

Linear Algebra Recap

Vectors & Vector Spaces

- Commutativity and associativity of addition.
- Existence of additive identity ('zero vector').
- Existence of additive inverse.
- Associativity and distributivity for multiplication with scalars.
- Multiplication by the scalar identity (i.e. 1) gives the same vector.

```
Comm.
U+V=V+U
```

TV: UNO

assoc. (U+U)+W=U+(V+W)

2

Scalar Product (Inner Product) & Norm

 $U = (u_1, ..., u_n)$ $V = (V_1, ..., V_n)$ Some vector spaces are equipped with a scalar product. - Usually in \mathbb{R}^n we use $u^{\intercal}v = u_1v_1 + u_2v_2 + \dots + u_nv_n$.

- Two vectors are orthogonal (perpendicular) if $\mathcal{U}^{\mathsf{T}}\mathcal{V} = \mathcal{O}_{\mathcal{U}}$ Some vector spaces are equipped with a norm.
- Usually in \mathbb{R}^n we use the Euclidean norm, $\|u\| = \sqrt{\mathcal{U}}$, which is often called the length (or magnitude, or norm).

Scalar product: (UIV)= VT(Lou Positive dérinite

norm).
$$\|\mathbf{x}\| = \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2}$$
$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$$

The Cross Product

In \mathbb{R}^3 we can take the cross product of two vectors, resulting in a new vector orthogonal to the first two.

- Orthogonality: $U^{T}(U \times V) = 0$, $V^{T}(U \times V) = 0$
- Length: (14×1)=114/1-114/15ink
- Positively oriented (right handed system).

Algebraically,

$$U \times V = \begin{pmatrix} u_2 V_3 - u_3 V_2 \\ u_3 V_1 - u_1 V_3 \\ u_1 V_2 - u_2 V_1 \end{pmatrix} \qquad \begin{bmatrix} e_1 & e_2 & e_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix} = U \times V_1$$

The Cross Product operator

It is often very useful to define the cross product operator (or cross product matrix) of a vector:

$$\begin{bmatrix} u \end{bmatrix}_{x} = \frac{\partial}{\partial v} \begin{pmatrix} u \times v \end{pmatrix} = \begin{pmatrix} 0 & -u_{3} & u_{2} \\ u_{3} & 0 & -u_{1} \\ -u_{2} & u_{1} & 0 \end{pmatrix} \qquad \begin{bmatrix} u \end{bmatrix}_{x}^{T} = -\begin{bmatrix} u \end{bmatrix}_{x} \quad \text{antissymmetric}$$

 $\int u^2 v = u x v$

All non-zero anti-symmetric 3x3 matrices are cross product operator matrices!

AER3×3 with AT=-A (anti-symmetric) $\Rightarrow A + A^{T} = 0 \iff \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} + \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} \\ A_{13} & A_{32} & A_{33} \end{pmatrix} + \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} \\ A_{13} & A_{32} & A_{33} \end{pmatrix}$ $\Rightarrow \alpha_{i1} = 0$ $\alpha_{i2} = -\alpha_{2i} \Rightarrow A = \begin{pmatrix} 0 & -\alpha_{21} & \alpha_{13} \\ \alpha_{21} & 0 & -\alpha_{23} \\ \alpha_{33} & \alpha_{32} & 0 \end{pmatrix}$ $\Rightarrow A = [(a_{23}, a_{13}, a_{21})]_{Y}$

Points vs Vectors

Both points and vectors can be represented using n-tuples $(\chi_1, \chi_2, \dots, \chi_n)_r$ but they permit different types of operations:

i) vector + vector = vector ii) point + vector = point iii) point - point = vector iv) point + point = undefined v) scalar \cdot vector = vector vi) scalar \cdot point = undefined

$$P_{1} = (x_{1}, y_{1}), P_{2} = (x_{2}, y_{2}) P_{3} = P_{1} + P_{2} = (x_{1} + x_{2}, y_{1} + y_{2})?$$

Points vs Vectors (contd.)

For the pedantic, \mathbb{R}^n is a vector space (that contains vectors), and \mathbb{E}^n is an affine space (that contains \mathbb{R}^n and also points).

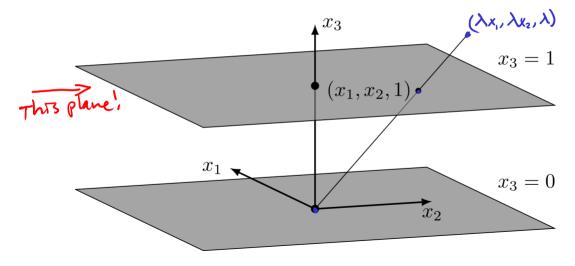
We will sometimes be careless and talk about 'points' in \mathbb{R}^{n} when we do not at the moment make use of its vector space structure.

IMPORTANT NOTE:

Points can be represented in many ways, and sometimes we can do meaningful things to one representation, which, geometrically, are not meaningful at all!

The Real Projective Plane

The real projective plane consists of ordinary points (x_1, x_2) together with 'ideal points' (points at infinity).



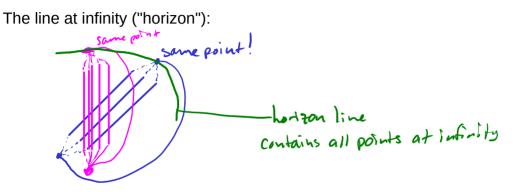
Homogeneous Coordinates

An ordinary point (x_1, x_2) is represented by its homogeneous coordinates $(x_1, x_2, 1) \sim (\lambda x_1, \lambda x_2, \lambda)$ for any non-zero λ_1 .

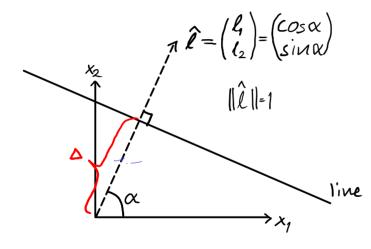
P-normalisation:
$$(x_1, x_2, x_3) \sim (x_1, x_2, 1)$$

hormpx
Ideal points?
 $(\lambda x_1, \lambda x_2, 1) \sim (x_1, x_2, \frac{1}{2}) \rightarrow (x_1, x_2, 0)$ as $\lambda \rightarrow \pm \infty$

The Real Projective Plane (contd.)



Lines in 2D



Equation (normal form): $l_1 x_1 + l_2 x_2 = \Delta$ $(2l_1 x_1 + 2l_2 x_2 = 2\Delta \text{ is direct})$ $l_1 x_1 + l_2 x_2 = 2\Delta \text{ is direct}$ $l_1 x_1 + l_2 x_2 - \Delta \cdot 1 = 0$

Lines in 2D (contd.)

Dual homogeneous coordinates

live eq:
$$l^T X = O$$

 $(l, l_2 - \Delta) \begin{pmatrix} X, i \\ X^2 \end{pmatrix} = D$

$$\ell = \begin{pmatrix} \hat{\ell} \\ -\Delta \end{pmatrix} = \begin{pmatrix} \ell_1 \\ \ell_2 \\ -\Delta \end{pmatrix} \sim \begin{pmatrix} \lambda \ell_1 \\ \lambda \ell_2 \\ -\lambda \Delta \end{pmatrix}$$
$$\chi = (\chi_1, \chi_2, 1)$$

D-normalisation:

$$l = \begin{pmatrix} l \\ l_{3} \end{pmatrix} \sim \frac{-\text{sign } l_{3}}{\left(l_{1}^{2} + l_{1}^{2} + l_{1}^{2} + l_{1}^{2} \right)} \xrightarrow{\text{normalisation:}} \Delta = \frac{\text{sign } l_{3}}{\sqrt{l_{1}^{2} + l_{1}^{2} + l_{1}$$

Lines in 2D (contd.)

Line through two points (parametric form, 2D and 3D)

- $X(\lambda) = X_{0} + \lambda v =$ $= X_{0} + \lambda (x_{1} x_{0}) =$ $= (1 \lambda) X_{0} + \lambda X_{1} = X(\lambda_{0}, \lambda_{1}) \quad \text{with } \lambda_{0} + \lambda_{1} = 1$ - Non-homogeneous: l:
- Homogeneous:

$$X(\lambda_{0},\lambda_{1}) = \lambda_{0} X_{0} + \lambda_{1} X_{1} \sim \mu \lambda_{0} X_{0} + \mu \lambda_{1} X_{1}$$

Lines in 2D (contd.)

Line through two points (homogeneous, 2D only!):

$$X_1$$
 and X_2 points on $l \Rightarrow \begin{cases} l^T x_1 = 0 \\ l^T x_2 = 0 \end{cases} \Rightarrow l \sim x_1 \times x_2$

Intersection of two lines (homogeneous, 2D only!):

 $l_{i} \text{ and } l_{i} \text{ dual homogeneous}$ $\begin{cases} l_{i}^{T} X = 0 \\ l_{i}^{T} X = 0 \end{cases} \Leftrightarrow \begin{cases} X^{T} l_{i} = 0 \\ X^{T} l_{i} = 0 \end{cases} \Rightarrow X \sim l_{i} \times l_{i} \end{cases}$

Examples
Let
$$x_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (two ideal points)
The line through x_1 and x_2 is $l_{00} \sim x_1 \times x_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $L_{10} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$
Let $x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $x_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 k_1
 k_2
 k_3
 k_4
 k_5
 $k_$

Plücker coordinates (more interesting in 30) Define L= X, X_2 - X_2 X, TER where X, X2ER are homogeneous This is anti-symmetriz: LT = xxx1-x,x2=-L Ideal point on L: $X_{i} = \begin{pmatrix} u_{i} \\ u_{2} \end{pmatrix}$ and $X_{z} = \begin{pmatrix} v_{i} \\ v_{2} \end{pmatrix} \Rightarrow L = \begin{pmatrix} u_{i} v_{2} & u_{i} v_{2} & u_{2} \\ u_{2} v_{1} & u_{2} v_{2} & u_{2} \end{pmatrix} - \begin{pmatrix} u_{i} v_{1} & u_{2} v_{1} & u_{2} v_{1} \\ u_{i} v_{2} & u_{2} v_{1} & u_{2} & u_{2} & u_{2} \\ v_{i} & v_{i} & v_{i} & u_{i} \end{pmatrix}$ $= \begin{pmatrix} 0 \\ 0 \\ u_2 - y \\ 0 \end{pmatrix} i deal point$ on L