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• The techniques described next (and in the previous 
lecture) are suitable for determining an the optical 
flow, an estimate of m(x), at each point x in the image

• This is referred to as dense motion estimation

– Can still be characterized by a position dependent 
certainty measure

• An alternative is tracking, where the motions of only a 
small set of points, or a single point, are determined

– Later in this lecture…
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Motion estimation



• There are other approaches,
for example

– Global smoothness of v
(Horn & Schunck)

– Second order differential methods
 

– Parametric optical flow

– Et cetera
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Will be 
covered here

Will not be 
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Motion estimation



The Horn & Schunck method

• At each point we seek the motion vector
v = (v1, v2) that satisfies the BCCE:

• Problem: one equation but two unknowns
• Previously, we dealt with this problem by considering 

a local set of equations, assuming v constant in a local 
region 

• Finding v can also be dealt with by means of a
global approach (with respect to the image)
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• Let v(u, v) denote the velocity vector field in an 
image, as a function of image position (u, v) 

• BCCE suggests that we should find
 v(u, v) that minimizes

Integration is now made over an entire image!
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Image gradient at (u, v) Time derivative at (u, v) 

The Horn & Schunck method



• We can (in principle) always find
v(u, v) that gives  = 0:
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(why?) Arbitrary function of (u, v)

The Horn & Schunck method



• Problem I:

Singularities when ∇I= 0

• Problem II:

Does not provide a unique solution since (u, v) can 
be arbitrary chosen

• Problem III:

Strong variations in ∇I  may not correspond to 
strong variations in v(u, v)

8

The Horn & Schunck method



• H&S 1981: Let’s make v(u, v) unique by adding a 
smoothness term to 

• This term should assure that v(u, v) is as smooth at 
possible, seen as a function of (u, v) 

• Smoothness =
        “as little variation in v as possible”
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The Horn & Schunck method



• H&S used a smoothness term:

• Other types of smoothness terms appear in the 
literature
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The Horn & Schunck method



• New cost function

• The integrals are taken over the entire image
• λ is a “smoothness weight”
• Our goal: find v(u, v) that minimizes 
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The Horn & Schunck method



• This was one of the first established methods for motion estimation

• Often referred to as a “global” method

• Can (to some extent) deal with the aperture problem 

• In practice: v cannot be determined by solving a linear equation, instead 
iterative methods are required
– Efficient algorithms exist

– See e.g. D. Sun, et al, Secrets of Optical Flow Estimation and Their Principles, 
CVPR 2010.

• Not obvious how to choose λ
– constant or dependent on x?

• The smoothness constraint is not always valid
– Sharp motion boundaries exist in practice

• More “sophisticated” methods use other types of smoothness terms
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The Horn & Schunck method



NOTE!!

• Horn & Schunck’s method is not correctly described 
in the book by R. Szeliski

– In the printed book and e-book: on page 360, 
equation (8.70)

– In the draft version on the web: on page 410, 
equation (8.70)

• The cost function EHS lacks the regularization term
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The Horn & Schunck method



Local vs global methods
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Second order differential methods

• Another approach for obtaining sufficient 
information to uniquely determine v at each point is 
to differentiate BCCE again with respect to u and v

• This method is again based on local computations
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Second order differential methods

• BCCE:

• Differentiate with respect to u and v: 
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Second order differential methods
• Now we get 2 additional equations in 

variables v(v1, v2):

• H is the Hessian matrix (second order derivatives) of 
f w.r.t. u and v 

• Solve in a similar way as the LK-equation
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Multi order differential methods

• There is nothing that prevents us from using both 
first and second order derivatives simultaneously!
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Multi order differential methods

• We get 3 (or more) equations and have 2 unknowns

• Solutions can still be found using various least 
squares techniques
(how?)
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Motion estimation, summary
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Motion estimation, summary

• In the ideal case, all methods
(in principle) should give the same solution

• They differ mainly with respect to
– Sensitivity to

• noise

• deviations from model assumptions

– Computational demand

– Certainty measures

• For all methods: different sizes of  and different 
ways to estimate gradients give different quality of 
results
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Variations of basic methods
• These basic methods for motion estimation, in particular 

the local ones, can be significantly improved (at moderate 
cost) by using one or more advanced techniques, such 
as

– Refinement iterations

– Course-to-fine refinement

– Spatial filtering of motion estimates

– Robust error norms

– Symmetry in I and J

– Affine transformation
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Advanced variations of basic methods



Refinement iterations

• The basic methods described here are based on a set 
of assumptions, e.g.:

– Brightness constancy: e.g., for 2-image case:

J(x) = I(x + d)

– High order terms in Taylor expansions can be 
neglected

– Constant d (or v) within 

• In general these assumptions are not all correct: 
estimate of d (or v) is inaccurate
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Refinement iterations



Refinement iterations

• The estimate d (or v) should, however, in most cases 
be approximately correct

• Warp I in accordance to estimated d (or v)

– If v is correctly estimated, the two images are 
more or less equal

– If not, there is some remaining d (or v) that can be 
estimated from the new I and the old J

– Iterate N times and accumulate new estimates of v 
(refine v) in each iteration
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Refinement iterations



Refinement iterations
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Refinement iterations

• N = number of iterations, depends on the application 
and on the data (images)

• Does not have to be very large

• For most applications: a “few” iterations are often 
sufficient
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Refinement iterations



Coarse-to-fine refinement
• In local motion analysis, the motion of each point is 

analyzed within a region 

–   has some radius R

• d cannot be robustly determined if |d|> R

• R cannot be made too large:

– d will not be constant in 

– Taylor expansion of I(x + y + d) not only linear

• To deal with larger d, use course-to-fine refinement based 
on scale pyramids

– See lecture 2
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Coarse-to-fine refinement



Coarse-to-fine refinement
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Coarse-to-fine refinement

• Start at the coarsest level

• Perform refinement iterations where d is initiated to 
0 at all points

• Produces an initial estimate of d at this level
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Coarse-to-fine refinement

• This initial estimate of d is then up-sampled to fit the 
image size at the next finer level

• Also: d is multiplied by 2 (or suitable factor) since 
displacements at the next finer level are 2 times as 
large as at the previous level

• Use this new d as initial estimate in refinement 
iterations at the finer level
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Coarse-to-fine refinement
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Coarse-to-fine refinement

• Continue this processing from the coarsest level all 
the way to the finest level

• Estimate of d from the finest level is the final 
estimate from this coarse-to-fine processing

• Can manage magnitudes of d which are in the order 
of R for  at the coarsest level

• Note: estimates of d at a coarser level does not have 
to be very accurate, it will be refined at the next 
finer level!
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Outliers

• Definition: an outlier is a point (or data entry) that 
doesn’t fit the model assumed for the data

• Data that fits the model: inliers

• Example: fitting a line to a set of points
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• If outliers are allowed to affect estimation of a model 
in the same way as inliers, the model can become 
very distorted
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Outliers

Line estimated
from the data,
including the
outlier

Correct lineTypical result if the line
is estimated by minimizing
sum of squared distances



Spatial filtering of motion estimates

• Motion estimates at two adjacent pixels should often 
be very similar

– The points are projections of 3D points on the 
same rigid object

– Not true at motion boundaries!

• Motion estimates can also be degraded by

– Image noise

– Invalid assumptions (e.g., because of outliers)
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Spatial filtering of motion estimates

• To reduce these effects it makes sense to allow the 
estimate of d to be affected by its neighbors

– Local averaging, weighted by a spatial window

– Corresponds to LP-filtering of d

• Even better: use normalized convolution

– Takes certainty of d into account

• Alternatively: use median filtering

– Avoids large influence from outliers
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Robust errors

• Adding squared distances implies:

Computing a weighted average of the 
distances, where each weight = the distance

• Implies: outliers are given a high weight

– Not what we want!!

• This effect can be reduced by using robust errors
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Robust errors

• Replace the square function with alternative 
function, for example
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All functions 
have continuous 

derivatives!
Linear for large x

Logarithmic for large x Never exceeds 1



Symmetric formulation

• The 2-image version of the LK-method does not treat 
images I and J in the same way

– Spatial gradients are only computed in I

– In refinement iterations, only one image is warped

• In the ideal situation, swapping I and J should 
produce a consistent result

– Not always true
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Symmetric formulation

• Use a symmetric formulation:

J(x – d/2) = I(x + d/2)

instead of

J(x) = I(x + d)
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Symmetric formulation

• Finding d as the minimizer of

• Can be solved in a similar way as before:

T d = s
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gradients from 
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Affine transformation

• The local motion model for the 2 image case only 
includes a translation:

 J(x) = I(x + d)

• A more complex model could also include an affine 
transformation:

J(x) = I(A x + d)
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Affine transformation

• A is a 2 × 2 matrix

• In practice, set A = I + A’

• A’ is then often a small matrix, easier to estimate

• Set

and minimize ε over z

• Leads to T’ z = s’
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(how?)

T’ is 6 × 6
s’ is 6-dimensional



Tracking
44

Image at t = t0 Image at t = t0 + Δt
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Tracking vs. motion estimation

• In motion estimation, the motion field m(x) is 
estimated either as a displacement field d(x) between 
two images, or as a velocity field v(x) based on a 
continuous time model

– The result is d(x) (or v(x)) as a function of x for all 
image points

• In tracking, we determine d(x) (or v(x)) for a single 
point, or for a region  around this point (the template) 

– The result is d (or v) for this template
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Tracking vs. estimation of m(x)

• Tracking can also be applied to a smaller set of points 
(templates) determined as interesting to track

– As a consequence, tracking can be done with low 
computational cost, alternative it allows more 
complex methods to be used since they are not 
applied to every image point

• Typically, tracking of a template is made over several 
consecutive images in an video sequence

– As long as the template can be robustly re-identified 
in each target image
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Applications for tracking

Tracking can be used for

• Following specific objects in an image sequence

– People, vehicles, targets, etc

• For efficiency:

– assume small v between each image

• Producing point correspondences for specific interest points in two or more 
images of the same scene

– Structure from motion

– Ego-motion estimation

• Determine 3D motion based on motion in the image

• Segmentation based on distinct objects moving with distinct motions

• Stereo matching (original app for LK-tracking!)

• Video compression

48



Basic tracking methods

• See tracking as a special case of 2-image motion estimation 
where image I is the template, and image J is an image from 
a video sequence (the target image) (or the other way 
around)

– Use the LK-approach, or other local methods for motion 
estimation.

– Referred to as LK-tracking

– Use the advanced methods mentioned previously
• In particular refinement iterations and scale pyramids

– Can be efficiently implemented in software & hardware
• GPGPU (Graphics hardware)
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Basic tracking methods



Basic tracking methods

• See tracking as the problem of re-identifying a 
template in a target image

– Block matching (grid-based method)

• See tracking as the problem of re-identifying a “blob” 
of pixels that have been determined as “not 
background”

– See subsequent lectures 
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Block matching

A rather straight-forward approach:

• Given
– A template 

– A target image J

– A predicted position of  in J

– A range N

• Prediction can be: where  was found in the previous image in the sequence
– Can also include statistical models (Kalman filter)

• Extract a set of regions in J around x,
of same size as 
– For example, in the ranges (x1 ± N/2, x2 ± N/2)

– Typically with integer shifted displacements

– Number of patches is in the order of N2
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Block matching

• Compare the template with all patches, find best match
– We need some similarity measure to do this!

– Generates a matching function ε(d1, d2)

– Find minimum of ε, (or maximum, depending on how ε is 
defined)

– Its position in J is (x1 + d1, x2 + d2), –N/2 · d1, d2 · N/2

– The estimated displacement of the template between image 1 
and image 2 given by (d1, d2)

• Referred to as block matching or template matching

• Can be implemented efficiently on GPGPU hardware
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Block matching

Some issues that need to be resolved

• How do we compare patches (=blocks of pixels)? Examples:
 Sum of squared differences (SSD)

 Sum of absolute differences (SAD)

 Cross-correlation (CC), normalized cross-correlation (NCC)

• How do we choose a reasonable N?
 Must be large enough to cover the displacements that occur for the application

 Computational complexity grows with N2

• Best match may not be for a unique displacement
 Repetitive patterns

• Sub-pixel accuracy
 ε(d1, d2) can be interpolated to determine inter-pixel optima
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Good features to track

• A paper by Tomasi & Kanade analyzes which 
templates are feasible for tracking

• Conclusion: we should consider templates that give 
T2D which are definitely
non-singular (big surprise?)

• T&K propose that min(1, 2) > threshold
is a useful criteria for template selection

54



Tomasi-Kanade

• The TK-criteria can be used to find interest points in 
an image, i.e., points that easily can be identified in 
several images

• In some applications we may be interested in 
tracking all such interest points

• Compare to the Harris-detector
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Practical aspects of tracking

Template update
• 3D objects tend to change appearance over time when moving in 

a scene

– Change of aspect and apparent size relative to the camera

• Suggests that the template should be updated from the target 
image, e.g.,

– At regular time intervals

– When the matching measure degrades too much

• Tricky to implement robustly

– Difficult to avoid that  starts to contain the background 
instead of the relevant object
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Practical aspects of tracking

Track-retrack
• 3D Tracking of an object over N images creates a motion trajectory, 

from image 1 to image N’

– A “curve” defined by the image coordinates x(k) of where  is 
found in each image, k = 1, …, N

• Generated by starting at x(1) in image 1 and successively finding 
the position of  in each new, x(k), image forward in time

• Ideally, if we instead start in image N, at position x(N), and track  
backward in time, we should end up at x(1)

• If the forward and backward trajectories differ too much, the 
tracking can be considered as failed, cannot be trusted for further 
processing
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Practical aspects of tracking

In the literature
• The basic LK-based methods (gradient based) appear 

in the literature under a variation of names, e.g.,

– Lucas-Kanade (LK)

– Kanade-Lucas (KL)

– Lucas-Kanade-Tomasi (LKT), or permutations

– Shi-Tomasi (ST)

• Can also be used as a refinement after block 
matching
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