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TSBB06 Multi-Dimensional Signal Analysis, Solutions 2021-10-25

1. (a) We simply compute the two distances,

|(normD p)⊤(normP x1)| = |−1
3
(2, −1, −2,6) ⋅ (3, 1, 1, 1)| = 3,

and

|(normD p)⊤(normP x2)| = |−1
3
(2, −1, −2,6) ⋅ (1, −1,0, 1)| = 3.

Answer: Both distances are 3.

(b) For p′ to be parallel to p, it must have the same normal. Thus, we must have
p′ = (2, −1, −2, ξ ) for some number ξ. Since x1 should lie on p

′, we get

0 = (p′)⊤x1 = (2, −1, −2, ξ ) ⋅ (3, 1, 1, 1) = 3 + ξ ⟺ ξ = −3.

Answer: The plane is given by p′ = (2, −1, −2, −3).
(c) Alternative 1: Every point on the line can be written as x(λ1, λ2) = λ1x1 + λ2x2,

where λ21 + λ22 ≠ 0. For the intersection point x0, we have

0 = p⊤x0 = p⊤x(λ1, λ2) = p⊤(λ1x1 + λ2x2) = λ1p
⊤x1 + λ2p

⊤x2 = 9λ1 + 9λ2,

which means that λ2 = −λ1 at x0. More concretely, we have

x0 ∼ x(λ1, −λ1) = λ1(x1 − x2) ∼ x1 − x2 = (2,2, 1,0).

Alternative 2: By computing the signed distances in (a), i.e., without the ab-
solute values, it is clear that x1 and x2 lie on the same side of p as well as
at the same distance. The geometrical situation is that the line is parallel to
the plane, which means that the intersection point cannot be a proper (finite)
point. The intersection must occur at the ideal point of the line, and this is
given by

x0 ∼ normP x1 − normP x2 = x1 − x2 = (2,2, 1,0).
Alternative 3: The intersection point is given x0 ∼ Lp, where L represents the

Plücker coordinates of the line. Using this approach, we have

x0 ∼ (x1x⊤2 − x2x⊤1 )p = x1 x
⊤
2p􏿄
=9

−x2 x⊤1 p􏿄
=9

∼ x1 − x2 = (2,2, 1,0).

Answer: The intersection point is x0 = (2,2, 1,0).
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(d) It is readily verified that (p′)⊤x0 = 0. (In fact, x0 will lie on every plane that is
parallel to p.)

2. (a) The points are clearly not collinear either before or after the transformation, which
means that they are in general position.
An affine transformation can bring any set of three (proper) points into any other
set of three (proper) points, as long as both sets contain points in general posi-
tion. The transformation is therefore clearly affine, which is a special case of a
homography transformation.
To see whether or not it is also a rigid transformation, we can check whether it
preserves distances. The three distances before the transformation are

dPP(x1,x2) = ‖normP x1 − normP x2‖ = √52 + 12 = √26
dPP(x1,x3) = ‖normP x1 − normP x3‖ = √(5 − 12)2 + (1 − 5)2 = √65
dPP(x2,x3) = ‖normP x2 − normP x3‖ = √122 + 52 = √169 = 13,

and after the transformation they are

dPP(x′1,x′2) = ‖normP x
′
1 − normP x

′
2‖ = √(−1 − (−2))2 + (2 − (−3))2 = √26

dPP(x′1,x′3) = ‖normP x
′
1 − normP x

′
3‖ = √(−1 − (−2))2 + (2 − 10)2 = √65

dPP(x′2,x′3) = ‖normP x
′
2 − normP x

′
3‖ = √(−3 − 10)2 = √169 = 13.

Additionally, the points are oriented in the same way before and after the trans-
formation, which can be verified by computing the determinants

|x1 x2 x3| = −13 and |x′1 x′2 x′3| = −13.

Answer: Yes, the transformation 𝒯 can be a rigid transformation. It will also
be both affine and a homography.

(b) No three points are collinear before or after the transformation, whichmeans that
the four points uniquely determine a homography transformation.
To see that𝒯 can no longer be a rigid transformation, we note that the distances

dPP(x1,x4) = ‖normP x1 − normP x4‖ = √(5 − 1)2 + (1 − 2)2 = √17
dPP(x′1,x′4) = ‖normP x

′
1 − normP x

′
4‖ = √(−1 − 1)2 + 22 = 2√2

are different.
If𝒯 were to be affine, it would mean, in particular, that

x′2 = 􏿶
A t
0⊤ 1􏿹x2 ⟺

⎛
⎜⎜⎜⎜⎜⎝
−2
−3
1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
a11 a12 t1
a21 a22 t2
0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0
0
1

⎞
⎟⎟⎟⎟⎟⎠ ⇒ t = 􏿶

−2
−3􏿹 .

This makes it easy to solve for A using, e.g., x′1 ↔ x1 and x
′
3 ↔ x3. We subtract t

from the Euclidean coordinates of x′1 and x
′
2, and solve

􏿶
−1 − (−2) −2 − (−2)
2 − (−3) 10 − (−3)􏿹 = A 􏿶

5 12
1 5 􏿹 ,
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which gives

A = 􏿶
1 0
5 13􏿹 􏿶

5 12
1 5 􏿹

−1

= 1

13 􏿶
1 0
5 13􏿹 􏿶

5 −12
−1 5 􏿹 =

1

13 􏿶
5 −12
12 5 􏿹 .

This is not consistent with x′4 ↔ x4, since

􏿶
A t
0⊤ 1􏿹x4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

17

13
− 2

7

13
− 3

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≠ x′4.

Answer: In this case,𝒯 can neither be a rigid or an affine transformation, but
it can be a homography.

3. (a) On the x-axis we have proper points (x,0, 1) as well as an ideal point (1,0,0). For
such points, clearly

⎛
⎜⎜⎜⎜⎜⎝
a b 0
0 c 0
0 d a

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
x
0
1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
ax
0
a

⎞
⎟⎟⎟⎟⎟⎠ ∼

⎛
⎜⎜⎜⎜⎜⎝
x
0
1

⎞
⎟⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎜⎝
a b 0
0 c 0
0 d a

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
1
0
0

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
a
0
0

⎞
⎟⎟⎟⎟⎟⎠ ∼

⎛
⎜⎜⎜⎜⎜⎝
1
0
0

⎞
⎟⎟⎟⎟⎟⎠ .

(b) We note that

H2H1 =

⎛
⎜⎜⎜⎜⎜⎝
a2 b2 0
0 c2 0
0 d2 a2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
a1 b1 0
0 c1 0
0 d1 a1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
a1a2 b1a2 + c1b2 0
0 c1c2 0
0 c1d2 + d1a2 a1a2

⎞
⎟⎟⎟⎟⎟⎠ ∈ ℋx.

Answer: Yes,ℋx is closed under composition.

(c) We recall (or derive) the expression for the cross product matrix,

[x′
k
]× =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 y′
k

1 0 −x′
k

−y′
k

x′
k

0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Bearing this in mind, the DLT constraint (x⊤
k
⊗ [x′

k
]×) vecH becomes

⎛
⎜⎜⎜⎜⎜⎜⎝xk

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 y′
k

1 0 −x′
k

−y′
k

x′
k

0

⎞
⎟⎟⎟⎟⎟⎟⎠ yk

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 y′
k

1 0 −x′
k

−y′
k

x′
k

0

⎞
⎟⎟⎟⎟⎟⎟⎠ 1

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 y′
k

1 0 −x′
k

−y′
k

x′
k

0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
0
0
b
c
d
0
0
a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.
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Removing the superfluous columns (i.e., the onesmeeting the zeroes), and adding
the two columns meeting a, we obtain

⎛
⎜⎜⎜⎜⎜⎜⎝

y′
k

0 −yk yky
′
k

xk − x′
k

yk 0 −ykx′k
−xky′k −yky′k ykx

′
k

0

⎞
⎟⎟⎟⎟⎟⎟⎠

􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
=Ak

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A suitable data matrix will then be

A =

⎛
⎜⎜⎜⎜⎜⎝
A1
⋮
An

⎞
⎟⎟⎟⎟⎟⎠ .

Answer: See above.

4. (a) First, we can find dual homogeneous coordinates p of the plane π. The condition
for π to contain the three points is

⎛
⎜⎜⎜⎜⎜⎝
x⊤1
x⊤2
x⊤3

⎞
⎟⎟⎟⎟⎟⎠p = 0.

We can find such p, either by Gaußian elimination, or by computing a singular
value decomposition ⎛

⎜⎜⎜⎜⎜⎝
x⊤1
x⊤2
x⊤3

⎞
⎟⎟⎟⎟⎟⎠ = USV⊤

and setting p equal to the rightmost column in V.
The horizon line of π can now be computed as the intersection of π and the plane at
infinity, represented by p∞ = (0,0,0, 1). (The assumption that not all three points
are ideal points is necessary to ensure that p and p∞ are distinct.)
If we represent the horizon line using its dual Plücker coordinates L̃, we have

L̃ = pp⊤
∞ − p∞p⊤.

Another option is to find two solutions y1 and y2 to

􏿶
p⊤

p⊤
∞
􏿹y = 0,

and parametrising the horizon line as λ1y1 + λ2y2.

Answer: See above.

(b) The algebraic cost function can be rewritten as

εA(p) = ‖Ap‖2 =
􏿑
􏿑

⎛
⎜⎜⎜⎜⎜⎝
x⊤1 p
x⊤2p
x⊤3p

⎞
⎟⎟⎟⎟⎟⎠
􏿑
􏿑

2

=
3

􏾜
k=1

(x⊤
k
p)2.
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The only change that is needed to make this into a geometric cost function is to
P-normalise and D-normalise appropriately, i.e.

εG(p) =
3

􏾜
k=1

􏿴(normP xk
⊤(normD p)􏿷

2
.

Answer: The cost function can be made into a geometric cost function by en-
suring that the points are P-normalised and the plane is D-normalised. See the
expression for εG(p) above.

5. (a) A scalar product must satisfy ⟨u ∣ u⟩ ≥ 0 with equality precisely when u = 0.
With this in mind, it is easy to find counterexamples for f1 and f2. For example, if
we let u = (u1,u2) = (−1, 1), we see that

f1(u,u) = −1 ⋅ 1 − 1 ⋅ 1 = −2 < 0,
f2(u,u) = −1 ⋅ 1 + 1 ⋅ (−1) = −2 < 0,

which disqualifies f1 and f2 from being a scalar product.
Alternatively, one could verify that f3 is a scalar product, since we can write

f3(u,v) = v⊤u + (v1 + v2)(u1 + u2) =

= v⊤Iu + v⊤ 􏿶
1
1􏿹 􏿴1 1􏿷u =

= 􏿴v1 v2􏿷 􏿶
2 1
1 2􏿹 􏿶

u1
u2
􏿹 = v⊤G0u

for a symmetric and positive definite matrix G0.

Answer: The valid scalar product is f3. See above for an explanation of why f1
and f2 are not valid scalar products.

(b) The Gram matrix G is defined to have its entries Gij = ⟨bk ∣ bj⟩, and, by letting
B = 􏿴b1 b2􏿷, it can be computed as

G = B∗G0B = [in the real valued case] = B⊤G0B =

= 􏿶
1 1
1 −1􏿹 􏿶

2 1
1 2􏿹 􏿶

1 1
1 −1􏿹 = 􏿶

3 3
1 −1􏿹 􏿶

1 1
1 −1􏿹 = 􏿶

6 0
0 2􏿹 ≠ I.

This shows that the basis is orthogonal but not orthonormal in this scalar product.

Answer: The Gram matrix is G = diag(6,2). The basis is not orthonormal in
the chosen scalar product (but it is orthogonal).

(c) Since we already have the Gram matrix, the dual basis vectors can readily be ob-
tained as the columns of

B̃ = BG−1 = 􏿶
1 1
1 −1􏿹

1

12 􏿶
2 0
0 6􏿹 =

1

12 􏿶
2 6
2 −6􏿹 =

1

6 􏿶
1 3
1 −3􏿹 .

Answer: The dual basis vectors are b̃1 = 􏿴 1
6
, 1
6
􏿷 and b̃2 = 􏿴 1

2
, − 1

2
􏿷.
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6. (a) The frame operator is

F = BB⊤G0 = 􏿶
3 1 2 1
1 −3 1 −2􏿹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 1
1 −3
2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏿶
2 0
0 1􏿹 = 􏿶

15 0
0 15􏿹 􏿶

2 0
0 1􏿹 = 􏿶

30 0
0 15􏿹 .

Answer: The frame operator is F = diag(30, 15).
(b) The lower frame bound is the smallest eigenvalue ofF, and the upper frame bound

is the largest eigenvalue of F. In this case, when F is diagonal, we can read the
eigenvalues off of the diagonal, giving L = 15 and U = 30.

Answer: The lower frame bound is L = 15 and the upper frame bound U = 30.

(c) The frame operator associated with a set of frame vectors {b1, … ,bn} is defined,
for an arbitrary vector v, as

Fv =
n

􏾜
k=1

􏾉v ∣ bk􏽼bk.

To show that F is self-adjoint, i.e. that ⟨Fu ∣ v⟩ = ⟨u ∣ Fv⟩ for all u and v, we
verify that

􏾉Fv ∣ u􏽼 = 􏾋
n

􏾜
k=1

􏾉v ∣ bk􏽼bk | u􏽾 =
n

􏾜
k=1

􏾊􏾉v ∣ bk􏽼bk | u􏽽 =

=
n

􏾜
k=1

􏾉v ∣ bk􏽼 􏾉bk ∣ u􏽼 =
n

􏾜
k=1

􏾊v | 􏾉bk ∣ u􏽼
∗
bk􏽽 =

=
n

􏾜
k=1

􏾊v | 􏾉u ∣ bk􏽼bk􏽽 = 􏾋v |
n

􏾜
k=1

􏾉u ∣ bk􏽼bk􏽾 = 􏾉v ∣ Fu􏽼.

7. (a) First of all, to be a valid fundamental matrix, Fmust have rank two. It is clear that
rankF ≥ 2, since the last two rows are linearly independent, so if we chose the
constants a, b, c such that detF = 0, the rank will be two. This constraint results
in the linear equation

0 = detF =
|
|

a b c
−1 3 0
0 2 1

|
|
= 3a + b − 2c.

The epipolar constraints give two additional linear equations:

0 = x⊤1 Fx
′
1 = 􏿴5 1 1􏿷

⎛
⎜⎜⎜⎜⎜⎝
a b c
−1 3 0
0 2 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
−1
2
1

⎞
⎟⎟⎟⎟⎟⎠ = 􏿴5 1 1􏿷

⎛
⎜⎜⎜⎜⎜⎝
−a + 2b + c

7
5

⎞
⎟⎟⎟⎟⎟⎠ =

= −5a + 10b + 5c + 12
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and

0 = x⊤2Fx
′
2 = 􏿴−2 −3 1􏿷

⎛
⎜⎜⎜⎜⎜⎝
a b c
−1 3 0
0 2 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0
0
1

⎞
⎟⎟⎟⎟⎟⎠ = 􏿴−2 −3 1􏿷

⎛
⎜⎜⎜⎜⎜⎝
c
0
1

⎞
⎟⎟⎟⎟⎟⎠ = −2c + 1.

From the last onewe immediately obtain c = 1

2
, and inserting this into the previous

two allows us to obtain a = 7

10
and b = − 11

10
.

Answer: (a, b, c) = 1

10
(7, 11, 5).

(b) Answer: The epipolar constraint tells us thatx1 lies on the epipolar line l1 ∼ Fx′1
in the first view, and similarly that x′1 lies on the epipolar line l′1 ∼ F⊤x1 in the
second view.

Note: The epipolar constraint does not tell us that the points are projections of the
same scene point!

8. (a) Since

ε = 𝔼􏿮􏿎v −BB⊤v􏿎
2􏿱 = 𝔼􏿮(v −BB⊤v)⊤(v −BB⊤v)􏿱 =

= 𝔼􏿮v⊤v − 2v⊤BB⊤v + v⊤BB⊤B􏿅
=I

B⊤v􏿱 =

= 𝔼􏿮v⊤v − v⊤BB⊤v􏿱 = 𝔼􏿮‖v‖2􏿱 − 𝔼􏿮v⊤BB⊤v􏿱 = 𝔼􏿮‖v‖2􏿱 − ε1,

minimising ε is equivalent to maximising ε1.

(b) The objective is to find a subspace that minimises the expected norm (squared)
of the difference between a vector and its projection on the subspace. If c are the
subspace coordinates of v and c̃ are the subspace dual coordinates of v, andGB is
the subspace Gram matrix, then

ε = 𝔼􏿮􏿎v −Bc􏿎
2􏿱 = 𝔼􏿮􏿎v −BG−1

B c̃􏿎
2􏿱 = 𝔼􏿮􏿎v −B(B⊤G0B)−1B⊤G0v􏿎

2􏿱.

It is also important to remember that the norm is induced by the scalar product,
and thus also depends on G0.

Answer: The expression becomes ε = 𝔼􏿮􏿎v −B(B⊤G0B)−1B⊤G0v􏿎
2􏿱.


