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Homogeneous Coordinates for Points in 3D

Let X = (21,72, 3) be Cartesian coordinates for a point in E3.

® Then x = (Ax1, Ao, Ax3, \) represents the same point in homogeneous
coordinates (as long as A # 0).

® P-normalisation: normp ((x1, 2,23, 74)) = (£+, 32, 22,1), as long as x4 # 0
(proper points).

® |deal points (points at infinity) are of the form x = (z1, x2, z3,0).

X(/\)=()\K,,)\XL;/\X3, 1.)'\'("")(1/)‘5/%) g ()‘.,'7‘1/23/ 0) as \—w
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Dual Homogeneous Coordinates for Planes in 3D
(ax+ bukct 1 =)

Let p = (81, B2, 83, B4) be dual homogeneous coordinates for a plane.

® D-normalisation: l(/.,,aq‘l. =1
B1 . B1 A
normp gi — —sign 4 B2 _ <PA)

; VBI+ B+ P2 ?
4 4

® (normp x) ' (normp p) gives the signed distance from x to p.
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The Ideal Plane (Plane at Infinity)

| Real ot ~¥ST (K Xq. ¥3,0) R

The ideal plane consists of all ideal points.

Dual homogeneous coordinates p, = (0,0,0,1).
® We cannot D-normalise poo.

We may think of p., as a sphere with infinite radius.
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Lines in 3D

Lines in 3D cannot be written as 17x = 0 (this is a plane).
Alternative representations:

® Parameter form: x(t) = (1 — t)%X; + tX2.= X,+ ¢ (=X)) =X, v
® In homogeneous coordinates: x() = A\1X; + AoXa, where A2 + \3 # 0.
® Pliicker coordinates: L = x1xXg — XaX; (anti-symmetric, rank two).

® Dual Pliicker coordinates: L = p1pj — p2p, (also anti-symmetric, rank two).
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Example: Intersection between Plane and Line

Suppose L represents a line (Pliicker coordinates) in 3D, and p represents a plane. Find
the intersection!

L=x ,)ir-L- X X7~ X, X =x XT (_S\Mw as euen-/rsa!)

Compic Lp: Lo ~x,x X Xip = ~(x%) 2~ X

3 O‘\\rﬂ'

on p‘«wu.‘
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Spatial Configuration of Points
5= ("'5-
3 (%=

%35,
X
Let x1,... ,X,Z e homogeneous coordinates of points in the extended Euclidean space.
The rank of the matrix -
X1 Y 7]
X. — : c R7L><4 M V\A.‘/Y.X
X,

tells us what the spatial configuration of the points is!
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Spatial Configuration of Points (contd.)
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Spatial Configuration of Planes

Let p1,...,Ppn be dual homogeneous coordinates of planes in the extended Euclidean
space. The rank of the matrix

P=|: | erv
Pn

tells us what the spatial configuration of the planes is!
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Spatial Configuration of Planes (contd.)
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Algebraic vs Geometric Error (Estimation Sneak Peek)

Rogoate erort €LP)= I} X P”'l’-" = (T Y+ +p) = uZ(XIp)L
L=
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Geometric Transformations in 2D and 3D

Table: Geometric transformations in 2D and 3D. Each type includes, as subgroups, the types
listed below it.

Type Matrix Constraints DoF (2D) DoF (3D)
Affine {1} ﬂ det A #0 6 12
Similarity [50% i] Q'Q=TIands#0 4 7

( Rigid ) {1}, ﬂ RTR=Tand detR = 1 3 6

Mot Vmgortant 1w 3D

LINKOPING
Il.u UNIVERSITY



TSBBO06 Multidimensional Signal Analysis Marten Wadenback 7th of September 2021

Dual Transformations in 3D

Assume we apply a transformation T to 3D space as x’ = Tx.

® What happens to planes in dual homogeneous coordinates?

Lev 7 %€ & plare: =0 Havdowe qef P ek bhak

"\T
(P)'x'=0? ' )" x=0& LSP)TTA z0e» 'P"’S" x =0 = 'F’U’I)Tb T

® What happens to planes in Pliicker coordinates? 1 Sves ?1; =0
L= X,"{’ w;’r

L= TXT) =T (TxY= T (xT-xxP) T = TLT
=
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