Computer Vision Laboratory

# TSBB15 Computer Vision

Lecture 2 Image Representations



# Today's topics

- Scale spaces
- Pyramids
- Hierarchical representations
- Representing uncertainty/ambiguity
  - case study: local orientation representation

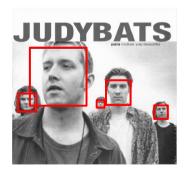
2



Computer Vision Laboratory

# Scale spaces: motivation 1

- Objects at different distances have different sizes in the image plane
- We want to detect them all



Example: face detection

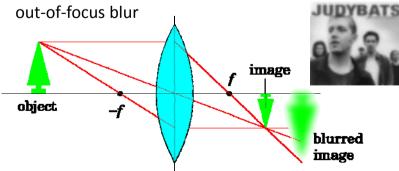


Computer Vision Laboratory

# Scale spaces: motivation 2

- Cameras have limited depth-of-field

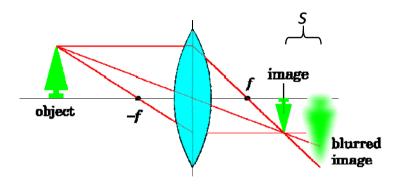
We want our algorithms to robustly deal with





# Scale spaces: motivation 2

Image blur function: image(s)





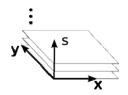
# Image(s)



**Computer Vision Laboratory** 

# Representation: Scale Space

- Basic idea
  - Stack images in a 3D space
  - The third axis, s, is called scale





**Computer Vision Laboratory** 

# Representation: Scale Space

- Basic idea
  - Stack images in a 3D space
  - The third axis, s, is called scale
  - -s = 0 corresponds to the original image
  - As s grows, the image becomes more blurred
- Intuitively: s is a "defocus" or "blur" parameter

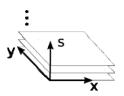




# Scale Space

#### • Notation:

- original image  $f_0(x,y)$
- blurred image  $f_s(x,y)$



• 
$$f_s = T_s \{ f_0 \}$$

•  $T_s$ : transformation that produces  $f_s$  from  $f_0$ 



#### Computer Vision Laboratory

## Gaussian Scale Space

• Semi-group:

$$T_{s_1+s_2}{f} = T_{s_1}{T_{s_2}{f}}$$

• Rotation invariance:

$$T_s \{R \{f\}\} = R \{T_s \{f\}\}\$$
 where  $R$  is a rotation

Scale invariance

$$T_s\{f_0(ax, ay)\} = (T_{a^2s}\{f_0\})(ax, ay)$$

Maintains positivity

$$f(x,y) \ge 0 \quad \Rightarrow \quad T_s\{f\}(x,y) \ge 0$$



# **Scale Space Axioms**

[lijima, 1959] specifies properties of  $T_s$ :

- 1. Linear
- 2. Shift-invariant
- 3. Semi-group property
- 4. Scale- and rotation-invariant
- 5. Maintain positivity
- 6. Separability (by later authors)

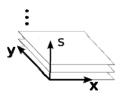
10



#### Computer Vision Laboratory

## Scale Space

- A1+A2:  $T_s$  is a convolution
  - original image  $f_0(x,y)$
  - blur kernel  $g_s(x,y)$
  - The scale space of  $f_0$  is given as the convolution:



$$f_s(x,y) = (g_s * f_0)(x,y)$$

In the Fourier domain:  $F_s = G_s \cdot F_0$ 



## Gaussian Scale Space

 The remaining axioms lead to a unique formulation of G<sub>s</sub>:

$$G_s(\omega_x, \omega_y) = e^{-s\frac{\omega_x^2 + \omega_x^2}{2}}$$
  $g_s(x, y) = \frac{1}{2\pi s} e^{-\frac{x^2 + y^2}{2s}}$ 

• Separability:

$$g_s(x,y) = \frac{1}{\sqrt{2\pi}s} e^{-\frac{x^2}{2s}} \cdot \frac{1}{\sqrt{2\pi}s} e^{-\frac{y^2}{2s}}$$

13

Computer Vision Laboratory

#### PDE formulation

$$\frac{\partial}{\partial s} f_s(x, y) = \frac{1}{2} \left( \frac{\partial^2 f_s}{\partial x^2} + \frac{\partial^2 f_s}{\partial y^2} \right) (x, y)$$

- The change in  $f_s(x,y)$  when we move only along the scale parameter s equals a local second order derivative of  $f_s$  at (x,y)
- (We will return to the PDF formulation of scale spaces in a later lecture)



#### PDE formulation

• The Gaussian scale space can also be derived as the solution to the PDE:

$$\frac{\partial}{\partial s} f_s(x,y) = \frac{1}{2} \nabla^2 f_s(x,y)$$

boundary condition:  $f_0(x,y) = f(x,y)$ 

- A.k.a. the diffusion equation
  - Compare to the *heat equation*, where  $f_s(x,y)$  is the temperature at time s in point (x,y), given initial temperature  $f_o(x,y)$

14



Computer Vision Laboratory

#### Implementation of the Gaussian Scale-Space

- 1. In the Fourier domain:
  - 1. 2D Fourier transform
  - 2. Multiplication with Gaussian function
  - Inverse FT
- 2. Convolution:  $f_s(x,y)=(f_0*g_s)(x,y)$
- 3. Integrating  $f_s$  as a solution of the PDE:

$$f_{s+\Delta s} = f_s + \Delta s \cdot \frac{\partial f_s}{\partial s} = f_s + \Delta s \cdot \frac{1}{2} \nabla^2 f_s$$

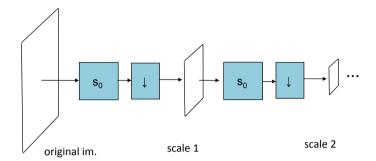
15



## Representation: Scale Pyramid

- Blurring (LP-filtering) reduces high frequencies
- At some scale  $s_0$  frequencies over  $\pi/2$  are sufficiently attenuated to allow down-sampling with a factor 2 without severe aliasing
- At scale  $2s_0$  we can down-sample the image with a factor 4, etc.

# Gaussian Pyramid



18

17

Computer Vision Laboratory

# Example

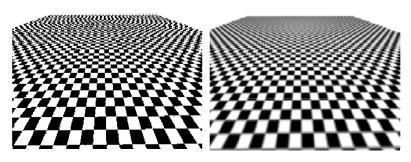




Computer Vision Laboratory

## Representation: Scale Pyramid

 Used widely in Computer Graphics for texture resampling (called MIP maps)



Texture without MIP map

Texture with MIP map

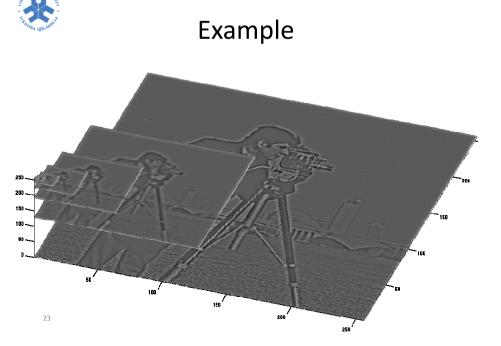


# Laplacian Pyramid

- From a Gaussian pyramid, we can compute a *Laplacian pyramid*.
- Each level (scale) in a Laplacian pyramid is given as the difference between two levels of a Gaussian pyramid at the same grid size.
  - The coarser level needs to be up-sampled!
- The Laplacian pyramid contains no information about the DC-component of the image

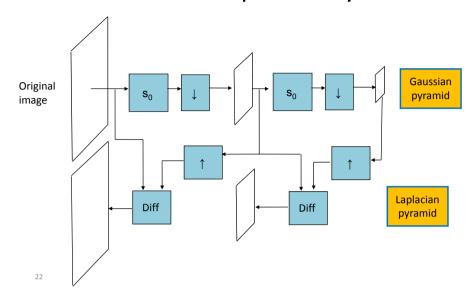
21

Computer Vision Laboratory





# **Estimation: Laplacian Pyramid**



Manual Barriage

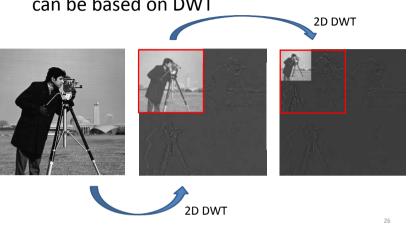
Computer Vision Laboratory

# Completeness: Laplacian Pyramid

- The original image can be reconstructed from its Laplacian pyramid together with the coarsest level of its Gaussian pyramid
- How?

# 2D DWT, Example

 Another similar approach to scale spaces can be based on DWT





# Analysis using scale hierarchies

- Scale-spaces, G/L-pyramids and DWT are examples of scale hierarchies
- Enables analysis of image features at different "sizes", e.g. translations over different distances.
- The same analysis can be applied for detecting an object at any scale, but is then applied at all levels in a scale hierarchy (combination of analysis).

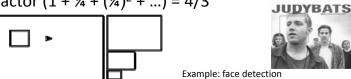


Computer Vision Laboratory

# OR-approach

- Apply the same operation, e.g., for object detection, on all levels of a scale pyramid
  - Collect all detections as distinct objects
  - The level where a detection was made indicates the "size" of the object
- If each level is down-sampled a factor 2:

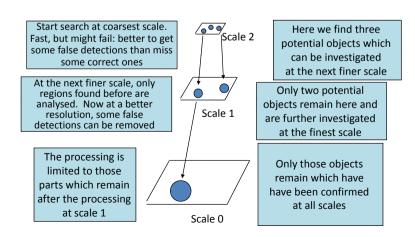
- Time for searching over scale is bounded by a factor  $(1 + \frac{1}{4} + (\frac{1}{4})^2 + ...) = 4/3$ 





Computer Vision Laboratory

# AND-approach: coarse-to-fine search





#### Coarse-to-fine refinement

- A different, but similar, processing scheme is the following:
  - Estimate a local feature at the coarsest scale first
    - Little data fast processing
    - Coarse scale inaccurate
  - The coarse estimate of the feature is then up-sampled to the size of the second coarsest scale, where the estimate is refined
  - The refinement is based on estimating the refinement of the coarsest estimate by analyzing the image at the second coarsest scale.
  - The refinement estimate is then up-sampled and refined again.
  - By repeating this procedure, we obtain a very accurate estimate of the feature at the finest scale.
- Example: estimation of local velocity or disparity

29

# Example: Depth from stereo

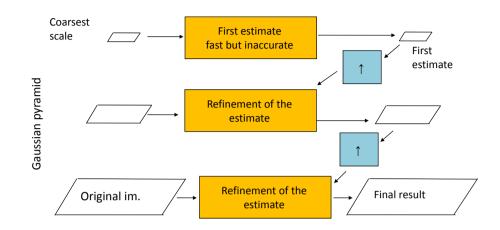




Compute a scale hierarchy. Start estimating *disparity* at the coarsest level, and refine

# Maria Maria

#### Coarse-to-fine refinement



# Example: C2F Stereo disparity







Images from Wallenberg & Forssén: Teaching Stereo Perception to YQUR Robot, BMVC 2012

# Example: C2F Stereo disparity



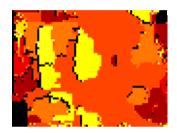




Example: C2F Stereo disparity



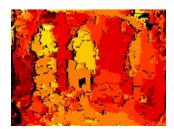




# Example: C2F Stereo disparity







# Example: C2F Stereo disparity







## Example: C2F Stereo disparity







Computer Vision Laboratory

## Feature image

- The value at position (x,y) can also be used to represent a local image feature
- May not have a direct physical interpretation
  - Local mean or variance (scalars)
  - Local edge presence (binary)
  - Local gradient (a vector)
  - Local orientation (to be discussed)
  - Local curvature (to be discussed)
  - Interest points (to be discussed)



## **Images**

- An image typically represents, at each position (x,y) a measurement of
  - Light intensity
  - Color
  - Absorption (X-ray)
  - Reflection (Ultrasonic)
  - Hydrogen content (MRI)
- All these represent physical phenomena
- All these can be input to a scale hierarchy

38



Computer Vision Laboratory

## Edge representation









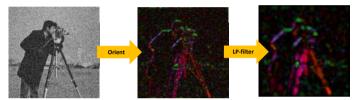






## **Notes on Representations**

- If a local feature can be assumed to be constant in a neighborhood, it is desirable that its representation can be *locally averaged* 
  - The averaged representation = the feature mean
  - Noise in the signal results in noise in the estimate of the feature representation
  - By low-pass filtering the representation (local mean value), the noise is reduced
  - In general: intensity changes faster than orientation

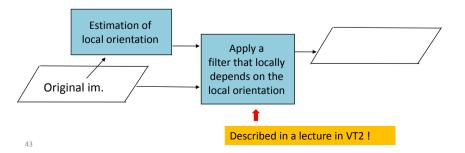




Computer Vision Laboratory

## **Model-Based Processing**

- Orientation images can be used to control the processing of an image
- Example: adaptive image enhancement





#### Confidence measure

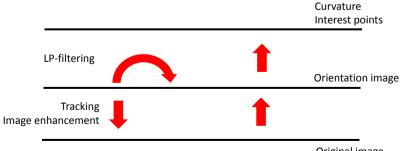
- Feature representations should contain a confidence measure (or variance estimate), separated from the feature estimate itself
  - Measures how confidence of the feature estimate
  - For example: in the range [0, 1]
    - Value 0: no confidence, value 1: max confidence
- The confidence can be used to weight the feature representation when estimating the mean value
  - Normalized convolution

42



Computer Vision Laboratory

# Orientation images **Applications**

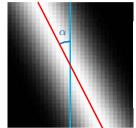


Original image



#### Representation of Local Orientation: Angle

- Signal model: simple signal (i1D, lecture 1)
- In a local region of each image point:
  - measure an angle  $\alpha$ , e.g. between the vertical axis and the lines of constant signal intensity, e.g. in the interval 0 to 180°
- Average-able?
  - No! (why?)
- Confidence measure?
- How to extend to 3D?



45

Computer Vision Laboratory



# Representation of Local Orientation: Double angle vector

- Alternative: double the angle to  $2\alpha$ , which lies in the interval 0 to  $360^{\circ}$
- Form a 2D vector  ${\bf v}$  which points with the angle  ${\bf 2}\alpha$
- Let the norm of v represent the confidence measure
- Called: double-angle representation of local 2D orientation

#### Estimation of Local Orientation: Gradient

- In each point we measure the local gradient of the signal (e.g. using a Sobel-operator)
- For an i1D signal, the sign of the gradient depends on where we do the measurement
- The gradient might be = 0 at certain lines of the i1D signal
- Confidence?

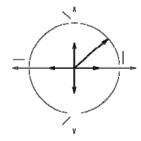
46

THE PARTY OF THE P

Computer Vision Laboratory

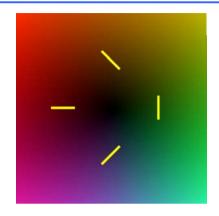
# Representation of Local Orientation

- The double-angle representations of two similar orientations are always similar (continuity results in compatibility)
- Two orientations which differ most (90°) are always represented by vectors that point in opposite directions (complementarity)





# Colour coding of the double angle representation



49

Computer Vision Laboratory

# Representation of Local Orientation

• Signal model for simple (i1D) signals

$$f(\mathbf{x}) = g(\mathbf{x}^T \hat{\mathbf{n}})$$
  $\hat{\mathbf{n}} = (\cos \alpha, \sin \alpha)^T$ 

- f is the local signal (2 or more dimensions)
- g is the 1D function that defines the variations of the i1D signal
- **n** is a vector that defines the orientation
- BUT: the direction (sign) of **n** is not unique



### Representation of Local Orientation

- Double-angle representations of local 2D orientations can be averaged
  - The averaged representation = the feature mean
- Averaging of vectors is automatically weighted with the confidences

In later lectures:

- How to estimate the double-angle representation from image data?
- What to do in 3D?

50



Computer Vision Laboratory

## Representation of Local Orientation: Tensor

• The double-angle vector **v** becomes

$$\mathbf{v} = \lambda (\cos 2\alpha, \sin 2\alpha)^T$$

- $\lambda$  is a scalar which gives the confidence
- Alternative: form a 2 x 2 symmetric matrix

$$\mathbf{T} = \lambda \hat{\mathbf{n}} \hat{\mathbf{n}}^T = \lambda \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} \begin{pmatrix} \cos \alpha & \sin \alpha \end{pmatrix}$$

Tensor representation of local orientation



## Representation of Local Orientation

• Tensor components

$$\mathbf{T} = \begin{pmatrix} T_{11} & T_{12} \\ T_{12} & T_{22} \end{pmatrix} = \begin{pmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{pmatrix}$$

Vector components

$$\mathbf{v} = \begin{pmatrix} \cos 2\alpha \\ \sin 2\alpha \end{pmatrix} = \begin{pmatrix} \cos^2 \alpha - \sin^2 \alpha \\ 2\cos \alpha \sin \alpha \end{pmatrix} = \begin{pmatrix} T_{11} - T_{22} \\ 2T_{12} \end{pmatrix}$$

• The tensor contains one more element than v

53

55

Computer Vision Laboratory

#### Tensor or Matrix?

- In this course, the term *tensor* is used as synonym for *symmetric matrix*.
- Why tensor and not matrix?
  - A matrix is just a representation, consisting of a container with numbers in a table.
  - A tensor can be represented as a matrix but it must furthermore obey certain laws under transformations of the coordinate system.



### Representation of Local Orientation

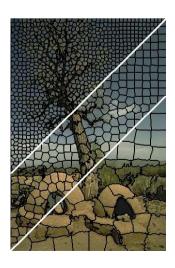
- **n** is an eigenvector of **T** with eigenvalue  $\lambda$
- T (but not v) can be defined for any dimension of signals (3D, 4D, ...)
- How to estimate **v** and **T** from signals?

54



Computer Vision Laboratory

# Super-pixels



Examples from Achanta *et al,* (SLIC)

Showing different sizes of the clusters



## Super-pixels

- The array/matrix representation of an image implies that, in principle, each pixel must be examined in order to extract information about the image
- An alternative to the array/matrix representation is to cluster neighboring pixels with similar values to super-pixels
  - Often with restrictions on the cluster: size, shape
- Each super-pixel is represented as the common value and a cluster of pixels
- The image is represented as the set of its superpixels
- Normal image: approx. 1 M pixels
- Super-pixels image: approx. 1 k super-pixels



## Super-pixels

#### Typical approach:

- Initialize a regular grid of "square" super-pixels
- Iteratively modify each super-pixel to increase homogeneity regarding its corresponding pixel values
  - Split super-pixels into smaller ones if necessary
  - Merge similar super-pixels if possible
  - Move pixels from one super-pixel to a neighboring one to improve super-pixel shape