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&
Today's topics

 Machine learning in Computer Vision
Use cases

* Main algorithms
K-means clustering
Mixture models and EM
Background models

Related algorithms
Meanshift clustering
Generalised Hough Transforms (GHT)
Channel clustering
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@ Computer Vision Laboratory
Machine Learning in
Computer Vision

e Machine Learning(ML) is used in most parts of
Computer Vision. The most media grabbing case is:

1. Finding patterns in data

e Covered in e.g. TSBB19, TBMI26
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Finding patterns in data

&

* ML used in recognition and
matching (LE 8) in the form
of learned features.

e Other applications include:
object recognition,
object tracking,
Image captioning etc.
These are covered in TSBB19:

Machine Learning for
Computer Vision, HT1
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Computer Vision Laboratory

(&

Why machine learning?

e Machine Learning(ML) is used in most parts of
Computer Vision. The most media grabbing case is:

1. Finding patterns in data

e Today we will look at two other use cases:

2. Parameter tuning
3. Adaptation to changing conditions
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Computer Vision Laboratory

(&

Parameter tuning

e Most Computer Vision systems are
complex pieces of software.

e The more complex a system is, the more
parameters it has. E.g. filter sizes,
thresholds for detection etc. These need
to be tuned! JUDYBATS

.;!“r’-‘-?
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@
Parameter tuning

e Parameter tuning, the hacker way:

Try different values of the parameters, and
look at the result on a test example.
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& omputer Vision Laboratory

Parameter tuning

e Parameter tuning, the hacker way:

Try different values of the parameters, and
look at the result on a test example.

e Results in overfitting: result is good on the
test example, but bad in other cases.
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@
Parameter tuning

e Parameter tuning, the engineering way:.

1. Collect a set of examples of the desired
behaviour of an algorithm.

2. Look for the parameters that produce
the desired behaviour on the examples.
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& omputer Vision Laboratory

Parameter tuning

e Parameter tuning, the engineering way:.

1. Collect a set of examples of the desired

behaviour of an algorithm.
2. Look for the parameters that produce

the desired behaviour on the examples.

e Be careful: do not tune too much!
(overfitting again)
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@ Computer Vision Laboratory

Parameter tuning

e Parameter tuning as supervised learning:

1. Collect a training set
2. lteratively change the parameters to improve

performance on the training set.
3. Decide when to stop, by monitoring performance

on a validation set.

Parameters are found by minimizing a loss function
that defines the desired behaviour.
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@
Parameter tuning

e Example: KLT Tuning
Rotate the camera, and
fit a homography to tracks.
This way you can
automatically decide which
motion vectors are good = 7z 2t
(veG) and which are bad (veB).

* ook for tracker parameters that minimise a loss.
E.g.. J(p1,....pNn) = |B|/(|G|+]|B))
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@ Computer Vision Laboratory

Parameter tuning

* Best practice in parameter tuning is to use
supervised learning:

* Training set
- change parameters to minimize a loss on this.

e Test set (examples not used in learning/tuning)
- tests generalization to new situations.

e Validation set (part of the training set)
- used to decide when to stop tuning, and avoid
overfitting.
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Adaptation

&

e Computer Vision systems that are
deployed in live situations face changing
conditions. E.qg. different illumination at
night and during the day.

s | x
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& omputer Vision Laboratory

Adaptation

e Computer Vision systems that are
deployed in live situations face changing
conditions. E.qg. different illumination at
night and during the day.

e A convenient way to cope with changes,
IS to make the vision system adaptive.
(an alternative is invariance, see LES).
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&
Adaptation

e Computer Vision systems that are
deployed in live situations face changing
conditions. E.qg. different illumination at
night and during the day.

e A convenient way to cope with changes,
IS to make the vision system adaptive.

e Example: Background models
introduced later In this lecture.

February 2, 2022 Computer Vision lecture 6 16



Computer Vision Laboratory

&

Learning in Vision Systems

e Batch learning: learn once, use forever

e Online learning: learn continuously
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@ Computer Vision Laboratory

Learning in Vision Systems

e Batch learning: learn once, use forever
Is used to automatically tune
parameters, features, classifiers etc.

e Online learning: learn continuously
|s used to automatically adapt e.q.
classifiers and trackers to changing
conditions.
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(&

* Different learning situations/paradigms:

Learning paradigms

Supervised learning
Reinforcement learning
Unsupervised learning

» Covered in depth In:
TBMI26 Neural Networks and Learning Systems
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@
Learning paradigms

* Different learning situations/paradigms:

Supervised learning
Reinforcement learning
Unsupervised learning <«this lecture

» Covered in depth In:
TBMI26 Neural Networks and Learning Systems
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@
Learning paradigms

* Supervised learning
learn y=f(x) from examples {x,,,y.} '

= function approximation
YA YA

y=xk +k, y=c'a
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@
Learning paradigms

* Unsupervised learning
learn y=f(x) from examples{x,}}
=manifold learning or clustering

« Manifold learning finds low dimensional
representations of high dimensional data
E.g. coordinates on a surface in nD.
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&
Learning paradigms

* Unsupervised learning
learn y=f(x) from examples{xn}'
=manifold learning or clustering

* Manifold learning finds low dimensional
representations of high dimensional data.
E.g. coordinates on a surface in nD.

* This lecture is mainly about clustering:

y € N i.e. each sample x, is assigned a
cluster label.
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Clustering

T

N
— Our input is a set of data points {Xn}l
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Clustering

10

-10

-10

— Each data point {Xn}l is assigned a cluster
labely € [1... K] and a prototype {p;}.*
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@ Computer Vision Laboratory

Clustering

— Each data point {Xn}l IS assigned a cluster
labely € [1... K] and a prototype {p;}.*

— labels and prototypes are latent (hidden)
variables that we want to estimate.

— Many algorithms, with different representations
of the prototypes/clusters. We will now look at
the K-means algorithm, and later
Expectation Maximisation (EM)...
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(&

* A good clustering has small distances
between prototypes and samples within
that cluster. 10

K-means clustering

-10
-10 -5 0 5 10
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@ Computer Vision Laboratory

K-means clustering

* A good clustering has small distances
between prototypes and samples within
that cluster. Encoded in loss function:

K N
J(pla---pK) — >4>45[yn — k]”xn _pk||2
k=1n=1
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@ Computer Vision Laboratory

K-means clustering

* A good clustering has small distances
between prototypes and samples within
that cluster. Encoded in loss function:

K N

J(P1,..-PK) = >: >:5[yn = kl||xn — pk||2
k=1n=1

February 2, 2022 Computer Vision lecture 6 29



@ Computer Vision Laboratory

K-means clustering

* A good clustering has small distances
between prototypes and samples within
that cluster. Encoded in loss function:

K N

J(P1,---Px) =D ) Olyn = K]l|xn — prll’
k=1n=1
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@ Computer Vision Laboratory

K-means clustering

* A good clustering has small distances
between prototypes and samples within
that cluster. Encoded in loss function:

J(py,- .- 775[yn—k]llxn P ||’

k=1 n=1

February 2, 2022 Computer Vision lecture 6 31



@ Computer Vision Laboratory

K-means clustering

* A good clustering has small distances
between prototypes and samples within
that cluster. Encoded in loss function:

K N

J(P1,.--PK) = >: >:5[yn = kl||xn — pk||2
k=1n=1
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@
K-means clustering

 Loss function:
K N

J(P1;---PK) = >: >:5[yn = kl||xn — pk||2
k=1n=1

* Non-convex problem. What is this?

« K-means clustering [MacQueen’67] is a
useful heuristic, that iteratively
iImproves on an initial clustering.
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Convexity

» Convex implies one local min (global min)

Convex function Non-convex function
0.35 A 0.70 A
0.30 A 0.65 A
0.25 - 0.60 -
0.20 A 0.55 1
0.15 A
0.50 A
0.10
0.45 A
0.05 A
0.40 A
0.00 A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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&
K-means clustering

1. Pick random sample points as cluster
prototypes.

2. Assign cluster labels {yn}; to samples {xn}y
according to prototype distances di = ||xn — P&||?

3. Assign prototypes as averages of samples

within cluster:
8[yn = k|xn,
Py, = |{yn—k}|Z b = K

4. Repeat 2-3 until labels stop changing.
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&

« K-means finds a local min of the loss:
K N
J(pla . -pK) — sz[yn — k]Hxn — pk||2

k=1n=1
* Issue 1:Bad repeatability:

K-means issues
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e |ssue 2:What is the value of K?
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K-means fixes

 Partial fixes for the local min problem:

— Run the algorithm many times, and pick the solution with
the lowest J.

— choose a smarter initial value
— The discrete label assignment makes the loss non-smooth.
A smoother loss would mean fewer local minima.
« Steps 2,3 can be seen as special cases of the EM-
algorithm [Dempster et al. 77] and EM has a
smoother loss...

To understand EM we first need to introduce mixture
models.
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Mixture models

T

A generative model for data that may come from
several distributions.

E.g. value of a particular pixel mastatlonary |
camera: R e

- cloudy/sunny :
- temporary occlusion
(flag or branches)

February 2, 2022 Computer Vision lecture 6 38



Mixture models

* Value of a particular pixel in a stationary

camera: p(l2s6512)
Empirical distribution at [256,512]
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Mixture models

&

* We model the probablllty denS|ty of
pixel intensity / as: _ Zp (I P(T
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Mixture models

(&

* We model the probablllty denS|ty of
el intensity / as:
pixel | ity _ Zp (IT}) P(T

Empirical distribution at [256,512]
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@
Mixture models

* We model the probabillity denS|ty of

el intensity / as:
pixel intensity 185 1) _ S 10 (e
k=1

p(I|I'x)
e.g. " |

1 2/ 2
I\ 6—0-5(I—Mk:) /0%
PUIT:) = V2o,

Gaussian mixture model (GMM) “,___ N1
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@
Mixture models

* We model the probablllty denS|ty of
el intensity / as:
pixel intensity — Zp (IIT%) P(T')

. Mixture probabilities: EK: Pr_ _,
)

=1

Probability of being in a particular
component.
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Mixture models

« Gaussian mixture components:
p(IIT) = 1 6—0-5(1—%)2/02

- \2noy,
* Notation conditioned on the parameters:

]_ . . 2 2
(I |k, o3) = \/ﬂake 0.5(1 — ug)*/oi

» Also the mixture probabilities are parameters:
P(Fk) — Tk where Zﬂ'k =1
k
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&

* The mixture model is a generative model.

* This means that it can generate samples.
How?

A generative model

p(I) = p(IIT%)P(T)

February 2, 2022 Computer Vision lecture 6 45
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A generative model

* The mixture model is a generative model.

* This means that it can generate samples.
How?

p(I) = p(IIT%)P(T)

* A: First draw component (How?), then draw
sample from that component’s distribution.
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@
Expectation Maximisation

N

* Given a set of measurements,{]n}l
how do we estimate the parameters of
the mixture distribution p(/)”?

p(I) = p(IIT%)P(T)
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Expectation Maximisation

N

* Given a set of measurements,{]n}l
how do we estimate the parameters of
the mixture distribution p(/)??

K
(L[ {7k, pores Ok}{{) — Zﬂkp(f\uk, Ok)
k=1

* This can be done with the EM algorithm.
* Note similarities with K-means below.
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@ Computer Vision Laboratory

Expectation Maximisation

- Maximize a loss which is the log likelihood of
all samples:

J(©) = log (H punr@>) =3 " log p(1,|0)
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&
Expectation Maximisation

- Maximize a loss which is the log likelihood of
all samples:

J(©) = log (H punr@>) =3 " log p(1,|0)

- Here O, is a vector that includes parameters
of the mixture and component assignments
(cf. labels in K-means):

@:(7'('1,...,7TK,O'1,...,O'K,,ul,...,,LLK,CLH,...,CLKN)
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Expectation Maximisation

- Maximize a loss which is the log likelihood of
all samples:

J(©) =) logp(I,|0)

- To do this we alternate between:
E. compute assignments, from sample
likelihoods using current model, O¢.1
M: estimate other model parameters in G,

given the assignments
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Expectation Maximisation

* The E-step for a mixture: o

K
p(L| {7k, ks Ok fy ) = Zﬂkp(f\/ik,%)
k=1
« Computes the assignments (aka. responsibilities)
according to:

Tep(Ln |k, ok

&kn/ leil Qin

February 2, 2022 Computer Vision lecture 6 52

Akn

UAkn




& omputer Vision Laboratory

Expectation Maximisation

 The M-step updates the mixture probabilities:
N
1
T — P(Fk) — anlakn

« and mixture paramet?vrs (assuming a GMM):

Mk — ZNl Zakn]n
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The EM Algorithm

1. Postulate a mixture distribution.

2. E: Compute assignments, axn, for samples
{I,}7, using the current mixture model.

3. M: Use assignments to update mixture model
parameters.

4. Repeat 2-3 until convergence.
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Expectation Maximisation

* Generalizes to higher dimensions.

* e.g.In 2D we have 5 parameters in each
mixture component:

[y = (.UJI) 2 _ (011 012)
12 g12 022
e Just like K-means,
EM also finds a local min.
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Expectation Maximisation

&

« Demo for 2D case:

lter=31 delta=9.374028497877163e-10
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Background modelling

* A popular application of mixture models
iIs background modelling (SHB 16.5.1):

— Estimate a mixture model for the image in
each pixel.

— Pixel values far from the mixture are seen
as foreground pixels.

— Popular way track e.g. people and cars in
stationary surveillance cameras.

— Fast compared to motion estimation.
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@ Computer Vision Laboratory

Background modelling

» Background modelling+shadow detection

1 — —— - e
= 3 -

« CVL Master thesis of John Wood 200
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Background modelling

« Samples now arrive one at a time.
 EM uses a batch update:

Mk — ! Z Andn

N
anl Akn n=1

* On-line update is needed
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Background modelling

« Samples now arrive one at a time.
* On-line update:

prln] = (1 — a)pxn — 1] + al,

opln] = (1 — a)ogn — 1] + a(l, — pkn — 1))°

T n] = (1 — a)me|n — 1] + aakn

* How to design a(a,, . k) can be
investigated in project 1.
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Mean-shift Clustering

* A proper solution to the local min
problem is to find all local minima.
* Two steps:

— Mean-shift filter (mode seeking)
— Clustering
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Kernel density estimate

* For a set of sample points {Xn}]lv

we define a continuous PDF-estimate
as:

n=1
10 ™
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@
Kernel density estimate

* For a set of sample points {Xn}iv
we define a continuous PDF-estimate

as. N
1 X, — X
= —— K
00 = sz K ()

» K() is a kernel, e.g. K(x) = cexp (—x" x/2)
* his the kernel scale.

February 2, 2022 Computer Vision lecture 6 63



& omputer Vision Laboratory

Mode seeking

* By modes of a PDF, we mean the local
peaks of the kernel density estimate.

— These can be found by gradient ascent,
starting in each sample.

— If we use the Epanechnikov kernel,
el —xTx) ifxTx <1

Kp(x) = 0 otherwise.
a particularly simple gradient ascent is
possible.
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Mean-shift filtering

(&

« Start in each data point, m,, = x,
* Move to position of local average
m, < mean{x, : X, € S(m,)}

» Repeat step 2 until convergence.

10 10

- -10
I-310 -5 0 5 10 =10 -5 0 5 10
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Mean-shift clustering

 After convergence of the mean-shift filter,
all points within a certain distance (e.q.
h) are said to constitute one cluster.
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g_

Pose estimation

— Mean-shift can be used for “continuous
voting” in pose estimation.

— Each local invariant feature (e.g. SIFT or
MSER) will cast a vote (sample point)

x=(:co Yy a« s ¢ 0 type)

T
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Mean-shift

 Choice of kernel scale affects results
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Mean-shift

* For the Epanechnikov kernel, the
algorithm is quite fast.

* The Gaussian kernel is another popular
choice.

* There is also a scale adaptive version of
meanshift, that works in a manner
similar to EM in each iteration (slower).
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Generalised Hough Transform

* Another way to find modes of a PDF is
to quantize the parameter space into
accumulator cells.

 Each sample then casts a vote in one or
several cells.

* This is called the Generalised Hough
Transform (GHT).
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Generalised Hough Transform

 Non-iterative = constant time

complexity.
: . 1
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\\&
Generalised Hough Transform

» Quantisation can be dealt with by increasing
the number of cells, and blurring.

0.8
06|, A
0.4f

02 . -
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Channel Representation

» A similar technique is to use averaging in
channel representation.

— By first quantizing, and then blurring, we are
actually introducing aliasing of the PDF.

— Better to directly sample the kernel density
estimate at regularly sampled positions.

— Density of samples is regulated by the
kernel scale.

February 2, 2022 Computer Vision lecture 6 73



Computer Vision Laboratory

&

* Channel encoding

Channel value

W
o 1 2 3 4 5 6 7 8 9

Signal value
z=4 = enc(z)=x=[B(z—1) B(z-2) ... B(m_8)]T

Channel Representation
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Channel Representation

&

* Channel encoding

Channel value

1
VRN .
o 1. 2 3 4 5 6 7 8 9
Signal value
=4 = enc(z)=x=[0 0 025 1 025 0 0 O

* Channel decoding

z = dec(x)

]T
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Channel Representation

— Alocal decoding is necessary in order to decode
a multi-valued channel representation.

1
x,=2.51 =1 T |_| I
— 4567809
‘—v—’ ——
x2=7 r2=0.5
— That is
£, = dec(xy ...T3) o = dec(zxg . ..x3)

— Decoding formula depends on the kernel.
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(&

» Channel encode data points, x,, :]\?nc(xn)
» Average channel vectors x — %an
« Compute all decodings (Z,7) n=1

Channel Clustering

‘g | | g

0 1 2 3 4

lllll_.
5 6 7 8 9

dec (1.23,0.35) (5.41,0.2) (7.88,0.45)
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@
Channel Clustering

* The decoding step computes /ocation,
density, and standard deviation at mode.

« Optimal decoding is expensive, but fast
heuristic decodings exist.

* |t can be shown [Forssén 04] that
averaging in channel representation is
equivalent to a regular sampling of a
kernel density estimator.
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Summary

e This was a quick overview of clustering,
and related techniques.

e The main purpose with learning is to make
Computer Vision systems adapt to data.

e The alternative, to manually tune
parameters, works for small static
problems, but does not scale and cannot
adapt to changes.
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Course events this week

e Thursday (tomorrow): Lab"
Material on the course web page.
Extensive preparation is necessary to
finish on time.

e Friday: Projects start
Introductory lecture
Assignments into groups (5/4 per group)
If you cannot be there, let me know!
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