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PART I

Exercise 1 In order to determine the geometric characteristics of the line, its dual
homogeneous coordinates need to be D-normalized:
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Exercise 2 No. A rigid transformation preserves the distance between any pair
of points. This will not happen in general when rotation of 3D points is combined
with projection onto a 2D image. For example, two points at some distance d that
lie on a the same projection line, are projected onto the same image point. After a
3D rotation, they could end up on different projection lines, thereby projecting onto
different images points. Consequently, distance in the image plane is not preserved
when 3D points are rotated.

Exercise 3 The three eigenvalues of R are 1, eiα, and e−iα. See the IREG com-
pendium (section B.7.4 in version 0.33).

Exercise 4 An affine transformation preserves Euclidean points as Euclidean points,
and points at infinity as points at infinity. If two lines are not parallel, they intersect
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at a Euclidean point, and since it remains a Euclidean point also after the affine
transformation, the two lines will be non-parallel after the transformation. A sim-
ilar argument can be made to a point at infinity, which instead is the intersection
of a two parallel lines.

An alternative is to do the math. The transformation matrix of an affine trans-
formation is characterized as

T =

(
A t
0 1

)
If we apply T onto the homogeneous coordinates of a proper (Euclidean) point, the
intersection of two non-parallel lines, we get(

A t
0 1

)(
x
1

)
=

(
A x + t

1

)
,

which, again, is a proper point, and therefore the lines have been transformed to
remain non-parallel. If the point instead is at infinity, the intersection of two parallel
lines, we get (

A t
0 1

)(
x
0

)
=

(
A x

0

)
,

which is a point that remains at infinity, again the intersection of two parallel lines.

Exercise 5 The camera matrix C is a projective element, which means that it has
3×4−1 = 11 degrees of freedom. The K matrix is upper triangular, with 3 elements
set to zero, and is also a projective element. As a result K has 3 × 3 − 3 − 1 = 5
degrees of freedom. The rotation matrix R ∈ SO(3) has 3 degrees of freedom,
which also is the case for t ∈ R3. In total the internal and external parameters have
5 + 3 + 3 = 11 degrees of freedom, which is the same and C.

PART II

Exercise 6 The Euclidean distance between the point and the line is a typical
example of a geometric error, given as:

d = |normP (y) · normD(l)| =

∣∣∣∣∣ y · l
y3
√
l21 + l22

∣∣∣∣∣
Exercise 7 The inhomogeneous method: set some element in z equal to one and
solve for the remaining elements. The homogeneous method: set ‖z‖ = 1 and
minimize ‖A z‖ with that constrain.

Exercise 8 For example:

• No method degeneracy. The homogeneous method cannot robustly solve prob-
lems where any z is the solution, while the inhomogeneous method cannot
since some pre-specified element must always be = 1.

• The SVD provides a profile of the singular values, which characterizes the
solution in terms of dimension of the solution space.

Exercise 9 OPP estimates an orthogonal transformation between the two datasets
in A and B, respectively. If detUU> = −1 is means that the most optimal or-
thogonal transformation between the datasets includes a reflection. Since we want
R ∈ SO(3), the optimal transformation is far from satisfying detR = +1, probably
because large amount of noise has affected the data.

To assure detR = +1 for the estimated rotation, we need to flip the sign of the
third column in either U or V.
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Exercise 10 Since the plane is determined from only three 3D points, it can be
determined exactly, without any errors that should be minimized in one way or
another. Consequently, we get the same solution with any reasonable method,
including using Hartley-normalized coordinates.

PART III

Exercise 11

〈 f | g 〉 =

∫ ∞
−∞

f(t) g(t) dt,

or, more generally,

〈 f | g 〉 =

∫ ∞
−∞

f(t) w(t) g(t) dt,

where w is a positive weighting function.

Exercise 12 The dual frame vectors are generated from the original frame vectors
as B̃ = F−1, where F is the frame operator F = BB>G0. An alternative relation
is: scalar products with the frame vectors generate coefficients that in a linear
combination with the dual frame vectors reconstruct the vector: B̃B>G0 = I.

Exercise 13 The coordinates of the orthogonal projection, v1 is given as

c = B̃>G0v =
(
B>G0B

)−1
B>v.

This leads to
v1 = B c = B

(
B>G0B

)−1
B>v.

Exercise 14 The Gramian matrix G is

G =

(
〈 b1 | b1 〉 〈 b2 | b1 〉

〈 b1 | b2 〉 〈 b2 | b2 〉

)
=

(
b>1 G0b1 b>1 G0b2

b>2 G0b1 b>2 G0b2

)
=

(
2 0
0 6

)
From this, the dual basis matrix is computed:

B̃ = BG−1 =

(
1 −1

1 1

) (
1
2 0

0 1
6

)
=

(
1
2 − 1

6

1
2

1
6

)

The dual basis vectors are the two columns in B̃: b̃1 = (1, 1)/2 and b̃2 = (−1, 1)/6.
We can check this result by verifying that two sets of basis vectors are in a dual
relation:

B>G0B̃ =

(
1 1

−1 1

) (
2 −1

−1 2

) (
1
2 − 1

6

1
2

1
6

)
=

(
1 0
0 1

)
= I (!)

Exercise 15 Convolution between two time-discrete functions f and g:

h[k] =
∑
n

f [k − n] g[n].

A specific element in the resulting function, h[k] at position k, is then a scalar
product between two functions, p[n] = f [k−n] (f after time mirroring and shift by
k) and g[n]:

h[k] = 〈 p | g 〉.
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As an alternative, the entire function h[k] can be written as a linear combination
of functions fn[k] = f [k − n] (shifted by n) together with coefficients cn = g[n]:

h[k] =
∑
n

cn fn[k].

PART IV

Exercise 16 Several operations that need to be performed involve scalar products
of functions in the frequency (Fourier) domain, defined in terms of integrals of
products of two functions. For general functions, the numerical values of these
scalar products have to be approximated as Riemann sums of finite number of
terms. These are computed by sampling of the frequency domain.

Exercise 17 The coordinate of a polynomial of order n is the derivative of the
signal of order n (divided by n!):

f(x+ τ) = f(x) τ0 + f ′(x) τ +
1

2
f ′′(x) τ2 + . . .

Exercise 18 Quantization noise, which happens when the signal is converted to a
binary representation with a fixed number of bits.

Exercise 19 The residual error with N principal components is given as

εN =

M∑
k=N+1

λk = λN+1 + λN+2 + . . .+ λM ,

where λk is the k-th eigenvalue of the M ×M correlation matrix C, sorted from
largest to smallest. If instead N + 1 principal components are used, the residual
error is

εN+1 =

M∑
k=N+2

λk = λN+2 + λN+3 + . . .+ λM ,

The reduction in error is
εN − εN+1 = λN+1.

Exercise 20 With φ as the scaling function, φ(t − k), k ∈ Z is a basis for V0, and
21/2φ(2t− k), k ∈ Z is a basis for V1. This means for a general function f(t) ∈ V0,
that it can be expanded as a linear combination of the corresponding basis with
coordinates ck:

f(t) =
∑
k

ck φ(t− k).

Using the same coordinates, but divided by 21/2, in a linear combination with the
basis in V1: ∑

k

ck φ(2t− k) = f(2t).

Consequently, if f(t) ∈ V0, then f(2t) ∈ V1. In a similar way, we can show that if
f(2t) ∈ V1, then f(t) ∈ V0. In summary, whatever functions we find in one of the
two spaces, we will find a time-scaled version (by a factor 2 or 1/2, depending on
which way we go) in the other space.
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