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Homogeneous Coordinates for Points in 3D

Let x̄ = (x1, x2, x3) be Cartesian coordinates for a point in E3.
• Then x = (λx1, λx2, λx3, λ) represents the same point in homogeneous

coordinates (as long as λ �= 0).
• P-normalisation: normP
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(proper points).
• Ideal points (points at infinity) are of the form x = (x1, x2, x3, 0).
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Dual Homogeneous Coordinates for Planes in 3D

Let p = (β1, β2, β3, β4) be dual homogeneous coordinates for a plane.
• D-normalisation:

normD
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• (normP x)�(normD p) gives the signed distance from x to p.
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The Ideal Plane (Plane at Infinity)

• The ideal plane consists of all ideal points.
• Dual homogeneous coordinates p∞ = (0, 0, 0, 1).
• We cannot D-normalise p∞.
• We may think of p∞ as a sphere with infinite radius.
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Lines in 3D

Lines in 3D cannot be written as l�x = 0 (this is a plane).
Alternative representations:

• Parameter form: x̄(t) = (1 − t)x̄1 + tx̄2.
• In homogeneous coordinates: x(t) = λ1x1 + λ2x2, where λ2

1 + λ2
2 �= 0.

• Plücker coordinates: L = x1x�
2 − x2x�

1 (anti-symmetric, rank two).
• Dual Plücker coordinates: L̃ = p1p�

2 − p2p�
1 (also anti-symmetric, rank two).
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Example: Intersection between Plane and Line

Suppose L represents a line (Plücker coordinates) in 3D, and p represents a plane. Find
the intersection!
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Spatial Configuration of Points

Let x1, . . . , xn be homogeneous coordinates of points in the extended Euclidean space.
The rank of the matrix

X =




x�
1
...

x�
n


 ∈ Rn×4

tells us what the spatial configuration of the points is!
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Spatial Configuration of Points (contd.)
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Spatial Configuration of Planes

Let p1, . . . , pn be dual homogeneous coordinates of planes in the extended Euclidean
space. The rank of the matrix

P =




p�
1
...

p�
n


 ∈ Rn×4

tells us what the spatial configuration of the planes is!
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Spatial Configuration of Planes (contd.)
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Algebraic vs Geometric Error (Estimation Sneak Peek)
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Geometric Transformations in 2D and 3D

Table: Geometric transformations in 2D and 3D. Each type includes, as subgroups, the types
listed below it.

Type Matrix Constraints DoF (2D) DoF (3D)

Affine
[

A t
0 1

]
det A �= 0 6 12

Similarity
[

sQ t
0 1

]
Q�Q = I and s �= 0 4 7

Rigid
[

R t
0 1

]
R�R = I and det R = 1 3 6
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Dual Transformations in 3D

Assume we apply a transformation T to 3D space as x� = Tx.
• What happens to planes in dual homogeneous coordinates?

• What happens to planes in Plücker coordinates?
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