) with respect to the basis

$$
\mathbf{b}_{1}=\binom{1}{1}, \quad \mathbf{b}_{2}=\binom{1}{-1}
$$

Is this basis orthonormal with respect to the chosen scalar product?
(c) Determine the dual basis vectors $\widetilde{\mathbf{b}}_{1}$ and $\tilde{\mathbf{b}}_{2}$ corresponding to the basis in (b), with respect to the scalar product used in (b).
6. Let $\mathbf{B}=\left(\begin{array}{cccc}3 & 1 & 2 & 1 \\ 1 & -3 & 1 & -2\end{array}\right)$ be a matrix whose columns hold a set of frame vectors in \mathbb{R}^{2}, and assume that \mathbb{R}^{2} is equipped with at scalar product defined by $\mathbf{G}_{0}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
(a) Compute the frame operator \mathbf{F} corresponding to the frame vectors in \mathbf{B}.
(b) Compute the lower frame bound L and the upper frame bound U for the frame. (1 p)
(c) Show that (in the general case) a frame operator is self-adjoint.
7. Consider two camera views, which observe the following points:

$$
\begin{array}{lll}
\text { View 1: } & \mathbf{x}_{1}=(5,1,1), & \mathbf{x}_{2}=(-2,-3,1), \\
\text { View 2 : } & \mathbf{x}_{1}^{\prime}=(-1,2,1), & \mathbf{x}_{2}^{\prime}=(0,0,1) .
\end{array}
$$

Let \mathbf{F} be the fundamental matrix that maps points in the second view (primed coordinates) to epipolar lines in the first view (coordinates without prime), given by

$$
\mathbf{F}=\left(\begin{array}{ccc}
a & b & c \\
-1 & 3 & 0 \\
0 & 2 & 1
\end{array}\right)
$$

for some constants $a, b, c \in \mathbb{R}$.
(a) Determine the scalars a, b, c such that \mathbf{F} is a valid fundamental matrix, and such that $\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{1}^{\prime}$ and $\mathbf{x}_{2} \leftrightarrow \mathbf{x}_{2}^{\prime}$ satisfy the epipolar constraint.
(b) If $\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{1}^{\prime}$ satisfy the epipolar constraint, what does that tell us about \mathbf{x}_{1} and \mathbf{x}_{1}^{\prime} ?
8. In principal component analysis (PCA), we want to find an orthogonal matrix B that minimises

$$
\varepsilon=\mathbb{E}\left[\left\|\mathbf{v}-\mathbf{B} \mathbf{B}^{\top} \mathbf{v}\right\|^{2}\right]
$$

where \mathbb{E} means taking the expectation over all vectors, and where we have made the simplifying assumption that $\mathbf{G}_{0}=\mathbf{I}$.
(a) Show that minimising ε is equivalent to maximising $\varepsilon_{1}=\mathbb{E}\left[\mathbf{v}^{\top} \mathbf{B B}^{\top} \mathbf{v}\right]$.
(b) How would the expression for ε change in case we decided to use a general scalar product, i.e. not necessarily using $\mathbf{G}_{\mathrm{o}}=\mathbf{I}$?

