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RANSAC: Random Sample
consensus

2

lterate r times
1. Pick n random points from D
2. Determine a model M from these points

3. Form the consensus set C, together with
Number of points in C (i.e. |C])

Average likelihood of the elements in set C given
the model M

4. If Cis larger than ever before, then keep this
model.

After the iterations: the best kept model is the
RANSAC model estimate
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RANSAC: Random Sample
consensus

2

lterate r times
1. Pick n random points from D 4@ n should be small!
2. Determine a model M from these points €@ Must be fast!

3. Form the consensus set C, together with
Number of points in C (i.e. |C])

Average likelihood of the elements in set C given
the model M

4. If Cis larger than ever before, then keep this
model.

After the iterations: the best kept model is the
RANSAC model estimate
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RANSAC: Random Sample
consensus

A minimal solver is an algorithm that finds a
solution to a geometric problem using the
smallest possible number of points.

E.g. for line fitting, draw 2 points, and use cross-
product to find a line.

There is a large body of work that studies efficient
minimal solvers for specific problems. These are
Intended for use with RANSAC.

The 8pt algorithm is not minimal (7 pts is enough).

L
-
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After RANSAC is done, we can:

1. optionally re-estimate the found model from
C, using a more accurate estimation
method.

Beware: Re-estimation of F using the 8-
point algorithm may degrade the solution
(the size of C could shrink).

2. use the found model to look for more
correspondences.

Variations/Extensions

Computer Vision lecture 11 5



omputer Vision Laboratory

X

The 8-point algorithm revisited

* The epipolar constraint!
!

y."Fy,=0

» defines one linear constraint on F for each pair of
corresponding points y, and y,

* The 8-point algorithm uses n "' 8 such constraints to determine
F

e |If n = 8, the data matrix A has a well-defined 1-dimensional
null space that contains F

* May not satisfy det F =0
» This condition can be enforced!
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The 7-point algorithm

The nullspace of the 7 x 9 data matrix is spanned by two vectors
f,,f, € RY, which can be reshaped into matrices F1,Fy € R3%3,
The sought F should be a linear combination of these, i.e.

F=F,; + aoFs.

The internal constraint det(F; 4+ oF3) = 0 is a polynomial
equation of order three, with 1 or 3 real solutions.
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Generalised eigenvalue problems

For A, B € R™"*" (or C™*"), the linear matrix pencil A — \B
arises in relation to the generalised eigenvalue problem

Av=)Bv, XeC, v#0O.
(Ordinary eigenvalue problems are special cases where B = 1.)

The characteristic equation for this problem is det(A — AB) = 0,
which is a polynomial equation of order n in A.
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Generalised eigenvalue problems (cont.)

Generalised eigenvalue problems are well studied, and thus
implemented in many software packages for linear algebra:

SciPy:

Eigen3:
Armadillo:
Matlab:
LAPACK:

scipy.linalg.eig
NOTE: not numpy.linalg.eig!

Eigen::GeneralizedEigenSolver
eig_pair

eig

XGGEV
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Pros and cons:
+ Only 7 correspondences needed
[1 Smaller r for same w

The 7-point algorithm

+ No constraint enforcement needed (why?)
+ No Hartley normalization needed (why?)
+ Slightly more accurate solution

- Slightly more complicated calculations

- Multiple solutions (1 — 3)
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RANSAC speedup

Example: w=0.5and p = 0.99
8-point: r = log(1-p) / log(1-ws8) # 1180
7-point: r = log(1-p) / log(1-w7) # 590
Caveats:

1. In the 7-point case we must test up to 3 possible F
which makes each iteration slightly more
computationally expensive [ less than 50% speedup

2. The 7pt method is more accurate, and thus the r value
IS underestimated more for the 8pt method
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Tentative Matches

Y 4

Score matrix

Each entry in the matching matrix describes
how well a certain point in image 1 matches

another point in image 2.
For example: high score = good match
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Brute force matching

Given P, points in image 1 and P, points in image 2
« Form a P, $ P, matching matrix

« Each entry (i,)) is a hypothetical correspondence between
point i in image 1 and point j in image 2

Set entry (i,)) =!
a matching score between point i and point |

For each column and/or row: keep only the largest entry
* W increases [1 r decreases for fixed p

Such tentative correspondences are the input to
RANSAC [See CE3]
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* The matching score is usually based on similarity of visual
appearance, not geometric properties (why?)

* For example
o SIFT descriptor, BRIEF/BRISK/ORB etc [See LES]
» Color descriptors
» Tracking quality score

« For most matching matrices, brute force matching is
needlessly expensive (and the Hungarian method is
even worse!).

* Instead a search tree can be formed for one of feature sets

* If min() along one dimension is used, one could also
compute the ratio score instead [LE 8]

Tentative matches
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Two-threshold RANSAC

Correct
correspondence

High-scoring
correspondence

Medium-scoring
correspondence
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Two-threshold RANSAC

2

e Use a high threshold on correspondences to
get a set Do, which is used in the sampling
stage of RANSAC!

[] fewer Iiterations are needed

 Use a low threshold (or none) to obtain a
bigger set D, which Is used to check for
Inliers in the consensus set C.!

[] more correspondences are found
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PROSAC

2

A variant of this idea is to:
 First sort the matching scores
Remove low-probability correspondences (as before)
Set D, = the n, best ranked correspondences
« In principle, n, = n works here
« D, = remaining part of the correspondences
Do RANSAC as before (selecting from D, and matching against D,)

If a good solution cannot be found with this S,, extend it with more of
the best correspondences and do RANSAC again
Iterate this extension of D, until a sufficiently good solution is found

A more systematic approach along these lines is referred to as
PROSAC

e Chum & Matas: Matching with PROSAC — Progressive Sample
Consensus, CVPR 2005
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RANSAC speedups

2

In summary:

« Using matching of visual appearance is a very
effective way of pruning the set D of tentative
correspondences

e This leads to

* Increased w (= prob. of picking an inlier)

* Reduced r (= number of RANSAC iterations for a
specific p)
« Faster RANSAC algorithm / higher p possible
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« Given two camera matrices C, and C, we can compute F:!
I

% F = [e12]xC1C5
F=(C])'C;lexlx

Epipolar geometry

* Assuming we know the camera projection matrices, we
can instead apply RQ-factorisation to them...
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Epipolar geometry

In this case we can write:

v TN

C,=K,[R; t] Internal
camera
C,=K,[R, t,]

parameters

— g

Now, use the first camera to define the 3D coordinate

system:!
C,=K,[I O]
C,=K,[R t]
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Epipolar geometry

Finally, we assume that the two cameras are
identical: K; = K, =K

C,=K[! 0]
C,=K[R t]

K 1s known from the calibration, and constant
R, t change as the camera moves
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Relative camera

&

transformation
From
C,=K[I 0]
C,=K[R t]

follows that C, =C, T, where Tisa (4 $ 4)
rigid transformation:

R t
=901
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Relative camera

2

transformation
Apply T to the homogeneous coordinates of a 3D
point X:
_I_>_< R t X  Rx+t
1 O 1 1 1

The result are the homogeneous coordinates of X
after first being rotated by R and then
translated by t
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Relative camera
transformation

2

T transforms from the camera centred
coordinate system (CCS) of camera 1 to the
CCS of camera 2

o T-1 transforms in the other way:
Rt RT —-R"t 0
0

—1
L 1 0 1 0 1

 Example: the camera centre of camera 2 has 3D
coordinates O in CCS2

* Its coordinates in CCS1 are given by —RTt
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Normalised image coordinates

Pixel coordinates are given by

y1 LChx = K[l 0O]x
v, LChX = K[R t]X

Normalised image coordinates remove the
Influence of the internal camera parameters:

yr CKI Yy, =[1 0]x = CiX
y> CKI 'y, = [R t]x = C5X

Normalised
cameras
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Normalised image coordinates

01.&2%(3'&+> 01.8&2%(4,$5
. Ty

B ]
B |- k= Dodf ¢l
0 0 1

! ] -#$%&l () *+# , * :.:-'.;,.~..... | | | | . .
>« Image plane origin is at the principal point!
8 ~ ) (the intersection of the optical axis with the
Image plane)

o Usually this puts the origin in the image
centre, so negative normalized image
coordinates are perfectly normal.
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Two types of normalised
coordinates

2

Normalised image coordinates are
sometimes also discussed In relation to
Hartley normalisation

These two normalisations are unrelated!
H-normalisation vs C-normalisation
Here: camera normalisation is used to refer

to Image coordinates that are normalised
relative to the camera coordinate system
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Normalised image coordinates

When K (and lens distortion) are known it
IS often more efficient to work with
camera normalized image coordinates

Calibrated epipolar geometry
The epipolar constraint becomes

0=y, Fy, = (Ky1)' FKy; =y K' FKys;
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The essential matrix

&

We can define a matrix E = KTFK
E Is called the essential matrix

Inherits the properties of F, but refers specifically
to C-normalised image coordinates

For example, the epipolar constraint becomes:

F and E represent the

I || L : :
O — yl Ey2 same constraint but in

different coordinate
systems
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A=

In the same way as for F, E Is given by

The essential matrix

E =[e12]xC;C;" = C;'' CJ [ex]x

In camera

e’',, and e’,, are the epipoles B S
image

C’, and C’, are the camera matrices | |Gl
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The essential matrix

In this case we get
Ci=[10 ¥ C" =]l 0]

C,=[Rt] * C'"CJ =R ;e =t

Iead'”g to E encodes the

relative rotation

E — RT[ t ] and translation
- $ between the two

cameras
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