Guide* to answers for written examination in TSBB06 Multi-dimensional signal analysis, 2016-01-12

Klas Nordberg, klas@isy.liu.se,

PART I

Exercise 1 The dual homogeneous coordinates \mathbf{l} must satisfy $\mathbf{y} \cdot \mathbf{l}=0$. This relation gives many solutions for \mathbf{l}. Some examples are

$$
\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
0 \\
3 \\
-2
\end{array}\right)
$$

Exercise 2 The translation matrix and the rotation matrix are given as

$$
\mathbf{T}_{\text {trans }}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad \mathbf{T}_{\mathrm{rot}}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The combined transformation is

$$
\mathbf{T}_{\text {rot }} \mathbf{T}_{\text {trans }}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & -1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Exercise 3 See the IREG compendium, figure 6.1.
Exercise 4 See the IREG compendium, section 9.2.2.
Exercise 5 Set $y=(u, v, 1)$ and define the elements of matrix \mathbf{Q} as

$$
\mathbf{Q}=\left(\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{12} & q_{22} & q_{23} \\
q_{13} & q_{23} & q_{33}
\end{array}\right)
$$

This means that we can expand $\mathbf{y}^{\top} \mathbf{Q} \mathbf{y}=0$ as

$$
\begin{equation*}
\mathbf{y}^{\top} \mathbf{Q} \mathbf{y}=q_{11} u^{2}+2 q_{12} u v+2 q_{13} u+q_{22} v^{2}+2 q_{23} v+q_{33}=0 \tag{1}
\end{equation*}
$$

Similarly, the defining equation of the ellipse can be expanded as

$$
\begin{equation*}
4 u^{2}-32 u+9 v^{2}-36 v+99=0 \tag{2}
\end{equation*}
$$

Using (1) and (2), we can identify the elements of \mathbf{Q} (up to multiplication with a scalar):

$$
q_{11}=4, q_{12}=0, q_{13}=-16, q_{22}=9, q_{23}=-18, q_{33}=99
$$

[^0]
PART II

Exercise 6 To make the estimation result independent of which coordinate system is used for defining the coordinates of points. See the IREG compendium, section 11.2.2. Observation 52.

Exercise 7 See the IREG compendium, section 11.1.2.
Exercise 8 See the IREG compendium, section 11.2.1, the three cases on page 195.
Exercise 9 See the IREG compendium, sections 10.3 and 10.4.
Exercise 10 See the IREG compendium, section 13.2.

PART III

Exercise $11 \tilde{\mathbf{B}}^{*} \mathbf{G}_{0} \mathbf{B}=\mathbf{I}$. See lecture 2B.

Exercise 12 To assure the symmetry of the scalar product: $\langle\mathbf{u} \mid \mathbf{v}\rangle=\langle\mathbf{v} \mid \mathbf{u}\rangle$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. See lecture 2 A , slide 5 .

Exercise 13 The orthogonal projection of \mathbf{v} onto the subspace spanned by \mathbf{B} is given as $\mathbf{v}_{1}=\mathbf{B}\left(\mathbf{B}^{*} \mathbf{G}_{0} \mathbf{B}\right)^{-1} \mathbf{B}^{*} \mathbf{G}_{0} \mathbf{v}$. The orthogonal distance from \mathbf{v} to the space is then given as $\left\|\mathbf{v}-\mathbf{v}_{1}\right\|=\left\|\mathbf{v}-\mathbf{B}\left(\mathbf{B}^{*} \mathbf{G}_{0} \mathbf{B}\right)^{-1} \mathbf{B}^{*} \mathbf{G}_{0} \mathbf{v}\right\|$. See lecture 2C, slide 11 .

Exercise 14 The dual frame is defined as $\tilde{\mathbf{b}}_{k}=\mathbf{F}^{-1} \mathbf{b}_{k}$, see lecture 2 F , slide 11 . The expansion of \mathbf{v} as a linear combination of the frame vectors is discussed in slides 14 and 15.

Exercise 15 Using the scalar product between discrete functions of N samples:

$$
\langle f[k] \mid g[k]\rangle=\sum_{k}^{N-1} f[k] g[k]^{*}
$$

the expression for discrete Fourier transform can be written:

$$
F[l]=\sum_{k}^{N-1} f[k] e^{-i 2 \pi k l / N}=\left\langle f[k] \mid e^{2 \pi i k l / N}\right\rangle
$$

This implies that the functions, of the discrete variable $k, \tilde{b}_{l}[k]=e^{2 \pi i k l / N}$ are the dual basis functions. The corresponding basis functions are then given as $b_{l}[k]=$ $\frac{1}{N} e^{2 \pi i k l / N}$ since

$$
\left\langle b_{n}[k] \mid \tilde{b}_{l}[k]\right\rangle=\frac{1}{N} \sum_{k}^{N-1} e^{2 \pi i k n} e^{-i 2 \pi k l / N}=\frac{1}{N} \sum_{k}^{N-1} e^{2 \pi i k(n-l) / N}=\frac{1}{N} N \delta_{n l}=\delta_{n l}
$$

PART IV

Exercise 16 The signal has a spectrum that normally is larger for lower frequencies, and decreases for higher frequencies. Since the spectrum describes the "probability of energy" in the frequency domain for a particular signal, it is reasonable to weight the optimization error with the (non-uniform) spectrum. See exercise 16.1.

Exercise 17 See lecture 2E, slide 26.

Exercise $18 W_{0}$ consists of functions in V_{1} that are orthogonal to the functions in V_{0}. This means that V_{0} can be formulated as the direct sum of V_{0} and W_{0} : $V_{1}=W_{0} \oplus V_{0}$. See lecture 2G, slide 44 .

Exercise 19 The optimization problem is formulated in the frequency domain, for frequency functions corresponding to discrete signals, i.e., 2π-periodic functions. We have an ideal frequency function of the filter, denoted $F_{I}(u)$, and the actual frequency function of the filter, denoted $F(u)$, which is the Fourier transform of the filter coefficients $f[k]$, i.e., $F(u)=\mathcal{F}\{f\}(u)$, and we want to minimize the difference between the two frequency functions, i.e., minimize

$$
\epsilon=\left\|F_{I}(u)-F(u)\right\|^{2}=\left\|F_{I}(u)-\mathcal{F}\{f\}(u)\right\|^{2}
$$

over all choices of the filter coefficients f. The norm between the two frequency functions is defined based on

$$
\epsilon=\left\|F_{I}(u)-F(u)\right\|^{2}=\left\langle F_{I}(u)-F(u) \mid F_{I}(u)-F(u)\right\rangle,
$$

where the scalar product between two frequency functions is defined as

$$
\langle H(u) \mid G(u)\rangle=\int_{-\pi}^{\pi} H(u) W(u) \overline{G(u)} d u
$$

Here, $W(u)$ is the weighting function in the frequency domain. It is sufficient to integrate from $-\pi$ to π, since the functions are 2π-periodic.

Exercise 20 In general, the filters are related to the basis functions $b_{m}[k]$ and the applicability function $a[n]$ as (see lecture 2C, slide 21):

$$
f_{m}[k]=a[-k] \cdot b_{m}[-k] .
$$

Since there is only one basis function $b[k]=1$, the corresponding filter function is

$$
f[k]=a[-k]=a \operatorname{rrev}[k]
$$

In general, the local metric $G[k]$ at point k is given as a matrix with elements (see lecture 2C, slide 40):

$$
\mathbf{G}_{i j}[k]=\left\langle b_{j} \mid b_{i}\right\rangle=\mathbf{b}_{i}^{*} \mathbf{G}_{0}[k] \mathbf{b}_{j}=\sum_{n} b_{j}[n] c[k+n] a[n] b_{i}^{*}[n]
$$

where $\mathbf{G}_{0}[k]=\operatorname{diag}(a[n] \cdot c[k+n])$. Since there is only one basis function $b[k]=1$, the corresponding metric is a 1×1 matrix, with a single element

$$
G[k]=\sum_{n} c[k+n] a[n]=\sum_{n} c[k-n] a[-n]=\left(c * a_{\mathrm{rev}}\right)[k] .
$$

[^0]: *This guide is not an authoritative description of how answers to the questions must be given in order to pass the exam.

