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PART I

Exercise 1 The Cartesian coordinates of the two points are obtained by P-normalization:(
u1
v1

)
=

(
3/2
−1/2

)
,

(
u2
v2

)
=

(
3
−2

)
.

The distance between these two points is given, as usual, as
√

(3/2− 3)2 + (−1/2 + 2)2 =

3/
√

2 ≈ 2.12.

Exercise 2 A homography is defined as a mapping from a point y1 in one plane
to a point y2 in another plane, which we get by drawing a line from y1, through a
fixed point n, and finding the intersection of this line with the second plane. That
intersection point is y2. See the figure.

y1

n
y2

Exercise 3 The two quaternions are given as

±

(
cos α2

n̂ sin α
2

)
= ±


cos π4

0.6 · sin π
4

0.8 · sin π
4

0

 ≈ ±


0.71
0.42
0.57

0


Exercise 4 Alternative I: Form 3× 4 matrix X that holds the homogeneous coor-
dinates of the three points in its rows. Since xk ·p = 0 for each of the three points,
it then follows that Xp = 0. This means that we find p in the null space of X. We
can determine the null space by applying the SVD to the matrix: X = U S V>.
The null space is spanned by the right singular vector corresponding to the zero
singular value, i.e., to the rightmost columns of V.

∗This guide is not an authoritative description of how answers to the questions must be given in
order to pass the exam. Some explanations given here may not have to be included in the answer,
unless explicitly called for.
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Alternative II: Form the Plücker coordinates L of the line that passes through
x1 and x2: L = x1x

>
2 − x2x

>
1 . By means of the duality mapping we can represent

the same line as the dual Plücker coordinates L̃. Finally, we get the plane that
intersect both the line and the third point x3 as p = L̃ x3. Notice that we may
start with a line that passes through any pair of points, the resulting plane will be
the same.

Exercise 5 The rigid transformation is represented by the transformation matrix

T =

(
R t̄
0 1

)
We apply this transformation to the homogeneous coordinates

y =

(
ȳ
0

)
, where ȳ =

(
u
v

)
and get

T y =

(
R t̄
0 1

) (
ȳ
0

)
=

(
R ȳ

0

)
.

This is, again, a point at infinity. It lies in a direction that has been rotated by R
relative to the original direction.

The resulting point is unaffected by the translation part t̄. This is reasonable
since a finite translation of any point that is infinitely fart from any proper point,
will produce a point that still is at infinity. Hence, the translation will be ignored
by this point.

An alternative argument why the point is unaffected by the translation is that a
point at infinity can be seen as the intersection of two parallel lines. The translation
may move these lines around, but not change their orientation. Therefore, they still
intersect at the same point at infinity after the translation.

PART II

Exercise 6 The points are translated such that their mean (center of gravity) ends
up at the origin. The points are then scaled such that their average distance to the
origin equals

√
2.

Exercise 7 Algebraic errors are easy to minimize, e.g., using the homogeneous or
the inhomogeneous methods. The minimizers can be used as initial solutions to
iterative methods for minimization of geometric errors.

Exercise 8 The SVD profile provides information about the solution space, in
particular its dimension. This is given as the number of singular values that are
sufficiently small to be counted as approximately equal to zero. If the dimension is
one, the error has a unique and well-defined minimum. If the dimension is larger
than one, the error does not have a well-defined minimum, since it not unique. If
the dimension is zero, although there exists a minimizer of the error, the error does
not have a well-defined minimum, since no model can be fitted to the data without
larger errors.

Exercise 9 For example:

ε =

m∑
k=1

dPP(y′k,Hyk)2 + dPP(yk,H
−1 y′k)2
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Exercise 10 We start with the defining relation between corresponding points and
the homography:

y′k ∼ Hyk, k = 1, . . . ,m.

This is an equivalence relation, not an equality, so the left and right-hand sides are
not equal, but equivalent in the sense that one is a non-zero scalar multiplied with
the other. The relation can be made into a proper equality, by using DLT:

0 = y′k ×
(
Hyk

)
= [y′k ]× Hyk, k = 1, . . . ,m. (1)

This is a set of linear and homogeneous equation in the elements of the 3×3 matrix
H. To be specific, it is a set of three equations, but since [y′k ]× has rank two, at
most two of them are linearly independent. In general, we can pick any two the
three equations and form a 2× 9 matrix Ak such that Equation (1) is equivalent to

0 = Ak h, k = 1, . . . ,m, (2)

where h is a vectorization of H into a 9-dimensional vector.
Equation (2) should be true for all pairs {yk,y′k} of corresponding points with

index k. To this end, we form a 2m× 9 data matrix A by stacking all the matrices
Ak on top of each other:

A =


A1

A2

...
Am


The total set of equations, for all k = 1, . . . ,m, is then expressed as

0 = Ah. (3)

This equations can be true only in the ideal case when the initial defining relation is
satisfied exactly for all points. In practice there is measurement noise on the point
coordinates, which means that the relation is only approximately true. An algebraic
measure of how well this approximation can be made is given as the squared norm
of the right-hand side of Equation (3):

ε = ‖Ah‖2.

The squaring makes it possible to easily find a minimizer h, either using the homo-
geneous method or the inhomogeneous method.

PART III

Exercise 11 〈bk | b̃l 〉 = δkl. This is the defining relation for the dual basis vectors.

Exercise 12 c>c0 = 0. This is a consequence of the fact that c = B̃?v is the vector
of reconstructing coefficients that has shortest norm.

Exercise 13 For example: h[k] = 〈 f | g0 〉 where g0[l] = g[k− l] (g is here assumed
to be a real function). This follows from

h[k] =
/

definition of convolution
/

=
∑
l

f [l] g[l − k] =

=
/

use g0 as defined above
/

=
∑
l

f [l] g0[l] =

=
/

use definition of scalar prod. between two discrete functions
/

= 〈 f | g0 〉.
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Exercise 14 If x is an element of the subspace spanned by B then it is true that
B̃?x are the coordinates of x relative to the basis in B. In the general case, x may
not be an element of this subspace, and then B̃?x instead are the coordinates of
the orthogonal projection of x into the subspace (in fact, this is always true, also
when x lies in the subspace).

Exercise 15 The dual frame vectors are given as b̃k = F−1bk. Any v ∈ V can be
reconstructed from scalar products with the frame vectors by a linear combination
with the corresponding frame vectors:∑

k

〈 v | bk 〉 b̃k =
∑
k

〈 v | bk 〉 F−1bk = F−1

(∑
k

〈 v | bk 〉 bk

)
︸ ︷︷ ︸

F v

=

= F−1F v = v.

This derivation also works the other way around: to reconstruct v from scalar
products with the dual frame vectors by a linear combination with the corresponding
frame vectors.

PART IV

Exercise 16 The noise should have zero-mean and independent between the dif-
ferent samples.

Exercise 17 fi[k] = a[−k] · bi[−k], i.e., the applicability function a is multiplied
point-wise on each basis function bi, and the resulting function is then time-reversed
to give the filters fi.

Exercise 18 Advantage: the resulting filter has fewer coefficients and convolving
this filter to the signal can therefore be implemented using fewer multiplications
and additions. Disadvantage: since the resulting filter has fewer coefficients, it is
likely to also have a larger error with the ideal filter in the frequency domain.

Exercise 19 Given is a set of n-dimensional vectors {vk ∈ Rn, k = 1, . . . , p}, often
observations of some data or some process. What we seek is a subspace of dimension
m << n, such that we loose “as little as possible” of these vectors when they are
projected onto the subspace. Formally, this is described by a cost function

ε =

p∑
k=1

‖vk −P vk‖2,

where P is a projection operator into the subspace. In practice, the subspace is
represented by an orthonormal subspace basis B (an n × m basis matrix, with
the basis vectors in its columns), such that P = B B>. In the end, we seek an
orthonormal basis of an m-dimensional subspace such that

ε =

p∑
k=1

‖vk −BB> vk‖2,

is minimal.
This subspace basis is found by first computing the correlation matrix C of the

data:

C =

p∑
k=1

vkv
>
k .
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The basis is given as an ON-basis of eigenvectors of C corresponding to the m
largest eigenvalues (including multiplicities). This implies that the initial data may
instead be given as the matrix C, instead of the set of vectors described above, since
this is sufficient to solve the problem.

Exercise 20 It must satisfy the orthogonality (O) condition, which means that the
filter h itself has unit norm, and is orthogonal to every shift of itself by an even
number of samples: ∑

l

h[l] h[l − 2k] = δ[k]. (4)

In the frequency domain this can, equivalently, be described as

|H(u)|2 + |H(u+ π)|2 = 2.

An example of a filter h that satisfy the O-condition is given by the filter vector
h = [11]/

√
2. It has unit norm: ‖h‖ = 1, which means that Equation (4) is satisfied

for k = 0. Since the filter length is 2, it means that Equation (4) is satisfied also
for k 6= 0.
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