Homogeneous Coordinates for Points in 3D

Let $\bar{\mathbf{x}} = (x_1, x_2, x_3)$ be Cartesian coordinates for a point in \mathbb{E}^3 .

- Then $\mathbf{x} = (\lambda x_1, \lambda x_2, \lambda x_3, \lambda)$ represents the same point in homogeneous coordinates (as long as $\lambda \neq 0$).
- P-normalisation: norm_P $((x_1, x_2, x_3, x_4)) = (\frac{x_1}{x_4}, \frac{x_2}{x_4}, \frac{x_3}{x_4}, 1)$, as long as $x_4 \neq 0$ (proper points).
- *Ideal points* (points at infinity) are of the form $\mathbf{x} = (x_1, x_2, x_3, 0)$.

 $X(\lambda) = (\lambda_{x_1}, \lambda_{x_2}, \lambda_{x_3}, 1) \sim (\times, \times, \times, \times, \times, \times, \lambda) \rightarrow (x_1, \chi_2, \chi_3, 0) \text{ as } \lambda \rightarrow \pm \infty$

Mårten Wadenbäck

Length =1

(ax+bu+c2+d=0)

Dual Homogeneous Coordinates for Planes in 3D

Let $\mathbf{p} = (\beta_1, \beta_2, \beta_3, \beta_4)$ be dual homogeneous coordinates for a plane.

• D-normalisation:

$$\operatorname{norm}_{D}\begin{pmatrix}\beta_{1}\\\beta_{2}\\\beta_{3}\\\beta_{4}\end{pmatrix} = \frac{-\operatorname{sign}\beta_{4}}{\sqrt{\beta_{1}^{2} + \beta_{2}^{2} + \beta_{3}^{2}}}\begin{pmatrix}\beta_{1}\\\beta_{2}\\\beta_{3}\\\beta_{4}\end{pmatrix} = \begin{pmatrix}\hat{\mathbf{p}}\\-\Delta\end{pmatrix}$$

(norm_P x)^T(norm_D p) gives the signed distance from x to p.
 In particular: =0 if on the plane

The Ideal Plane (Plane at Infinity)

- The ideal plane consists of all ideal points.
- Dual homogeneous coordinates $\mathbf{p}_{\infty} = (0, 0, 0, 1)$.
- We cannot D-normalise \mathbf{p}_{∞} .
- $\bullet\,$ We may think of \mathbf{p}_∞ as a sphere with infinite radius.

Lines in 3D cannot be written as $\mathbf{l}^{\top}\mathbf{x} = 0$ (this is a plane). Alternative representations:

- Parameter form: $\bar{\mathbf{x}}(t) = (1-t)\bar{\mathbf{x}}_1 + t\bar{\mathbf{x}}_2$. = $\bar{\mathbf{x}}_1 + t(\bar{\mathbf{x}}_2 \bar{\mathbf{x}}_1) = \bar{\mathbf{x}}_1 + tv$
- In homogeneous coordinates: $\mathbf{x}(\mathbf{\lambda}) = \lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2$, where $\lambda_1^2 + \lambda_2^2 \neq 0$.
- Plücker coordinates: $\mathbf{L} = \mathbf{x}_1 \mathbf{x}_2^\top \mathbf{x}_2 \mathbf{x}_1^\top$ (anti-symmetric, rank two).
- Dual Plücker coordinates: $\tilde{\mathbf{L}} = \mathbf{p}_1 \mathbf{p}_2^\top \mathbf{p}_2 \mathbf{p}_1^\top$ (also anti-symmetric, rank two).

Mårten Wadenbäck

7th of September 2021

Example: Intersection between Plane and Line

Suppose L represents a line (Plücker coordinates) in 3D, and p represents a plane. Find the intersection!

 $L = X_{1}X_{2} - X_{2}X_{1}^{T} - X_{1}X^{T} - XX_{1}^{T}$ (show as exercise!) Compute Lp: $Lp \sim X_{1}X^{T}p - XX_{1}^{T}p = -(X_{1}^{T}p) \times X \times X_{1}^{T}p$

×;=

Spatial Configuration of Points

Let x_1, \ldots, x_n be homogeneous coordinates of points in the extended Euclidean space. The rank of the matrix

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{pmatrix} \in \mathbb{R}^{n \times 4}$$
 "data matrix"

tells us what the spatial configuration of the points is!

Spatial Configuration of Points (contd.)

Spatial Configuration of Planes

Let $\mathbf{p}_1, \dots, \mathbf{p}_n$ be dual homogeneous coordinates of planes in the extended Euclidean space. The rank of the matrix

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1^\top \\ \vdots \\ \mathbf{p}_n^\top \end{pmatrix} \in \mathbb{R}^{n \times 4}$$

tells us what the spatial configuration of the planes is!

Mårten Wadenbäck

7th of September 2021

Spatial Configuration of Planes (contd.) rank P=O: does not happon. ranh P=1: all planes are the same! ranh P=2: all planes contain the ranhP=3: the system Px=0 will have a 1D solution X(t)= txo~Xo ranhP=4: planes are in general position (configuration) ho common point!

Algebraic vs Geometric Error (Estimation Sneak Peek) Algebraiz error: $\mathcal{E}_{A}(P) = || \times p ||^{2} = || \begin{pmatrix} x_{1}^{T} P \\ \vdots \\ k \\ k \\ p \end{pmatrix} ||^{2} = (x_{1}^{T} P)^{2} + \dots + (x_{n}^{T} P)^{2} = \sum_{k=1}^{n} (x_{1}^{T} P)^{2}$ Bad idea? Scales with the points (or p)! Does not measure "actual" distances acometere distance: $\mathcal{E}_{cl}(P) = \sum_{h=1}^{n} ((norm_p \times_h)^T (norm_p P))^2$ Measures the "actual" distances Mester dependence on P => horder to minimise

Geometric Transformations in 2D and 3D

Table: Geometric transformations in 2D and 3D. Each type includes, as subgroups, the types listed below it.

Туре	Matrix	Constraints	DoF (2D)	DoF (3D)
Affine	$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ 0^{T} & 1 \end{bmatrix}$	$\det \mathbf{A} \neq 0$	6	12
Similarity	$\begin{bmatrix} s\mathbf{Q} & \mathbf{t} \\ 0^{\mathbf{T}} & 1 \end{bmatrix}$	$\mathbf{Q}^{ op}\mathbf{Q} = \mathbf{I}$ and $s eq 0$	4	7
Rigid	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0^{\intercal}} & 1 \end{bmatrix}$	$\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}$ and $\det \mathbf{R} = 1$	3	6
most important in 3D!				

Dual Transformations in 3D

Assume we apply a transformation T to 3D space as $\mathbf{x}' = \mathbf{T}\mathbf{x}$.

• What happens to planes in dual homogeneous coordinates? Let P be a plane: pTx=0 How do we get p' such that $(P')^T x' = 0$? $(P')^T T x = 0 \Leftrightarrow (SP)^T T x = 0 \Leftrightarrow P^T S^T T x = 0 \Rightarrow T = (T')^T = T^T$

• What happens to planes in Plücker coordinates?

$$L = x_1 x_1^T - x_2 x_1^T$$

$$L' = T x_1 (T x_2)^T - T x_2 (T x_1)^T = T (\underbrace{x_1 x_2^T - x_2 x_1^T}_{L})^T = T L T^T$$

