

TSBB06 Multi-Dimensional Signal Analysis, Final Exam 2021-03-16

Course module:	TEN2										
Date & Time:	2021-03-16	08:00-	-12:0	00							
Location:	Distance m	ode due to t	he o	ngoii	ng C	OVI	D-19	pan	demi	ic	
Examiner:	Mårten Wadenbäck Phone: +46 13 28 27 75 (safest option!) Zoom: https://liu-se.zoom.us/j/68533465654										
Material & aids:	All non-human resources are allowed. This means that during the exam <i>you are not allowed to discuss the problems with anyone or to ask someone for help</i> , but you are allowed to use any material (written, video,) or software you wish in order to solve the problems.										
Scoring:	The maxim Part I and I at least 25 J	um score o Part II. Grad points, and §	n the e 3 r grade	e exa equi e 5 re	am is res a equir	s 36 t lea res at	poin st 20 : leas	its, s poir t 30	plit o nts, g poin	even grade ts.	ly between 4 requires
Instructions:	Justify your solutions and answers with clear and concise arguments. All solutions and answers should be written on dedicated pages (i.e., not on the printed exam). Write your AID-number and the exam date on all pages that you hand in. Start each numbered problem on a new page. Right before you hand in, sort your solutions in consecutive order and add page numbers in the upper right corner. Please include a scoring table, similar to this one, as your first page:										
		Problem	1	2	3	4	5	6	7	8	

Problem	1	2	3	4	5	6	7	8
Solved								
Score								

Your solutions must be submitted in Lisam, as a *single* PDF file. *Only handwritten solutions will be considered!* It is acceptable, however, to use a tablet (or similar) as input. If you wish to write your solutions on paper, you can digitise them using the (free) mobile app *Office Lens* from Microsoft.

Part I: Geometry and Estimation

1. Consider four points in the extended Euclidean plane (2D), with homogeneous coordinates given by

 $\mathbf{x}_1 = (3, 1, 1),$ $\mathbf{x}_2 = (1, -1, 0),$ $\mathbf{x}_3 = (0, 1, 1),$ $\mathbf{x}_4 = (1, 2, 1).$

- (a) Compute (dual) homogeneous coordinates \mathbf{l}_{12} for the line through \mathbf{x}_1 and \mathbf{x}_2 , and find homogeneous coordinates for the *ideal point* on this line. (2 p)
- (b) Determine (dual) homogeneous coordinates **l** for the line through \mathbf{x}_3 that is parallel to the line \mathbf{l}_{12} defined in (a). Additionally, find homogeneous coordinates \mathbf{x}_{∞} for the ideal point on the line **l**. (1 p)
- (c) Determine which of the lines \mathbf{l}_{12} and \mathbf{l} , defined in (a) and (b), that is the closest to the point \mathbf{x}_4 . (2 p)
- 2. Let \mathbf{R}_x be a matrix representing a rotation the angle $-\pi/4$ (i.e., *clockwise*) around the *x*-axis. Similarly, let \mathbf{R}_z be a matrix representing a rotation the angle $\pi/4$ (i.e., *anti-clockwise*) around the *z*-axis.

(a) Write down the two matrices
$$\mathbf{R}_x$$
 and \mathbf{R}_z explicitly. (1 p)

- (b) Let **R** be the rotation resulting from performing the rotation \mathbf{R}_x followed by the rotation \mathbf{R}_z . Compute the rotation axis for the rotation **R**. (2 p)
- (c) Show that the rotation axis will be different if the rotations \mathbf{R}_x and \mathbf{R}_z are performed in the opposite order. (2 p)
- 3. Hartley normalisation can be used to improve the numerical properties in some geometric estimation problems, e.g. DLT-based homography estimation. When we perform Hartley normalisation to a set of points {x₁, ..., x_n}, we compute a new set of *Hartley normalised* points {x̂₁, ..., x̂_n} along with a transformation matrix **T** relating the two point sets as x̂_j = **T**x_j (for j = 1, ..., n).
 - (a) Suppose we perform Hartley normalisation one more time, i.e. we Hartley normalise the set of points {\$\hat{x}_1, ..., \hat{x}_n\$}, resulting in a new set of points {\$\ymbdyl{y}_1, ..., \ymbdyl{y}_n\$} and a transformation matrix \$\hat{T}\$. Write down a mathematical relation between the point \$\ymbdyl{y}_i\$ and the point \$\x_j\$.
 - (b) Suppose we wish to estimate a homography matrix H from a number of point correspondences x_j ↔ x'_j, using DLT and Hartley normalisation. We then compute the Hartley normalised point correspondences x̂_j ↔ x̂'_j, and estimate a homography matrix Ĥ for these correspondences using DLT. Explain how H can be obtained from Ĥ.

(2 p)

4.	Let $\mathbf{x}_1,, \mathbf{x}_n \in \mathbb{R}^4$ be homogeneous coordinates of points in the extended Euclidean
	space (3D). Suppose that we wish to estimate a plane p to these points, but with the
	<i>strict requirement</i> that p is a plane through the origin.

(a)	Construct a suitable data matrix A and explain how it can be used to estimate p such that we minimise some (relevant) algebraic error.	(2 p)
(b)	Formulate a geometric cost function for the estimation problem. (You do not need to show how to compute a p that minimises this cost function.)	(2 p)

(2 p)

Part II: Linear Signal Representation, Analysis, and Applications

5. Consider the two integral expressions (in this case, *functionals*)

$$I_{1}(u, v) = \int_{0}^{1} (u(x) + v(x)) dx,$$

$$I_{2}(u, v) = \int_{0}^{1} u(x) v(x) dx,$$

where *u* and *v* belong to some space *V* (which we shall not specify in detail) of functions defined on the interval [0, 1], and such that the integrals are defined. We can define a scalar product $\langle u | v \rangle = I_2(u, v)$ on *V*.

- (a) Explain why $I_1(u, v)$ cannot be a valid scalar product on V. (1 p)
- (b) Show that the functions $f_1(x) = 2x$ and $f_2(x) = 1 2x^2$ are *orthogonal* with respect to the scalar product $\langle u | v \rangle = I_2(u, v)$. (2 p)
- (c) The function $f_3(x) \equiv 1$ cannot be written as a linear combination of $f_1(x)$ and $f_2(x)$. Find the function $g(x) = \lambda_1 f_1(x) + \lambda_2 f_2(x)$ that minimises $||f_3 - g||^2 = \langle f_3 - g | f_3 - g \rangle$. Hint: Recall from (b) that f_1 and f_2 are orthogonal (but maybe not normalised)! (3 p)
- 6. Let $\mathbf{B} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ be a matrix whose columns hold a set of frame vectors in \mathbb{R}^2 , and assume that \mathbb{R}^2 is equipped with the standard scalar product (i.e. $\mathbf{G}_0 = \mathbf{I}$).
 - (a) Compute the frame operator **F** corresponding to the frame vectors in **B**. (2 p)
 - (b) Compute the dual frame vectors corresponding to the frame vectors in **B**. (1 p)
 - (c) Let $\mathbf{v} = (3, 1)$, and find reconstructing coefficients \mathbf{c} such that $\mathbf{v} = \mathbf{B}\mathbf{c}$ and such that $\|\mathbf{c}\|$ is as small as possible. (2 p)
- 7. Let f(t) be a continuous signal that is band-limited to $|\omega| < \frac{\pi}{3}$. Assume we sample f(t) at integer times, giving rise to a sampled signal s[k] = f[k] + n[k], where the sampling noise has variance σ^2 .
 - (a) Since we have oversampled the signal, we can reconstruct the signal in a way such that the noise energy is lower than σ^2 , if we make some suitable assumptions about the sampling noise. What are these assumptions, and what noise energy can we achieve under those assumptions?
 - (b) Explain briefly the main idea behind the noise reduction in (a). (2 p)
- **8.** (a) Let **C** be a camera matrix, and let ℓ be a 3D line that does not pass through the camera centre of **C**. Show that the projection of ℓ into the view of **C** is a 2D line. (2 p)
 - (b) Perhaps surprisingly, the image of a sphere when projected into the view of a perspective pinhole camera does not always have a circle as its contour. What type of curve *is* the shape of its contour, in general? (1 p) Hint: Make a simple drawing, and think about how the contour arises!