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Today’s topics

Scale spaces

Pyramids

Hierarchical representations

» Representing uncertainty/ambiguity
— case study: local orientation representation
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Scale spaces: motivation 1

— Objects at different
distances have
different sizes in the
image plane

— We want to detect
them all

Example: face detection
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Scale spaces: motivation 2

— Cameras have limited depth-of-field

— We want our algorithms to robustly deal with
out-of-focus blur JUDYBATS

Scale space generated from f,
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Scale Space

Processed scale space
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For example:

* Edge detection

* Feature detection
* Thresholding

* Binary operations
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Representation: Scale Pyramid

* Blurring (LP-filtering) reduces high
frequencies

* At some scale s, frequencies over 7/2
are sufficiently attenuated to allow
down-sampling with a factor 2 without
severe aliasing

* At scale 2s, we can down-sample the image
with a factor 4, etc.
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Gaussian Pyramid

original im. scale 1 scale 2
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Representation: Scale Pyramid

* Used widely in Computer Graphics for
texture resampling (called MIP maps)

Texture with MIP map

Texture without MIP map
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Laplacian Pyramid

* From a Gaussian pyramid, we can compute
a Laplacian pyramid.

* Each level (scale) in a Laplacian pyramid is
given as the difference between two levels
of a Gaussian pyramid at the same grid
size.

— The coarser level needs to be up-sampled!

* The Laplacian pyramid contains no
information about the DC-component of
the image
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Estimation: Laplacian Pyramid

o Gaussian
Original N L, N ;
image So U So U pyramid

r 1 r 1
Diff : Laplacian
! Diff pyramid
12




o, Computer Vision Laboratory

Example
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Completeness: Laplacian Pyramid

The original image can be reconstructed
from its Laplacian pyramid together with
the coarsest level of its Gaussian pyramid

How?

Why Laplacian?

2D DWT, Example

* Another similar approach to scale spaces
can be based on DWT

2D DWT
2D IDWT /_\ /\

2D IDWT
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Scale hierarchies

Scale-spaces, G/L-pyramids and DWT are
examples of scale hierarchies

Enable analysis of image features at
different “sizes”, e.g. translations over
different distances.

The same analysis can be applied for
detecting an object at any scale, but is then
applied at all levels in a scale hierarchy

Analysis at different levels are combined
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e OR-approach

* Apply the same operation, e.g., for object
detection, on all levels of a scale pyramid
— Collect all detections as distinct objects
— The level where a detection was made indicates
the “size” of the object
* If each level is down-sampled a factor 2:
— Time for searching over scale is bounded by a
factor (L+ %+ (4)*+..)=4/3 JUDYBATS
sml) -
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AN D-approach: coarse-to-fine search

Start search at coarsest scale. 0® cale 2 Here we find three
Fast, but might fal!. better to get potential objects which
some false detections than miss . X

SR R GRS can be investigated
at the next finer scale
At the next finer scale, only v P -
regions found before are Q Only two potential
analysed. Now at a better objects remain here and
resolution, some false Scale 1 are further investigated
detections can be removed )
at the finest scale
The processing is .
. .p & Only those objects
limited to those . :
. . remain which have
parts which remain .
. have been confirmed
after the processing
at all scales
at scale 1
Scale 0
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Coarse-to-fine refinement

» A different, but similar, processing scheme is the
following:
— Estimate a local feature at the coarsest scale first
* Little data — fast processing
* Coarse scale — inaccurate

The coarse estimate of the feature is then up-sampled to the
size of the second coarsest scale, where the estimate is refined

The refinement is based analyzing the image at the second
coarsest scale, given the estimate from the coarser level.

The refinement estimate is then up-sampled and refined again.

— By repeating this procedure, we obtain a very accurate estimate
of the feature at the finest scale.

* Example: estimation of local velocity or disparity
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Coarse-to-fine refinement
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Refinement of estimate Final result

Original im. —
High accuracy
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Example: Depth from stereo

Example: C2F Stereo disparity

Compute a scale hierarchy.
Start estimating disparity at
Images from Wallenberg & Forssén: the coarsest IeVeI, and reﬁne

Teaching Stereo Perception
to YﬂUR Robot, BMVC 2012
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Example: C2F Stereo disparity
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Example: C2F Stereo disparity
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Example: C2F Stereo disparity
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Example: C2F Stereo disparity

26

Example: C2F Stereo disparity

27

_”_..-.-"" Computer Vision Laboratory

Images

* An image typically represents, at each
position (x,y) a measurement of
— Light intensity
— Color
— Absorption (X-ray)
— Reflection (Ultrasonic)
— Hydrogen content (MRI)
* All these represent physical phenomena

* All these can be input to a scale hierarchy

28
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e Feature image
* The value at position (x,y) can also be used

to represent a local image feature
* May not have a direct physical interpretation

— Local mean or variance (scalars)

— Local edge presence (binary)

— Local gradient (a vector)

— Local orientation (to be discussed)

— Local curvature (to be discussed)
— Interest points (to be discussed)

3%
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Edge representation

IMAGE FEATURE IMAGE

Canny '

Orient *
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Notes on Representations

* If alocal feature can be assumed to be
constant in a neighborhood, it is desirable that
its representation can be locally averaged
— The averaged representation = the feature mean

— Noise in the signal results in noise in the estimate of
the feature representation

— By low-pass filtering the reéoresentation (local mean
value), the noise is reduce

— In general: intensity changes faster than orientation

LP-filter
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Confidence measure

* Feature representations should contain a
confidence measure (or variance estimate),
separated from the feature estimate itself
— Measures how confidence of the feature estimate
— For example: in the range [0, 1]

* Value 0: no confidence, value 1: max confidence

* The confidence can be used to weight the
feature representation when estimating the
mean value
— Normalized convolution
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Model-Based Processing

* Orientation images can be used to control
the processing of an image

* Example: adaptive image enhancement

Estimation of

local orientation
Apply a I
Pl filter that locally
depends on the
Original im. — | local orientation
1 ]

Described in a lecture in VT2 !
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Orientation images
Applications

Curvature
Interest points

LP-filtering A t
Tracking t
Image enhancement

Orientation image

Original image
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Representation of Local Orientation: Angle

Signal model: simple signal (i1D, lecture 1)

In a local region of each image point:

— measure an angle o, e.g. between the vertical
axis and the lines of constant signal intensity,

e.g. in the interval 0 to 180°
Average-able?
— No! (why?)
Confidence measure?
* How to extend to 3D?
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" Estimation of Local Orientation: Gradient

* In each point we measure the local gradient
of the signal (e.g. using a Sobel-operator)

* For anilD signal, the sign of the gradient
depends on where we do the measurement

* The gradient might be = 0 at certain lines of
the i1D signal

* Confidence?
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Representation of Local Orientation:
Double angle vector

Alternative: double the angle to 2a, which
lies in the interval 0 to 360°

Form a 2D vector vV which points with the
angle 2«

Let the norm of v represent the confidence
measure

Called: double-angle representation of local
2D orientation
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Representation of Local Orientation

* The double-angle representations of two
similar orientations are always similar
(continuity results in compatibility)

e Two orientations which differ O
most (90°) are always /*P\

— | |

represented by vectors that

point in opposite directions
(complementarity)

N
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Colour coding of the double angle

representation
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Representation of Local Orientation

* Double-angle representations of local 2D
orientations can be averaged

— The averaged representation = the feature mean

* Averaging of vectors is automatically weighted
with the confidences

In later lectures:

* How to estimate the double-angle
representation from image data?

e Whattodoin 3D?

40
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Representation of Local Orientation

Signal model for simple (i1D) signals

f(x) = g(x"n)

i = (cosa, sina)T

f is the local signal (2 or more dimensions)

g is the 1D function that defines the variations of
the i1D signal

* nis avector that defines the orientation

BUT: the direction (sign) of n is not unique

a0
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‘5{‘ Representation of Local Orientation:

Tensor
* The double-angle vector v becomes
v = X (cos 2a, sin2a)T

* \is a scalar which gives the confidence
* Alternative: form a 2 X 2 symmetric matrix

T = Aan” = A ("f’s 0‘) (cosa sina)
sSin«

* Tensor representation of local orientation
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Representation of Local Orientation

* Tensor components

- ‘Ty1 Tio ) ' cos?a cosasina’
Tio Too cosasina  sin?a
* Vector components
v— [ cos2a\ [ cos2a—sin2a\ [ Ti1—Too \
o \ sin2a /|~ | 2cosasina ) o 271

* The tensor contains one more element than v

43
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Representation of Local Orientation

* nis an eigenvector of T with eigenvalue \

* T (but not V) can be defined for any
dimension of signals (3D, 4D, ...)

* How to estimate v and T from signals?

44
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Tensor or Matrix?

* In this course, the term tensor is used as
synonym for symmetric matrix.

* Why tensor and not matrix?

— A matrix is just a representation, consisting of a
container with numbers in a table.

— A tensor can be represented as a matrix but it must
furthermore obey certain laws under
transformations of the coordinate system.
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Super-pixels

Examples from
Achanta et al,
(SLIC)

Showing different
sizes of the
clusters
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Super-pixels

* The array/matrix representation of an image implies
that, in principle, each pixel must be examined in
order to extract information about the image

* An alternative to the array/matrix representation is
to cluster neighboring pixels with similar values to
super-pixels

— Often with restrictions on the cluster: size, shape

* Each super-pixel is represented as the common
value and a cluster of pixels

* The image is represented as the set of its super-
pixels

* Normal image: approx. 1 M pixels
* Super-pixels image: approx. 1 k super-pixels
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Super-pixels

Typical approach:
* Initialize a regular grid of “square” super-pixels

* |teratively modify each super-pixel to increase
homogeneity regarding its corresponding pixel
values
— Split super-pixels into smaller ones if necessary
— Merge similar super-pixels if possible

— Move pixels from one super-pixel to a neighboring
one to improve super-pixel shape
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