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PART I

Exercise 1 In order to determine the distance, we first need to normalize both
vectors. The homogeneous coordinates of the point must be P-normalized:
x = (1,−3, 1, 2) ∼ (1/2,−3/2, 1/2, 1)
The dual homogeneous coordinates of the plane must be D-normalized:
p = (1, 2, 2, 1) ∼ (−1/9,−2/9,−2/9,−1/9)
The distance between the point and the plane is then given as the magnitude of the
scalar product of these normalized vectors (the signed distance):
d = |(1/2,−3/2, 1/2, 1) · (−1/3,−2/3,−2/3,−1/3)| = |1/6| = 1/6 ≈ 0.17.

Exercise 2 Affine transformation must always map parallel line to parallel lines.
This is not the case for homographies, parallel lines can become non-parallel after
a homography transformation. This means that affine transformations preserves
points at infinity, while homographies can transform proper points to points at
infinity, or vice versa.

Exercise 3 The rotated 3D point is represented as the pure quaternion given by

q ◦ xq ◦ q−1 = q ◦ xq ◦ q,

where xq is the pure quaternion representation of 3D point x:

xq =


0
x1
x2
x3

 ,

and q−1 = q is the inverse of the unit quaternion q.

Exercise 4 Given two distinct parallel lines:

l1 =

(
l̂
−∆1

)
l2 =

(
l̂
−∆2

)
it follows that their cross product, that normally produces the point of intersection,
is

l1 × l2 =

(
l̂
−∆1

)
×
(

l̂
−∆2

)
=

(
(∆1 −∆2) l̂

0

)
∗This guide is not an authoritative description of how answers to the questions must be given in
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This means that we can interpret (a, b, 0) as the homogeneous coordinates of the
point of intersection of two distinct and parallel lines, intuitively a point at infinite
distance from any Euclidean point, a point at infinity.

Given two distinct points at infinity, with homogeneous coordinates:

x1 =

(
x̄1

0

)
x2 =

(
x̄2

0

)
it follows that their cross product, that normally produces the line of intersection,
is

x1 × x2 =

(
x̄1

0

)
×
(
x̄2

0

)
∼
(
0
1

)
Times means that we can interpret (0, 0, 1) as the dual homogeneous coordinates
of the intersecting line of two distinct points at infinity, intuitively a line at infinity
since it intersect with all points at infinity and only these points.

Exercise 5 Given two distinct 3D points, x1 and x2, the Plücker coordinates for
the line that passes through the points is given as:

L = x1x
>
2 − x2x

T
1 .

Any point on this line has homogeneous coordinates that can be written as a linear
combination of x1 and x2, so if we pick two other points one the line, x′1 and x′2,
their homogeneous coordinates are

x′1 = α1x1 + α2x2, x′2 = β1x1 + β2x2.

The corresponding Plücker coordinates are:

L′ = x′1x
′
2
T − x′2x

′
1
>

=

= (α1x1 + α2x2)(β1x1 + β2x2)> − (β1x1 + β2x2)(α1x1 + α2x2)> =

= α1β2x1x
>
2 + α2β1x2x

>
1 − α2β1x1x

>
2 − α1β2x2x

>
1 =

=
(
α1β2 − α2β1

)(
x1x

>
2 − x2x

>
1

)
=
(
α1β2 − α2β1

)
L

Since we consider L as a projective element, multiplication by a scalar does not
change the Plücker coordinates. This means that any pair of points on the same
line will produce the same set of Plücker coordinates.

PART II

Exercise 6 The inhomogeneous method gives, at best, one single solution by solving
a linear inhomogeneous equation. The homogeneous method gives the solution as a
right singular vector of the data matrix, corresponding to a singular value equal to
zero, in practice the smallest singular value. In addition to this solution, the SVD
profile (= the set of singular values of the data matrix) characterizes the solution
space. This means that the profile can tell if the solution is unique (the smallest
singular value is well-defined), or if there exist multiple solutions (there are multiple
singular values that are approximately equal to zero), or if a reasonable solution
does not exist (there is no singular value approximately equal to zero).

Exercise 7 From the relation y′ ∼ H y can be form two equations (constraints),
using DLT, in the form of linear combinations between the unknown elements of
H and parameters that are combinations of elements in y′ and in y. These two
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equations can be represented as the matrix equation A z = 0, where A is a 2 × 9
data matrix and z is a vector that holds the 9 elements of H. The algebraic error
is given as ε = ‖A z‖2.

Exercise 8 The SVD profile of the homogeneous solution to the minimization of
algebraic errors depends on the choice of coordinate system in the Euclidean space
where point of lines are defined. Consequently, the same geometric estimation prob-
lem may produce an SVD profile that describes the solution space either as having
one dimension or multiple dimensions, just by changing from one coordinate system
to another. Hartley normalization aims at choosing a data dependent coordinate
system that reduces the dimensions of the solution space so that it properly reflects
the geometric configuration, e.g., of a set of points. In addition, Hartley normaliza-
tion makes algebraic errors more similar to geometric errors.

Exercise 9 See the IREG compendium, section 14.2, and Algorithm 14.4.

Exercise 10 The relation y ∼ Cx can be transformed to 0 = [y ]×Cx using DLT.
This is 3 linear homogeneous equations in the unknown elements of C. However,
since the cross product operator [ y ]× has rank 2, the three equations are linearly
dependent. Thus, one of the two equations must be satisfied if the other two are
true. In general, we can remove any of the three equations and keep the other two
as constraints in the elements of C.

PART III

Exercise 11 The coordinates of v are given as the scalar products between v the
the dual basis vectors b̃k.

Exercise 12 c′ must be a null vector of B: B c′ = 0. c has minimal norm of all
vectors that can reconstruct v, since c is orthogonal to c′. See lecture 2F for more
details and motivation.

Exercise 13 See lecture 2A, slides 28− 33.

Exercise 14 Only true when v ∈ U , where U is the subspace spanned by B. In
general B?v represents the orthogonal projection of v onto U . See lecture 2C for
more details and motivation.

Exercise 15 Using the scalar product between discrete functions of N samples:

〈 f [k] | g[k] 〉 =

N−1∑
k

f [k] g[k]∗,

the expression for discrete Fourier transform can be written:

F [l] =

N−1∑
k

f [k] e−i2πkl/N = 〈 f [k] | e2πikl/N 〉

This implies that the functions, of the discrete variable k, b̃l[k] = e2πikl/N are the
dual basis functions. The corresponding basis functions are then given as bl[k] =
1
N e2πikl/N since

〈 bn[k] | b̃l[k] 〉 =
1

N

N−1∑
k

e2πikn e−i2πkl/N =
1

N

N−1∑
k

e2πik(n−l)/N =
1

N
N δnl = δnl
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PART IV

Exercise 16 See lecture 2F, slide 31.

Exercise 17 See lecture 2C, slide 24.

Exercise 18 See lecture 2G, slide 24.

Exercise 19 The more coefficients the filter has, the higher is the cost of comput-
ing each filter result (in terms of time components, time, effect, etc.). From this
perspective we want as few coefficients as possible. However, the more coefficients
the filter has, the closer it can come to any ideal frequency function. Consequently,
we would like to have as many coefficients as possible to come close to the ideal
frequency function.

Exercise 20 We apply Principal Component Analysis (PCA) on the signal to
determine an M -dimensional basis that can represent the signal optimally in the
sense that it minimises the mean square of the norm of difference between the real
signal and the one that can be represented by the PCA-basis. The PCA-basis is
computed by making an SVD of the data matrix A, consisting of the signal vectors
v in its columns, i..e, A = USVT . The M -dimensional PCA-basis consists of the
M leftmost column vectors in U, i.e., the left singular vectors of A that corresponds
to the M largest singular values. Alternatively and equivalently, the basis is given
by an ON -basis of eigenvectors of the M largest eigenvalues of AAT .

In this case, the coefficients that need to be stored for each signal vector v are its
M coordinates relative to the PCA-basis. Since the PCA-basis is an ON-basis, the
coordinates are given directly as the scalar product between v and each of the basis
vectors. Also, the subspace reconstruction of v is given by a linear combination of
the coordinates and the basis vectors.

The mean square of the reconstruction error is in this case given by the sum of the
eigenvalues in ATA (or squared singular values in A) whose eigenvectors/singular
vectors are not part of the PCA-basis.
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