TSBB06 Multi-Dimensional Signal Analysis, Solutions 2022-01-11

1. (a) The intersection point can be found as $\mathbf{x}_{12} \sim \mathbf{l}_{1} \times \mathbf{l}_{2}=(3,1,1) \times(1,-1,0)=(1,1,-4)$. The distance between this point and the line \mathbf{l}_{3} is

$$
\left|\left(\operatorname{norm}_{\mathrm{D}} \mathbf{l}_{3}\right)^{\top}\left(\operatorname{norm}_{\mathrm{P}} \mathbf{x}_{12}\right)\right|=\left|(0,-1,-1) \cdot\left(-\frac{1}{4},-\frac{1}{4}, 1\right)\right|=\frac{3}{4} .
$$

Answer: The Euclidean coordinates of the intersection point are $\left(-\frac{1}{4},-\frac{1}{4}\right)$, and the distance from this point to \mathbf{l}_{3} is $\frac{3}{4}$.
(b) We can parametrise $\mathbf{l}=(0,1, s)$, and since the intersection point $(1,1,-4)$ should lie on 1 , it follows that $(0,1, s) \cdot(1,1,-4)=0 \Longleftrightarrow s=\frac{1}{4}$.

Answer: \quad The line is $\mathbf{l}=\left(0,1, \frac{1}{4}\right)$.
(c) The ideal point on \mathbf{l}_{3} can be found, e.g., as the intersection of \mathbf{l}_{3} and the line at infinity, $\mathbf{l}_{\infty}=(0,0,1)$. This is found as $\mathbf{x}_{\infty} \sim \mathbf{l}_{3} \times \mathbf{l}_{\infty}=(1,0,0)$. It is readily verified that $\mathbf{l}^{\top} \mathbf{x}_{\infty}=0$ (of course, since the lines are parallel).

Answer: The ideal point on \mathbf{l}_{3} is $\mathbf{x}_{\infty}=(1,0,0)$.
2. (a) With the assumption that $\mathbf{H a} \sim \mathbf{a}$, it follows that

$$
\left(\mathbf{H}+s[\mathbf{a}]_{\times}\right) \mathbf{a}=\mathbf{H a}+s[\underbrace{\mathbf{a}]_{\times}}_{=\mathbf{o}} \mathbf{a}=\mathbf{H a} \sim \mathbf{a},
$$

showing that $\mathbf{H}+s[\mathbf{a}]_{\times} \in \mathscr{H} \mathbf{a}$, regardless of s.
(b) We need to check closure, existence of an identity (neutral element), existence of inverse, and associativity.
Associativity: This follows from the associativity of matrix multiplication.
Closure: If $\mathbf{H}_{1} \in \mathscr{H}_{\mathbf{a}}$ and $\mathbf{H}_{2} \in \mathscr{H}_{\mathbf{a}}$, then $\mathbf{H}_{2} \mathbf{H}_{1} \mathbf{a} \sim \mathbf{H}_{2} \mathbf{a} \sim \mathbf{a}$, so $\mathbf{H}_{2} \mathbf{H}_{1} \in \mathscr{H}_{\mathbf{a}}$.
Identity: Clearly $\mathbf{I} \in \mathscr{H}_{\mathbf{a}}$, and for any $\mathbf{H} \in \mathscr{H}_{\mathbf{a}}$ it holds that $\mathbf{I H}=\mathbf{H I}=\mathbf{H}$.
Existence of inverse: Homographies are, by definition, invertible, but we still need to check that the inverse is actually in $\mathscr{H}_{\mathbf{a}}$. This is indeed the case, since any $\mathbf{H} \in \mathscr{H}_{\mathbf{a}}$ has \mathbf{a} as an eigenvector with a corresponding eigenvalue $\lambda \neq 0$, and thus $\mathbf{H a}=\lambda \mathbf{a} \Longleftrightarrow \mathbf{H}^{-1} \mathbf{a}=\frac{1}{\lambda} \mathbf{a} \sim \mathbf{a}$.
(c) A general homography has eight degrees of freedom, and we know that four point correspondences (where no three points are collinear) provide sufficient constraints to uniquely determine the homography. For a homography to belong to $\mathscr{H}_{\mathbf{a}}$, it is necessary to have a correspondence $\mathbf{a} \leftrightarrow \mathbf{a}$, leaving six degrees of freedom.

Answer: The homographies in $\mathscr{H}_{\mathbf{a}}$ have six degrees of freedom.
3. (a) For \mathbf{R} to be a valid rotation matrix, it must satisfy $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}$ and $\operatorname{det} \mathbf{R}=1$. In particular, all columns must have length one, which gives $\lambda=\frac{1}{\sqrt{1^{2}+(-4)^{2}+8^{2}}}=\frac{1}{9}$. Now, the third column is given by

$$
\frac{1}{9}(a, b, c)=\frac{1}{9}(1,-4,8) \times \frac{1}{9}(8,4,1)=\frac{1}{81}(-36,63,36)=\frac{1}{9}(-4,7,4) .
$$

Answer: The only possibility is to have $\lambda=\frac{1}{9}$ and $(a, b, c)=(-4,7,4)$.
(b) With the values from (a), the rotation matrix is

$$
\mathbf{R}=\frac{1}{9}\left(\begin{array}{ccc}
1 & 8 & -4 \\
-4 & 4 & 7 \\
8 & 1 & 4
\end{array}\right)
$$

Recall Rodrigues' formula, $\mathbf{R}=\mathbf{I}+\sin \varphi[\hat{\mathbf{n}}]_{\times}+(1-\cos \varphi)[\hat{\mathbf{n}}]_{\times}^{2}$. It follows that

$$
\sin \varphi[\hat{\mathbf{n}}]_{\times}=\frac{\mathbf{R}-\mathbf{R}^{\top}}{2}=\frac{1}{9}\left(\begin{array}{ccc}
0 & 6 & -6 \\
-6 & 0 & 3 \\
6 & -3 & 0
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
0 & 2 & -2 \\
-2 & 0 & 1 \\
2 & -1 & 0
\end{array}\right) .
$$

We can choose $\hat{\mathbf{n}}=-\frac{1}{3}(1,2,2)$, which is normalised, and $\sin \varphi=1 \Rightarrow \varphi=\frac{\pi}{2}+2 k \pi$. NOTE: In general, $\sin \varphi=\sin (\pi-\varphi)$, so if $\varphi \neq \pm \frac{\pi}{2}$, we need to disambiguate the angle using the additional constraint $\cos \varphi=\frac{\operatorname{tr} \mathbf{R}-1}{2}$.

Answer: One possible axis-angle representation of the rotation is $\hat{\mathbf{n}}=-\frac{1}{3}(1,2,2)$ and $\varphi=\frac{\pi}{2}$.
4. (a) Ideally, we want \mathbf{p} to satisfy $\mathbf{X}_{j}^{\top} \mathbf{p}=0$ for $j=1, \ldots, n$. Together, this can be formulated as $\mathbf{A p}=\mathbf{o}$ with a data matrix

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{X}_{1}^{\top} \\
\vdots \\
\mathbf{X}_{n}^{\top}
\end{array}\right) .
$$

(b) Answer: A geometric cost function for this problem is

$$
\mathcal{E}_{\mathrm{G}}(\mathbf{p})=\sum_{j=1}^{n}\left(\left(\operatorname{norm}_{\mathrm{P}} \mathbf{X}_{j}\right)^{\top}\left(\operatorname{norm}_{\mathrm{D}} \mathbf{p}\right)\right)^{2}
$$

5. (a) We seek a vector \mathbf{b}_{3} such that $\left\langle\mathbf{b}_{1} \mid \mathbf{b}_{3}\right\rangle=\left\langle\mathbf{b}_{2} \mid \mathbf{b}_{3}\right\rangle=0$ and $\left\langle\mathbf{b}_{3} \mid \mathbf{b}_{3}\right\rangle=1$. The two orthogonality constraints tell us that

$$
\left\{\begin{array}{l}
\mathbf{b}_{3}^{\top} \mathbf{G}_{0} \mathbf{b}_{1}=0 \\
\mathbf{b}_{3}^{\top} \mathbf{G}_{0} \mathbf{b}_{2}=0
\end{array} \Rightarrow \mathbf{b}_{3} \sim\left(\mathbf{G}_{0} \mathbf{b}_{1}\right) \times\left(\mathbf{G}_{0} \mathbf{b}_{2}\right) \sim(1,1,0) \times(0,0,1) \sim(1,-1,0) .\right.
$$

Now we need to normalise this with respect to the scalar product to obtain our \mathbf{b}_{3}, so we let $\mathbf{b}_{3}=(s,-s, o)$. Since

$$
\frac{1}{8}\left(\begin{array}{lll}
s & -s & 0
\end{array}\right)\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 8
\end{array}\right)\left(\begin{array}{c}
s \\
-s \\
0
\end{array}\right)=\frac{1}{8}\left(\begin{array}{lll}
s & -s & 0
\end{array}\right)\left(\begin{array}{c}
2 s \\
-2 s \\
0
\end{array}\right)=\frac{4 s^{2}}{8}
$$

we can choose $s= \pm \sqrt{2}$, resulting in either $\mathbf{b}_{3}=(\sqrt{2},-\sqrt{2}, 0)$ or $\mathbf{b}_{3}=(-\sqrt{2}, \sqrt{2}, 0)$.
Answer: The possible choices are $\mathbf{b}_{3}=(\sqrt{2},-\sqrt{2}, 0)$ and $\mathbf{b}_{3}=(-\sqrt{2}, \sqrt{2}, 0)$.
(b) The best subspace approximation \mathbf{u} of \mathbf{v} can be found as

$$
\mathbf{u}=\left\langle\tilde{\mathbf{b}}_{1} \mid \mathbf{v}\right\rangle \mathbf{b}_{1}+\left\langle\tilde{\mathbf{b}}_{2} \mid \mathbf{v}\right\rangle \mathbf{b}_{2},
$$

where $\widetilde{\mathbf{b}}_{1}$ and $\widetilde{\mathbf{b}}_{2}$ are the corresponding dual basis vectors to \mathbf{b}_{1} and \mathbf{b}_{2}. However, since the basis is orthogonal, it is its own dual basis, and consequently

$$
\mathbf{u}=\left\langle\mathbf{b}_{1} \mid \mathbf{v}\right\rangle \mathbf{b}_{1}+\left\langle\mathbf{b}_{2} \mid \mathbf{v}\right\rangle \mathbf{b}_{2} .
$$

Computing the subspace coordinates

$$
\left\{\begin{array}{l}
\left\langle\mathbf{b}_{1} \mid \mathbf{v}\right\rangle=\frac{1}{8}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 8
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
\mathrm{o}
\end{array}\right)=\frac{1}{8}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
4 \\
4 \\
\mathrm{o}
\end{array}\right)=\frac{3}{2}, \\
\left\langle\mathbf{b}_{2} \mid \mathbf{v}\right\rangle=\frac{1}{8}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 8
\end{array}\right)\left(\begin{array}{l}
\mathrm{o} \\
\mathrm{o} \\
1
\end{array}\right)=\frac{1}{8}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
\mathrm{o} \\
\mathrm{o} \\
8
\end{array}\right)=3,
\end{array}\right.
$$

we finally have $\mathbf{u}=\frac{3}{2} \mathbf{b}_{1}+3 \mathbf{b}_{2}=\left(\frac{3}{2}, \frac{3}{2}, 3\right)$.
Answer: The best approximation of \mathbf{v} is $\mathbf{u}=\left(\frac{3}{2}, \frac{3}{2}, 3\right)$.
6. (a) The frame operator is

$$
\mathbf{F}=\mathbf{B B}^{\top} \mathbf{G}_{0}=\left(\begin{array}{lll}
1 & 0 & a \\
0 & 2 & a
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2 \\
a & a
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
2+2 a^{2} & a^{2} \\
2 a^{2} & 4+a^{2}
\end{array}\right) .
$$

Answer: The frame operator is $\mathbf{F}=\left(\begin{array}{cc}2+2 a^{2} & a^{2} \\ 2 a^{2} & 4+a^{2}\end{array}\right)$.
(b) The lower frame bound $L=3$ is the smallest eigenvalue of \mathbf{F}, and the upper frame bound $U=6$ is the largest eigenvalue of \mathbf{F}. Since \mathbf{F} only has two eigenvalues (it is a 2×2 matrix), we know that

$$
\left\{\begin{array} { c }
{ \operatorname { t r } \mathbf { F } = L + U } \\
{ \operatorname { d e t } \mathbf { F } = L U }
\end{array} \Longleftrightarrow \left\{\begin{array} { c }
{ 2 + 2 a ^ { 2 } + 4 + a ^ { 2 } = 3 + 6 } \\
{ (2 + 2 a ^ { 2 }) (4 + a ^ { 2 }) - 2 a ^ { 4 } = 3 \cdot 6 }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
6+3 a^{2}=9 \\
8+10 a^{2}=18
\end{array} .\right.\right.\right.
$$

This means that $a=1$.
Answer: $a=1$ gives the desired frame bounds.
(c) The reconstructing coefficients with smallest Euclidean norm are given as

$$
\mathbf{c}=\widetilde{\mathbf{B}}^{\top} \mathbf{G}_{0} \mathbf{v}=\frac{1}{18}\left(\begin{array}{cc}
5 & -2 \\
-2 & 8 \\
4 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
\mathrm{o} & 1
\end{array}\right)\binom{3}{15}=\frac{1}{18}\left(\begin{array}{c}
0 \\
108 \\
54
\end{array}\right)=\left(\begin{array}{l}
0 \\
6 \\
3
\end{array}\right) .
$$

Answer: The sought reconstructing coefficients are $\mathbf{c}=(0,6,3)$. (If you used $a=-1$, then $\mathbf{c}=(0,6,-3)$.)
7. (a) The homogeneous coordinates of the camera centre are found as the null space of the camera matrix. The homogeneous coordinates of $(-1,1,-1)$ are $(-1,1,-1,1)$, and we see that

$$
C_{1}\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

and

$$
\mathbf{C}_{2}\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{cccc}
2 & -3 & 0 & 5 \\
2 & 1 & 2 & 3 \\
-4 & -1 & 1 & -2
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Answer: The camera \mathbf{C}_{2} is located at ($-1,1,-1$).
(b) From (a), we know that the centre of the camera \mathbf{C}_{2} is $\mathbf{n}_{2}=(-1,1,-1,1)$, meaning that the epipole \mathbf{e}_{12} is $\mathbf{e}_{12}=\mathbf{C}_{1} \mathbf{n}_{2}=(0,0,1)$. To compute the epipole in the other view, we first need to compute the camera centre of \mathbf{C}_{1}. This is found as

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\mathrm{o}
\end{array}\right) \Longleftrightarrow\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=t\left(\begin{array}{c}
-2 \\
2 \\
-2 \\
1
\end{array}\right), \quad t \in \mathbb{R},
$$

so we can take $\mathbf{n}_{1}=(-2,2,-2,1)$. Projecting it into the second view gives the epipole $\mathbf{e}_{21}=\mathbf{C}_{2} \mathbf{n}_{1}=(-5,-3,2)$.

Answer: The epipoles are $\mathbf{e}_{12}=(0,0,1)$ and $\mathbf{e}_{21}=(-5,-3,2)$.
(c) The most direct way is to use the fact that $\mathbf{F e}_{21}=\mathbf{o}$, which immediately gives us $a=-4$.
Another possibility is project a 3 D point \mathbf{X} into the two views, and then use the epipolar constraint. This will also result in $a=-4$.

Answer: For \mathbf{F} to be the fundamental matrix for this camera pair, we need $a=$ -4.
8. (a) In the case where $\mathbf{B}=\mathbf{b}_{1}$, we have

$$
\varepsilon_{1}=\mathbb{E}\left[\mathbf{v}^{\top} \mathbf{b}_{1} \mathbf{b}_{1}^{\top} \mathbf{v}\right]=\mathbb{E}\left[\mathbf{b}_{1}^{\top} \mathbf{v}^{\top} \mathbf{b}_{1}\right]=\mathbf{b}_{1}^{\top} \mathbb{E}\left[\mathbf{v}^{\top}\right] \mathbf{b}_{1}=\mathbf{b}_{1}^{\top} \mathbf{C} \mathbf{b}_{1} .
$$

With the constraint $g\left(\mathbf{b}_{1}\right)=\mathbf{b}_{1}^{\top} \mathbf{b}_{1}=1$, the constrained optima of ε_{1} are found where $\nabla \varepsilon_{1} \| \nabla g \Longleftrightarrow 2 \mathbf{C b}_{1}=2 \lambda \mathbf{b}_{1} \Longleftrightarrow \mathbf{C b}_{1}=\lambda \mathbf{b}_{1}$, which means that \mathbf{b}_{1} is an eigenvalue of \mathbf{C} with corresponding eigenvalue λ. The largest eigenvalue λ is the one that maximises $\varepsilon_{1}=\mathbf{b}_{1}^{\top} \mathbf{C} \mathbf{b}_{1}=\lambda \mathbf{b}_{1}^{\top} \mathbf{b}_{1}=\lambda$.
(b) The expected reconstruction error is the sum of the eigenvalues corresponding to the unused eigenvectors of \mathbf{C}. Assuming the eigenvalues are ordered in decreasing order, this means that

$$
\varepsilon=\sum_{j=2}^{n} \lambda_{j}=\operatorname{tr} \mathbf{C}-\lambda_{1}
$$

Answer: See above.

