

TSBB15 Computer Vision

Lecture 6
Clustering and Learning

Per-Erik Forssén

Today's topics

Machine learning in Computer Vision

Use cases

Main algorithms

K-means clustering
Mixture models and EM
Background models

Related algorithms

Meanshift clustering Generalised Hough Transforms (GHT) Channel clustering

Machine Learning in Computer Vision

- Machine Learning(ML) is used in most parts of Computer Vision. The most media grabbing case is:
 - 1. Finding patterns in data
- Covered in e.g. TSBB19, TBMI26

Finding patterns in data

 ML used in recognition and matching (LE 8) in the form of learned features.

Other applications include:
 object recognition,
 object tracking,
 image captioning etc.
 These are covered in TSBB19:
 Machine Learning for
 Computer Vision, HT1

Why machine learning?

- Machine Learning(ML) is used in most parts of Computer Vision. The most media grabbing case is:
 - 1. Finding patterns in data
- Today we will look at two other use cases:
 - 2. Parameter tuning
 - 3. Adaptation to changing conditions

- Most Computer Vision systems are complex pieces of software.
- The more complex a system is, the more parameters it has. E.g. filter sizes, thresholds for detection etc. These need to be tuned!

 JUDYBATS

Parameter tuning, the hacker way:

Try different values of the parameters, and look at the result on a test example.

Parameter tuning, the hacker way:

Try different values of the parameters, and look at the result on a test example.

 Results in overfitting: result is good on the test example, but bad in other cases.

- Parameter tuning, the engineering way:
 - 1. Collect a set of examples of the desired behaviour of an algorithm.
 - 2. Look for the parameters that produce the desired behaviour on the examples.

- Parameter tuning, the engineering way:
 - 1. Collect a set of examples of the desired behaviour of an algorithm.
 - 2. Look for the parameters that produce the desired behaviour on the examples.
- Be careful: do not tune too much! (overfitting again)

- Parameter tuning as supervised learning:
 - 1. Collect a training set
 - 2. Iteratively change the parameters to improve performance on the training set.
 - 3. Decide when to stop, by monitoring performance on a validation set.

Parameters are found by minimizing a loss function that defines the desired behaviour.

Example: KLT Tuning
 Rotate the camera, and
 fit a homography to tracks.
 This way you can
 automatically decide which
 motion vectors are good
 (v∈G) and which are bad (v∈B).

Look for tracker parameters that minimise a loss.

E.g.:
$$J(p_1,...,p_N) = |B|/(|G|+|B|)$$

- Best practice in parameter tuning is to use supervised learning:
- Training set
 - change parameters to minimize a loss on this.
- Test set (examples not used in learning/tuning)
 - tests generalization to new situations.
- Validation set (part of the training set)
 - used to decide when to stop tuning, and avoid overfitting.

Adaptation

 Computer Vision systems that are deployed in live situations face changing conditions. E.g. different illumination at night and during the day.

Adaptation

- Computer Vision systems that are deployed in live situations face changing conditions. E.g. different illumination at night and during the day.
- A convenient way to cope with changes, is to make the vision system adaptive. (an alternative is *invariance*, see LE8).

Adaptation

- Computer Vision systems that are deployed in live situations face changing conditions. E.g. different illumination at night and during the day.
- A convenient way to cope with changes, is to make the vision system adaptive.
- Example: Background models introduced later in this lecture.

Learning in Vision Systems

Batch learning: learn once, use forever

Online learning: learn continuously

Learning in Vision Systems

- Batch learning: learn once, use forever Is used to automatically tune parameters, features, classifiers etc.
- Online learning: learn continuously
 Is used to automatically adapt e.g. classifiers and trackers to changing conditions.

Different learning situations/paradigms:

Supervised learning Reinforcement learning Unsupervised learning

 Covered in depth in: TBMI26 Neural Networks and Learning Systems

Different learning situations/paradigms:

Supervised learning
Reinforcement learning
Unsupervised learning ←this lecture

 Covered in depth in: TBMI26 Neural Networks and Learning Systems

Supervised learning

learn $\mathbf{y} = \mathbf{f}(\mathbf{x})$ from examples $\{\mathbf{x}_n, \mathbf{y}_n\}_1^N$

= function approximation

Unsupervised learning
 learn y=f(x) from examples{x_n}₁^N
 =manifold learning or clustering

Manifold learning finds low dimensional representations of high dimensional data.
 E.g. coordinates on a surface in nD.

- Unsupervised learning
 learn y=f(x) from examples{x_n}₁^N
 =manifold learning or clustering
 - Manifold learning finds low dimensional representations of high dimensional data.
 E.g. coordinates on a surface in nD.
- This lecture is mainly about clustering: $y \in \mathbb{N}$ i.e. each sample \mathbf{x}_n is assigned a cluster *label*.

Clustering

– Our input is a set of data points $\left\{\mathbf{x}_n
ight\}_1^N$

Clustering

– Each data point $\{\mathbf{x}_n\}_1^N$ is assigned a cluster label $y \in [1 \dots K]$, and a prototype $\{\mathbf{p}_k\}_1^K$

Clustering

- Each data point $\{\mathbf{x}_n\}_1^N$ is assigned a cluster label $y \in [1 \dots K]$, and a prototype $\{\mathbf{p}_k\}_1^K$
- labels and prototypes are latent (hidden)
 variables that we want to estimate.
- Many algorithms, with different representations of the prototypes/clusters. We will now look at the K-means algorithm, and later Expectation Maximisation (EM)...

 A good clustering has small distances between prototypes and samples within

that cluster.

$$J(\mathbf{p}_1, \dots \mathbf{p}_K) = \sum_{k=1}^K \sum_{n=1}^N \delta[y_n = k] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

$$J(\mathbf{p_1}, \dots \mathbf{p_K}) = \sum_{k=1}^K \sum_{n=1}^N \delta[y_n = k] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

$$J(\mathbf{p}_1, \dots \mathbf{p}_K) = \sum_{k=1}^K \sum_{n=1}^N \delta[y_n = k] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

$$J(\mathbf{p}_1, \dots \mathbf{p}_K) = \sum_{k=1}^K \sum_{n=1}^N \delta[y_n = k] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

$$J(\mathbf{p}_1, \dots \mathbf{p}_K) = \sum_{k=1}^K \sum_{n=1}^N \boldsymbol{\delta}[\boldsymbol{y_n} = \boldsymbol{k}] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

Loss function:

$$J(\mathbf{p}_1, \dots \mathbf{p}_K) = \sum_{k=1}^K \sum_{n=1}^N \delta[y_n = k] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

- Non-convex problem. What is this?
- K-means clustering [MacQueen'67] is a useful heuristic, that iteratively improves on an initial clustering.

Convexity

Convex implies one local min (global min)

- 1. Pick random sample points as cluster prototypes.
- 2. Assign cluster labels $\{y_n\}_1^N$ to samples $\{\mathbf{x}_n\}_1^N$ according to prototype distances $d_k^2 = ||\mathbf{x}_n \mathbf{p}_k||^2$
- 3. Assign prototypes as averages of samples within cluster: $\mathbf{p}_k = \frac{1}{|\{y_n = k\}|} \sum_{n=1}^N \delta[y_n = k] \mathbf{x}_n$
- 4. Repeat 2-3 until labels stop changing.

K-means issues

K-means finds a local min of the loss:

$$J(\mathbf{p}_1, \dots \mathbf{p}_K) = \sum_{k=1}^K \sum_{n=1}^N \delta[y_n = k] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

Issue 1:Bad repeatability:

Issue 2:What is the value of K?

K-means fixes

- Partial fixes for the local min problem:
 - Run the algorithm many times, and pick the solution with the lowest J.
 - choose a smarter initial value
 - The discrete label assignment makes the loss non-smooth.
 A smoother loss would mean fewer local minima.
- Steps 2,3 can be seen as special cases of the EMalgorithm [Dempster et al. 77] and EM has a smoother loss...
- To understand EM we first need to introduce mixture models.

 A generative model for data that may come from several distributions.

E.g. value of a particular pixel in a stationary

camera:

- shadow/no shadow

- cloudy/sunny
- temporary occlusion (flag or branches)

 Value of a particular pixel in a stationary camera: p(I_{256,512})

• We model the probability density of pixel intensity I as: $p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$

We model the probability density of pixel intensity *I* as:

 $p(I) = \sum_{k=1}^{n} p(I|\Gamma_k) P(\Gamma_k)$

We model the probability density of pixel intensity *I* as:

$$p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$$

Mixture components:

$$p(I|\Gamma_k)$$

e.g.
$$p(I|\Gamma_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-0.5(I-\mu_k)^2/\sigma_k^2}$$

Gaussian mixture model (GMM)

- We model the probability density of pixel intensity *I* as:
 - pixel intensity I as: $p(I) = \sum_{k=1}^{n} p(I|\Gamma_k) P(\Gamma_k)$

k=1

• Mixture probabilities: $\sum_{k=1}^{K} P(\Gamma_k) = 1$

Probability of being in a particular component.

Gaussian mixture components:

$$p(I|\Gamma_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-0.5(I-\mu_k)^2/\sigma_k^2}$$

Notation conditioned on the parameters:

$$p(I|\mu_k, \sigma_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-0.5(I-\mu_k)^2/\sigma_k^2}$$

Also the mixture probabilities are parameters:

$$P(\Gamma_k) = \pi_k$$
, where $\sum_k \pi_k = 1$

A generative model

- The mixture model is a generative model.
- This means that it can generate samples.

How?
$$p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$$

A generative model

- The mixture model is a generative model.
- This means that it can generate samples.

How?
$$p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$$

• A: First draw component (How?), then draw sample from that component's distribution.

• Given a set of measurements, $\{I_n\}_1^N$ how do we estimate the parameters of the mixture distribution p(I)?

$$p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$$

• Given a set of measurements, $\{I_n\}_1^N$ how do we estimate the parameters of the mixture distribution p(I)?

$$p(I|\{\pi_k, \mu_k, \sigma_k\}_1^K) = \sum_{k=1}^K \pi_k p(I|\mu_k, \sigma_k)$$

- This can be done with the EM algorithm.
- Note similarities with K-means below.

 Maximize a loss which is the log likelihood of all samples:

$$J(\Theta) = \log \left(\prod_{n=1}^{N} p(I_n | \Theta) \right) = \sum_{n=1}^{N} \log p(I_n | \Theta)$$

 Maximize a loss which is the log likelihood of all samples:

$$J(\Theta) = \log \left(\prod_{n=1}^{N} p(I_n | \Theta) \right) = \sum_{n=1}^{N} \log p(I_n | \Theta)$$

Here Θ, is a vector that includes parameters
 of the mixture and component assignments
 (cf. labels in K-means):

$$\Theta = (\pi_1, \dots, \pi_K, \sigma_1, \dots, \sigma_K, \mu_1, \dots, \mu_K, a_{11}, \dots, a_{KN})$$

 Maximize a loss which is the log likelihood of all samples:

$$J(\Theta) = \sum_{n=1}^{N} \log p(I_n | \Theta)$$

To do this we alternate between:

E: compute assignments, from sample likelihoods using current model, Θ_{t-1} **M**: estimate other model parameters in Θ_t , given the assignments

The E-step for a mixture:

$$p(I|\{\pi_k, \mu_k, \sigma_k\}_1^K) = \sum_{k=1}^K \pi_k p(I|\mu_k, \sigma_k)$$

 Computes the <u>assignments</u> (aka. responsibilities) according to:

$$\tilde{a}_{kn} = \pi_k p(I_n | \mu_k, \sigma_k)$$

$$a_{kn} = \tilde{a}_{kn} / \sum_{l=1}^{K} \tilde{a}_{ln}$$

The M-step updates the mixture probabilities:

$$\pi_k = P(\Gamma_k) = \frac{1}{N} \sum_{n=1}^{N} a_{kn}$$

and mixture parameters (assuming a GMM):

$$\mu_k = \frac{1}{\sum_{n=1}^{N} a_{kn}} \sum_{n=1}^{N} a_{kn} I_n$$

$$\sigma_k^2 = \frac{1}{\sum_{n=1}^{N} a_{kn}} \sum_{n=1}^{N} a_{kn} (I_n - \mu_k)^2$$

The EM Algorithm

- 1. Postulate a mixture distribution.
- 2. **E**: Compute assignments, a_{kn} , for samples $\{I_n\}_1^N$, using the current mixture model.
- 3. **M**: Use assignments to update mixture model parameters.
- 4. Repeat 2-3 until convergence.

- Generalizes to higher dimensions.
- e.g. in 2D we have 5 parameters in each mixture component:

$$\mu = egin{pmatrix} \mu_1 \ \mu_2 \end{pmatrix} \quad oldsymbol{\Sigma} = egin{pmatrix} \sigma_{11} & \sigma_{12} \ \sigma_{12} & \sigma_{22} \end{pmatrix}$$

Just like K-means,
 EM also finds a local min.

Demo for 2D case:

Iter=31 delta=9.374028497877163e-10

- A popular application of mixture models is background modelling (SHB 16.5.1):
 - Estimate a mixture model for the image in each pixel.
 - Pixel values far from the mixture are seen as foreground pixels.
 - Popular way track e.g. people and cars in stationary surveillance cameras.
 - Fast compared to motion estimation.

Background modelling+shadow detection

CVL Master thesis of John Wood 2007

- Samples now arrive one at a time.
- EM uses a batch update:

$$\mu_k = \frac{1}{\sum_{n=1}^{N} a_{kn}} \sum_{n=1}^{N} a_{kn} I_n$$

$$\sigma_k^2 = \frac{1}{\sum_{n=1}^{N} a_{kn}} \sum_{n=1}^{N} a_{kn} (I_n - \mu_k)^2$$

On-line update is needed

- Samples now arrive one at a time.
- On-line update:

$$\mu_k[n] = (1 - \alpha)\mu_k[n - 1] + \alpha I_n$$

$$\sigma_k^2[n] = (1 - \alpha)\sigma_k^2[n - 1] + \alpha (I_n - \mu_k[n - 1])^2$$

$$\pi_k[n] = (1 - \alpha)\pi_k[n - 1] + \alpha a_{kn}$$

• How to design $\alpha(a_{kn}, \pi_k, k)$ can be investigated in project 1.

Mean-shift Clustering

- A proper solution to the local min problem is to find all local minima.
- Two steps:
 - Mean-shift filter (mode seeking)
 - Clustering

Kernel density estimate

• For a set of sample points $\{\mathbf{x}_n\}_1^N$ we define a continuous PDF-estimate

as:

$$p(\mathbf{x}) = \frac{1}{Nh^d} \sum_{n=1}^{N} K\left(\frac{\mathbf{x}_n - \mathbf{x}}{h}\right)$$

Kernel density estimate

For a set of sample points {x_n}₁^N
 we define a continuous PDF-estimate
 as:

$$p(\mathbf{x}) = \frac{1}{Nh^d} \sum_{n=1}^{N} K\left(\frac{\mathbf{x}_n - \mathbf{x}}{h}\right)$$

- K() is a kernel, e.g. $K(\mathbf{x}) = c \exp(-\mathbf{x}^T \mathbf{x}/2)$
- h is the kernel scale.

Mode seeking

- By modes of a PDF, we mean the local peaks of the kernel density estimate.
 - These can be found by gradient ascent, starting in each sample.
 - If we use the Epanechnikov kernel,

$$K_E(\mathbf{x}) = \begin{cases} c(1 - \mathbf{x}^T \mathbf{x}) & \text{if } \mathbf{x}^T \mathbf{x} \leq 1 \\ 0 & \text{otherwise.} \end{cases}$$

a particularly simple gradient ascent is possible.

Mean-shift filtering

- Start in each data point, $\mathbf{m}_n = \mathbf{x}_n$
- Move to position of local average

$$\mathbf{m}_n \leftarrow \text{mean} \left\{ \mathbf{x}_n : \mathbf{x}_n \in S(\mathbf{m}_n) \right\}$$

Repeat step 2 until convergence.

Mean-shift clustering

 After convergence of the mean-shift filter, all points within a certain distance (e.g. h) are said to constitute one cluster.

Pose estimation

- Mean-shift can be used for "continuous voting" in pose estimation.
- Each local invariant feature (e.g. SIFT or MSER) will cast a vote (sample point)

$$\mathbf{x} = egin{pmatrix} x_0 & y_0 & lpha & s & arphi & heta & \mathsf{type} \end{pmatrix}^T$$

Mean-shift

Choice of kernel scale affects results

Mean-shift

- For the Epanechnikov kernel, the algorithm is quite fast.
- The Gaussian kernel is another popular choice.
- There is also a scale adaptive version of meanshift, that works in a manner similar to EM in each iteration (slower).

Generalised Hough Transform

- Another way to find modes of a PDF is to quantize the parameter space into accumulator cells.
- Each sample then casts a vote in one or several cells.
- This is called the *Generalised Hough Transform* (GHT).

Generalised Hough Transform

 Non-iterative ⇒ constant time complexity.

Generalised Hough Transform

 Quantisation can be dealt with by increasing the number of cells, and blurring.

- A similar technique is to use averaging in channel representation.
 - By first quantizing, and then blurring, we are actually introducing aliasing of the PDF.
 - Better to directly sample the kernel density estimate at regularly sampled positions.
 - Density of samples is regulated by the kernel scale.

Channel encoding

Channel value

$$x = 4 \implies \text{enc}(x) = \mathbf{x} = [B(x-1) \ B(x-2) \ \dots \ B(x-8)]^T$$

Channel encoding

Channel value

 $x = 4 \Rightarrow \text{enc}(x) = \mathbf{x} = \begin{bmatrix} 0 & 0 & 0.25 & 1 & 0.25 & 0 & 0 \end{bmatrix}^T$

Channel decoding

$$\hat{x} = \operatorname{dec}(\mathbf{x})$$

 A local decoding is necessary in order to decode a multi-valued channel representation.

That is

$$\hat{x}_1 = \det(x_1 \dots x_3)$$
 $\hat{x}_2 = \det(x_6 \dots x_8)$

Decoding formula depends on the kernel.

Channel Clustering

- Channel encode data points, $\mathbf{x}_n = \operatorname{enc}(x_n)$
- Average channel vectors $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$
- Compute all decodings (\hat{x}, \hat{r})

Channel Clustering

- The decoding step computes location, density, and standard deviation at mode.
- Optimal decoding is expensive, but fast heuristic decodings exist.
- It can be shown [Forssén 04] that averaging in channel representation is equivalent to a regular sampling of a kernel density estimator.

Summary

- This was a quick overview of clustering, and related techniques.
- The main purpose with learning is to make Computer Vision systems adapt to data.
- The alternative, to manually tune parameters, works for small static problems, but does not scale and cannot adapt to changes.

Course events this week

- Thursday (tomorrow): Lab1
 Material on the course web page.
 Extensive preparation is necessary to finish on time.
- Friday: Projects start
 Introductory lecture
 Assignments into groups (5/4 per group)
 If you cannot be there, let me know!