
TSBB15
Computer Vision
Lecture 5
Global motion estimation
Tracking

Motion estimation
2

BCCE

Least squares solution

Based on T2D + s

Total least squares solution

Based on T3D

First order differential methods

The
inhomogeneous
method

The
homogeneous
method

• The techniques described next (and in the previous
lecture) are suitable for determining an the optical
flow, an estimate of m(x), at each point x in the image

• This is referred to as dense motion estimation

– Can still be characterized by a position dependent
certainty measure

• An alternative is tracking, where the motions of only a
small set of points, or a single point, are determined

– Later in this lecture…

3

Motion estimation

• There are other approaches,
for example

– Global smoothness of v
(Horn & Schunck)

– Second order differential methods

– Parametric optical flow

– Et cetera

4

Will be
covered here

Will not be
covered here

Motion estimation

The Horn & Schunck method

• At each point we seek the motion vector
v = (v1, v2) that satisfies the BCCE:

• Problem: one equation but two unknowns
• Previously, we dealt with this problem by considering

a local set of equations, assuming v constant in a local
region 

• Finding v can also be dealt with by means of a
global approach (with respect to the image)

5

• Let v(u, v) denote the velocity vector field in an
image, as a function of image position (u, v)

• BCCE suggests that we should find
 v(u, v) that minimizes

Integration is now made over an entire image!

6

Image gradient at (u, v) Time derivative at (u, v)

The Horn & Schunck method

• We can (in principle) always find
v(u, v) that gives  = 0:

7

(why?) Arbitrary function of (u, v)

The Horn & Schunck method

• Problem I:

Singularities when ∇I= 0

• Problem II:

Does not provide a unique solution since (u, v) can
be arbitrary chosen

• Problem III:

Strong variations in ∇I may not correspond to
strong variations in v(u, v)

8

The Horn & Schunck method

• H&S 1981: Let’s make v(u, v) unique by adding a
smoothness term to 

• This term should assure that v(u, v) is as smooth at
possible, seen as a function of (u, v)

• Smoothness =
 “as little variation in v as possible”

9

The Horn & Schunck method

• H&S used a smoothness term:

• Other types of smoothness terms appear in the
literature

10

The Horn & Schunck method

• New cost function

• The integrals are taken over the entire image
• λ is a “smoothness weight”
• Our goal: find v(u, v) that minimizes 

11

The Horn & Schunck method

• This was one of the first established methods for motion estimation

• Often referred to as a “global” method

• Can (to some extent) deal with the aperture problem

• In practice: v cannot be determined by solving a linear equation, instead
iterative methods are required
– Efficient algorithms exist

– See e.g. D. Sun, et al, Secrets of Optical Flow Estimation and Their Principles,
CVPR 2010.

• Not obvious how to choose λ
– constant or dependent on x?

• The smoothness constraint is not always valid
– Sharp motion boundaries exist in practice

• More “sophisticated” methods use other types of smoothness terms

12

The Horn & Schunck method

NOTE!!

• Horn & Schunck’s method is not correctly described
in the book by R. Szeliski

– In the printed book and e-book: on page 360,
equation (8.70)

– In the draft version on the web: on page 410,
equation (8.70)

• The cost function EHS lacks the regularization term

13

The Horn & Schunck method

Local vs global methods
14

= true motion

0

Local analysis
Global

analysis

= normal motion

Second order differential methods

• Another approach for obtaining sufficient
information to uniquely determine v at each point is
to differentiate BCCE again with respect to u and v

• This method is again based on local computations

15

Second order differential methods

• BCCE:

• Differentiate with respect to u and v:

16

Second order differential methods
• Now we get 2 additional equations in

variables v(v1, v2):

• H is the Hessian matrix (second order derivatives) of
f w.r.t. u and v

• Solve in a similar way as the LK-equation

17

Multi order differential methods

• There is nothing that prevents us from using both
first and second order derivatives simultaneously!

18

Multi order differential methods

• We get 3 (or more) equations and have 2 unknowns

• Solutions can still be found using various least
squares techniques
(how?)

19

Motion estimation, summary

20

BCCE

Least squares
solution

Based on T2D Total least squares
solution

Based on T3D

Global methods (e.g.
H&S)

Second and higher
order
differential methods

Motion estimation, summary

• In the ideal case, all methods
(in principle) should give the same solution

• They differ mainly with respect to
– Sensitivity to

• noise

• deviations from model assumptions

– Computational demand

– Certainty measures

• For all methods: different sizes of  and different
ways to estimate gradients give different quality of
results

21

Variations of basic methods
• These basic methods for motion estimation, in particular

the local ones, can be significantly improved (at moderate
cost) by using one or more advanced techniques, such
as

– Refinement iterations

– Course-to-fine refinement

– Spatial filtering of motion estimates

– Robust error norms

– Symmetry in I and J

– Affine transformation

22

Advanced variations of basic methods

Refinement iterations

• The basic methods described here are based on a set
of assumptions, e.g.:

– Brightness constancy: e.g., for 2-image case:

J(x) = I(x + d)

– High order terms in Taylor expansions can be
neglected

– Constant d (or v) within 

• In general these assumptions are not all correct:
estimate of d (or v) is inaccurate

23

Refinement iterations

Refinement iterations

• The estimate d (or v) should, however, in most cases
be approximately correct

• Warp I in accordance to estimated d (or v)

– If v is correctly estimated, the two images are
more or less equal

– If not, there is some remaining d (or v) that can be
estimated from the new I and the old J

– Iterate N times and accumulate new estimates of v
(refine v) in each iteration

24

Refinement iterations

Refinement iterations

25

Image I Image J
Warp

Image I
according to d

Displacement d

Est d

+

Initialize
to 0

Iterate
N times

Refinement iterations

Refinement iterations

• N = number of iterations, depends on the application
and on the data (images)

• Does not have to be very large

• For most applications: a “few” iterations are often
sufficient

26

Refinement iterations

Coarse-to-fine refinement
• In local motion analysis, the motion of each point is

analyzed within a region 

–  has some radius R

• d cannot be robustly determined if |d|> R

• R cannot be made too large:

– d will not be constant in 

– Taylor expansion of I(x + y + d) not only linear

• To deal with larger d, use course-to-fine refinement based
on scale pyramids

– See lecture 2

27

Coarse-to-fine refinement

Coarse-to-fine refinement

28

Image I

G
a

u
ss

ia
n

py

ra
m

id

Coarsest
scale

Image J

LP-filtering &
sub-sampling

LP-filtering &
sub-sampling

LP-filtering &
sub-sampling

LP-filtering &
sub-sampling

Down-sample by a factor
2 in both directions. Other
factors can also be used
(even non-integer factors)

Number of scale levels
is application dependent

Coarse-to-fine refinement

Coarse-to-fine refinement

• Start at the coarsest level

• Perform refinement iterations where d is initiated to
0 at all points

• Produces an initial estimate of d at this level

29

Refinement
iterations

0

d

I J

Coarse-to-fine refinement

• This initial estimate of d is then up-sampled to fit the
image size at the next finer level

• Also: d is multiplied by 2 (or suitable factor) since
displacements at the next finer level are 2 times as
large as at the previous level

• Use this new d as initial estimate in refinement
iterations at the finer level

30

Coarse-to-fine refinement

31

Refinement
iterations

I J
Mult by 2

Up-sample by 2

Estimate of d at next coarser level

Estimate of d at this level

Coarse-to-fine refinement

• Continue this processing from the coarsest level all
the way to the finest level

• Estimate of d from the finest level is the final
estimate from this coarse-to-fine processing

• Can manage magnitudes of d which are in the order
of R for  at the coarsest level

• Note: estimates of d at a coarser level does not have
to be very accurate, it will be refined at the next
finer level!

32

Outliers

• Definition: an outlier is a point (or data entry) that
doesn’t fit the model assumed for the data

• Data that fits the model: inliers

• Example: fitting a line to a set of points

33

Outliers

Outlier
point

Correct line

• If outliers are allowed to affect estimation of a model
in the same way as inliers, the model can become
very distorted

34

Outliers

Line estimated
from the data,
including the
outlier

Correct lineTypical result if the line
is estimated by minimizing
sum of squared distances

Spatial filtering of motion estimates

• Motion estimates at two adjacent pixels should often
be very similar

– The points are projections of 3D points on the
same rigid object

– Not true at motion boundaries!

• Motion estimates can also be degraded by

– Image noise

– Invalid assumptions (e.g., because of outliers)

35

Spatial filtering of motion estimates

• To reduce these effects it makes sense to allow the
estimate of d to be affected by its neighbors

– Local averaging, weighted by a spatial window

– Corresponds to LP-filtering of d

• Even better: use normalized convolution

– Takes certainty of d into account

• Alternatively: use median filtering

– Avoids large influence from outliers

36

Robust errors

• Adding squared distances implies:

Computing a weighted average of the
distances, where each weight = the distance

• Implies: outliers are given a high weight

– Not what we want!!

• This effect can be reduced by using robust errors

37

Robust errors

• Replace the square function with alternative
function, for example

38

All functions
have continuous

derivatives!
Linear for large x

Logarithmic for large x Never exceeds 1

Symmetric formulation

• The 2-image version of the LK-method does not treat
images I and J in the same way

– Spatial gradients are only computed in I

– In refinement iterations, only one image is warped

• In the ideal situation, swapping I and J should
produce a consistent result

– Not always true

39

Symmetric formulation

• Use a symmetric formulation:

J(x – d/2) = I(x + d/2)

instead of

J(x) = I(x + d)

40

Symmetric formulation

• Finding d as the minimizer of

• Can be solved in a similar way as before:

T d = s

41

T and s contain
gradients from

both I and J
(how?)

Affine transformation

• The local motion model for the 2 image case only
includes a translation:

 J(x) = I(x + d)

• A more complex model could also include an affine
transformation:

J(x) = I(A x + d)

42

Unknown parameters
to be estimated,
depend on x

Affine transformation

• A is a 2 × 2 matrix

• In practice, set A = I + A’

• A’ is then often a small matrix, easier to estimate

• Set

and minimize ε over z

• Leads to T’ z = s’

43

(how?)

T’ is 6 × 6
s’ is 6-dimensional

Tracking
44

Image at t = t0 Image at t = t0 + Δt

Image template
that we want to find
in the target image

Tracking vs. motion estimation

• In motion estimation, the motion field m(x) is
estimated either as a displacement field d(x) between
two images, or as a velocity field v(x) based on a
continuous time model

– The result is d(x) (or v(x)) as a function of x for all
image points

• In tracking, we determine d(x) (or v(x)) for a single
point, or for a region  around this point (the template)

– The result is d (or v) for this template

45

46

Tracking vs. estimation of m(x)

• Tracking can also be applied to a smaller set of points
(templates) determined as interesting to track

– As a consequence, tracking can be done with low
computational cost, alternative it allows more
complex methods to be used since they are not
applied to every image point

• Typically, tracking of a template is made over several
consecutive images in an video sequence

– As long as the template can be robustly re-identified
in each target image

47

Applications for tracking

Tracking can be used for

• Following specific objects in an image sequence

– People, vehicles, targets, etc

• For efficiency:

– assume small v between each image

• Producing point correspondences for specific interest points in two or more
images of the same scene

– Structure from motion

– Ego-motion estimation

• Determine 3D motion based on motion in the image

• Segmentation based on distinct objects moving with distinct motions

• Stereo matching (original app for LK-tracking!)

• Video compression

48

Basic tracking methods

• See tracking as a special case of 2-image motion estimation
where image I is the template, and image J is an image from
a video sequence (the target image) (or the other way
around)

– Use the LK-approach, or other local methods for motion
estimation.

– Referred to as LK-tracking

– Use the advanced methods mentioned previously
• In particular refinement iterations and scale pyramids

– Can be efficiently implemented in software & hardware
• GPGPU (Graphics hardware)

49

Basic tracking methods

Basic tracking methods

• See tracking as the problem of re-identifying a
template in a target image

– Block matching (grid-based method)

• See tracking as the problem of re-identifying a “blob”
of pixels that have been determined as “not
background”

– See subsequent lectures

50

Basic tracking methods

Block matching

A rather straight-forward approach:

• Given
– A template 

– A target image J

– A predicted position of  in J

– A range N

• Prediction can be: where  was found in the previous image in the sequence
– Can also include statistical models (Kalman filter)

• Extract a set of regions in J around x,
of same size as 
– For example, in the ranges (x1 ± N/2, x2 ± N/2)

– Typically with integer shifted displacements

– Number of patches is in the order of N2

51

Block matching

• Compare the template with all patches, find best match
– We need some similarity measure to do this!

– Generates a matching function ε(d1, d2)

– Find minimum of ε, (or maximum, depending on how ε is
defined)

– Its position in J is (x1 + d1, x2 + d2), –N/2 · d1, d2 · N/2

– The estimated displacement of the template between image 1
and image 2 given by (d1, d2)

• Referred to as block matching or template matching

• Can be implemented efficiently on GPGPU hardware

52

Block matching

Some issues that need to be resolved

• How do we compare patches (=blocks of pixels)? Examples:
 Sum of squared differences (SSD)

 Sum of absolute differences (SAD)

 Cross-correlation (CC), normalized cross-correlation (NCC)

• How do we choose a reasonable N?
 Must be large enough to cover the displacements that occur for the application

 Computational complexity grows with N2

• Best match may not be for a unique displacement
 Repetitive patterns

• Sub-pixel accuracy
 ε(d1, d2) can be interpolated to determine inter-pixel optima

53

Good features to track

• A paper by Tomasi & Kanade analyzes which
templates are feasible for tracking

• Conclusion: we should consider templates that give
T2D which are definitely
non-singular (big surprise?)

• T&K propose that min(1, 2) > threshold
is a useful criteria for template selection

54

Tomasi-Kanade

• The TK-criteria can be used to find interest points in
an image, i.e., points that easily can be identified in
several images

• In some applications we may be interested in
tracking all such interest points

• Compare to the Harris-detector

55

Practical aspects of tracking

Template update
• 3D objects tend to change appearance over time when moving in

a scene

– Change of aspect and apparent size relative to the camera

• Suggests that the template should be updated from the target
image, e.g.,

– At regular time intervals

– When the matching measure degrades too much

• Tricky to implement robustly

– Difficult to avoid that  starts to contain the background
instead of the relevant object

56

Practical aspects of tracking

Track-retrack
• 3D Tracking of an object over N images creates a motion trajectory,

from image 1 to image N’

– A “curve” defined by the image coordinates x(k) of where  is
found in each image, k = 1, …, N

• Generated by starting at x(1) in image 1 and successively finding
the position of  in each new, x(k), image forward in time

• Ideally, if we instead start in image N, at position x(N), and track 
backward in time, we should end up at x(1)

• If the forward and backward trajectories differ too much, the
tracking can be considered as failed, cannot be trusted for further
processing

57

Practical aspects of tracking

In the literature
• The basic LK-based methods (gradient based) appear

in the literature under a variation of names, e.g.,

– Lucas-Kanade (LK)

– Kanade-Lucas (KL)

– Lucas-Kanade-Tomasi (LKT), or permutations

– Shi-Tomasi (ST)

• Can also be used as a refinement after block
matching

58

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

