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Today’s topics

Scale spaces
Pyramids
Hierarchical representations

Representing uncertainty/ambiguity
— case study: local orientation representation
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Scale spaces: motivation 1

— Objects at different
distances have
different sizes in the
image plane

— We want to detect
them all

Example: face detection
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Scale spaces: motivation 2

— Cameras have limited depth-of-field

— We want our algorithms to robustly deal with
out-of-focus blur
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Scale spaces: motivation 2

* Image blur function: image(s)
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Image(s)
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Representation: Scale Space

* Basicidea C
. A S
— Stack images in a 3D space Y‘\\“ |
— The third axis, s, is called scale >
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Representation: Scale Space

* Basic idea =
,A\\ lS
— Stack images in a 3D space Y\ _
— The third axis, s, is called scale . B

— s =0 corresponds to the original image
— As s grows, the image becomes more blurred

* Intuitively: s is a “defocus” or “blur”
parameter
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Scale Space

 Notation: K
i\ AS
— original image  Jfo(z,¥) Y\
— blurred image  fs(z,¥) -
* f=T{fy}

e T.:transformation that produces f, from f,
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Scale Space Axioms

[lijima, 1959] specifies properties of T:
1. Linear

2. Shift-invariant

3. Semi-group property

4. Scale- and rotation-invariant

5. Maintain positivity

6. Separability (by later authors)
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‘% Gaussian Scale Space
* Semi-group:
Ty, 15,10} = Ts {Ts, {f}}
* Rotation invariance:
Ts{R{f}} = R{Ts{f}} where R is a rotation
* Scale invariance
Ts{folax,ay)} = (To2s{fo})(az, ay)
* Maintains positivity
flzy)20 = T{fHz,y) =0
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s Scale Space
* A1+A2: T, is a convolution

— original image fo(z, %)

— blur kernel gs(z,y) Y\

— The scale space of fo is given
as the convolution:

fs(x,y) = (g5 * fo)(x,y)

In the Fourier domain:  F.=G;- F,
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Gaussian Scale Space

* The remaining axioms lead to a unique
formulation of G.:

w2 4?2 w2+y2
Gs(wazywy)ze_s = gs(xay) :2_7156 2s

* Separability:

2 2

1 _zZ 1 ¥

€T —= 2s € 2s
gs( ’ y) 27s V2Ts
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PDE formulation

* The Gaussian scale space can also be derived
as the solution to the PDE:

%fs(aja y) — %V2f8<337 y)
boundary condition: fo(z,y) = f(x,y)

* A.k.a. the diffusion equation

— Compare to the heat equation, where f(x,y) is the
temperature at time s in point (x,y), given initial
temperature f,(x,y)
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PDE formulation

0%fs | 0%fs
%fs(xay) — % (333]; + 3y]; ) (xay)

* The change in f(x,y) when we move only
along the scale parameter s equals a local
second order derivative of f, at (x,y)

* (We will return to the PDF formulation of
scale spaces in a later lecture)
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Implementation of the Gaussian Scale-Space

1. Inthe Fourier domain:
1. 2D Fourier transform
2.  Multiplication with Gaussian function
3. Inverse FT

2. Convolution: fs(:z:,y) = (fo * gs)(w,y)

3. Integrating f, as a solution of the PDE:

foras = fs +As- & = fo 4+ As - LV,
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Representation: Scale Pyramid

* Blurring (LP-filtering) reduces high
frequencies
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Gaussian Pyramid

* At some scale s, frequencies over /2
are sufficiently attenuated to allow
down-sampling with a factor 2 without T I T R I I
severe aliasing
* At scale 25, we can down-sample the image
with a factor 4, etc. original im. scale 1 scale 2
e v Computer Vision Laboratory
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Example

Representation: Scale Pyramid

* Used widely in Computer Graphics for
texture resampling (called MIP maps)

Texture without MIP map Texture with MIP map
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Laplacian Pyramid

* From a Gaussian pyramid, we can compute
a Laplacian pyramid.

* Each level (scale) in a Laplacian pyramid is
given as the difference between two levels
of a Gaussian pyramid at the same grid
size.

— The coarser level needs to be up-sampled!

* The Laplacian pyramid contains no
information about the DC-component of
the image
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Estimation: Laplacian Pyramid

Gaussian

Original BN .
& ] ! pyramid

image

Laplacian

Diff +«—| Diff pyramid
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Example
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Completeness: Laplacian Pyramid

* The original image can be reconstructed
from its Laplacian pyramid together with
the coarsest level of its Gaussian pyramid

e How?
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2D DWT, Example

* Another similar approach to scale spaces
can be based on DWT

/\zo DWT

e B,
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= Analysis using scale hierarchies

* Scale-spaces, G/L-pyramids and DWT are
examples of scale hierarchies

* Enables analysis of image features at
different “sizes”, e.g. translations over
different distances.

* The same analysis can be applied for
detecting an object at any scale, but is then
applied at all levels in a scale hierarchy
(combination of analysis).
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OR-approach

* Apply the same operation, e.g., for object
detection, on all levels of a scale pyramid

— Collect all detections as distinct objects

— The level where a detection was made indicates
the “size” of the object

* If each level is down-sampled a factor 2:

— Time for searching over scale is bounded by a
factor (1+% + (4)2+..)=4/3

D >

27 ; Example: face detection
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AN D-approach: coarse-to-fine search

Start search at coarsest scale. ° Here we find three
Fast, but might fail: better to get Scale 2 potential objects which
some false detections than miss ' X

S ———— can be investigated
at the next finer scale
At the next finer scale, only v Py =
regions found before are Q Only two potential
analysed. Now at a better objects remain here and
resolution, some false Scale 1 are further investigated
detections can be removed .
at the finest scale

The processing is

limited to those Ol AnEEE @

. . remain which have
parts which remain .
. have been confirmed
after the processing
at all scales

atscale 1 Scale 0
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3

Coarse-to-fine refinement

» A different, but similar, processing scheme is the
following:
— Estimate a local feature at the coarsest scale first
* Little data — fast processing
* Coarse scale —inaccurate

The coarse estimate of the feature is then up-sampled to the
size of the second coarsest scale, where the estimate is refined

— The refinement is based on estimating the refinement of the
coarsest estimate by analyzing the image at the second
coarsest scale.

The refinement estimate is then up-sampled and refined again.

— By repeating this procedure, we obtain a very accurate estimate
of the feature at the finest scale.

* Example: estimation of local velocity or disparity
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Gaussian pyramid
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Coarse-to-fine refinement

Coarsest . .
scale /7 First estimate 7
fast but inaccurate / Fi
irst
1 estimate
Refinement of the
/ ; > estimate - ./ ;
N
1
"
Original im. AN Reflnen?ent of the . Final result
estimate
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Example: Depth from stereo

Example: C2F Stereo disparity

Compute a scale hierarchy.
Start estimating disparity at
the coarsest level, and refine

Images from Wallenberg & Forssén:
Teaching Stereo Perception
to Y§1UR Robot, BMVC 2012
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Example: C2F Stereo disparity

Example: C2F Stereo disparity

-
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Example: C2F Stereo disparity

Example: C2F Stereo disparity
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Example: C2F Stereo disparity
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Images

* Animage typically represents, at each
position (x,y) a measurement of

— Light intensity
— Color
— Absorption (X-ray)
— Reflection (Ultrasonic)
— Hydrogen content (MRI)
* All these represent physical phenomena

* All these can be input to a scale hierarchy
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Feature image

* The value at position (x,y) can also be used
to represent a local image feature
* May not have a direct physical interpretation
— Local mean or variance (scalars)
— Local edge presence (binary)
— Local gradient (a vector)
— Local orientation (to be discussed)
— Local curvature (to be discussed)
— Interest points (to be discussed)
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Edge representation

40
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Notes on Representations

* |f a local feature can be assumed to be

constant in a neighborhood, it is desirable that
its representation can be locally averaged
— The averaged representation = the feature mean

— Noise in the signal results in noise in the estimate of
the feature representation

— By low-pass filtering the recEJresentation (local mean
value), the noise is reduce

— In general: intensity changes faster than orientation

~  Orient LP-filter

2
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Confidence measure

* Feature representations should contain a
confidence measure (or variance estimate),
separated from the feature estimate itself
— Measures how confidence of the feature estimate
— For example: in the range [0, 1]

* Value 0: no confidence, value 1: max confidence

* The confidence can be used to weight the
feature representation when estimating the
mean value
— Normalized convolution

Computer Vision Laboratory

Model-Based Processing

* Orientation images can be used to control
the processing of an image

* Example: adaptive image enhancement

Estimation of

local orientation

Apply a H_—
al filter that locally

depends on the
local orientation

Original im.

1

Described in a lecture in VT2 !

4
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Orientation images
Applications

Curvature
Interest points

LP-filtering A t
Tracking t
Image enhancement

Orientation image

Original image
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Representation of Local Orientation: Angle

Signal model: simple signal (i1D, lecture 1)

In a local region of each image point:

— measure an angle «, e.g. between the vertical
axis and the lines of constant signal intensity,

e.g. in the interval 0 to 180°
Average-able?
— No! (why?)
Confidence measure?
How to extend to 3D?

3
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" Estimation of Local Orientation: Gradient

46

In each point we measure the local gradient
of the signal (e.g. using a Sobel-operator)

For an i1D signal, the sign of the gradient
depends on where we do the measurement

The gradient might be = 0 at certain lines of
the i1D signal

Confidence?
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Representation of Local Orientation:
Double angle vector

Alternative: double the angle to 2, which
lies in the interval 0 to 360°

Form a 2D vector vV which points with the
angle 2«

Let the norm of v represent the confidence
measure

Called: double-angle representation of local
2D orientation

3
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Representation of Local Orientation

The double-angle representations of two
similar orientations are always similar
(continuity results in compatibility)

Two orientations which differ '
most (90°) are always o

N
represented by vectors that _ / |>\||

point in opposite directions | I :
(complementarity) \ﬁ /
Ve
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Colour coding of the double angle

representation
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Representation of Local Orientation

* Double-angle representations of local 2D
orientations can be averaged

— The averaged representation = the feature mean

* Averaging of vectors is automatically weighted
with the confidences

In later lectures:

* How to estimate the double-angle
representation from image data?

* Whatto doin 3D?

50
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Representation of Local Orientation

Signal model for simple (i1D) signals

f(x) = g(xTh) i = (cosa, sina)”

fis the local signal (2 or more dimensions)

g is the 1D function that defines the variations of
the i1D signal

* N is avector that defines the orientation

BUT: the direction (sign) of n is not unique

51
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‘H‘ Representation of Local Orientation:
Tensor

The double-angle vector v becomes

v = A (cos2a, sin2a)T

A is a scalar which gives the confidence
Alternative: form a 2 X 2 symmetric matrix

T = Aaa7 = A ("f’s a) (cosa sina)
sina

* Tensor representation of local orientation

52
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Representation of Local Orientation

Tensor components

(T Thio\ [ cos?a cosasina )

\T12 TQQ) cosasina  sinZa

Vector components
v [cos2a) _ cos?a—sin?a \ _ [ Ti1—Too
~ \ sin2a |\ 2cosasina | 2T10

The tensor contains one more element than v

. Computer Vision Laboratory

Representation of Local Orientation

* nis an eigenvector of T with eigenvalue A

* T (but not V) can be defined for any
dimension of signals (3D, 4D, ...)

* How to estimate vV and T from signals?

54
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Tensor or Matrix?

In this course, the term tensor is used as
synonym for symmetric matrix.

Why tensor and not mFatrix?

— A matrix is just a represéntation, consisting of a
container with numbers in a table.

— A tensor can be represented as a matrix but it must

furthermore obey certain laws under
transformations of the coordinate system.
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Super-pixels

Examples from
Achanta et al,
(sLic)

Showing different
sizes of the
clusters

56
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Super-pixels

The array/matrix representation of an image implies
that, in principle, each pixel must be examined in
order to extract information about the image

An alternative to the array/matrix representation is
to cluster neighboring pixels with similar values to
super-pixels

— Often with restrictions on the cluster: size, shape

Each super-pixel is represented as the common
value and a cluster of pixels

The image is represented as the set of its super-
pixels

Normal image: approx. 1 M pixels
Super-pixels image: approx. 1 k super-pixels

3

Computer Vision Laboratory

Super-pixels

Typical approach:

* Initialize a regular grid of “square” super-pixels
* |teratively modify each super-pixel to increase

homogeneity regarding its corresponding pixel
values

— Split super-pixels into smaller ones if necessary

— Merge similar super-pixels if possible

— Move pixels from one super-pixel to a neighboring
one to improve super-pixel shape




