

Estimation of local orientation

• A very simple description of local orientation is given by:

• Here, ∇f is the gradient of the image intensity

2

Vision Laboratory

Vision Laboratory

Estimation of local orientation

TSBB15

Computer Vision

Lecture 3

The structure tensor

- **Problem 1:** ∇*f* may be zero, even though there is a well defined orientation.
- **Problem 2:** The sign of *∇f* changes across a line.

Estimation of local orientation

Partial solution:

- Form the outer product of the gradient with itself: $\nabla f \nabla^{\mathsf{T}} f$.
- This is a symmetric 2 imes 2 matrix (tensor)
- Problem 2 solved!
- Also: The representation is unambiguous
 - Distinct orientations are mapped to distinct matrices
 - Similar orientations are mapped to similar matrices
 - Continuity / compatibility
- Problem 1 remains

3

1

Vision Laboratory

The structure tensor

• Compute a **local average** of the outer product of the gradients :

$$\mathbf{\Gamma} = \int w(\mathbf{x}) \ [
abla f](\mathbf{x}) [
abla^T f](\mathbf{x}) d\mathbf{x}$$

- w(x) is some LP-filter (typically a Gaussian)
- **T** is a symmetric 2 \times 2 matrix: $T_{ij} = T_{ji}$
- This construction is called the structure tensor
- Solves also problem 1 (why?)

Orientation representation

- For a signal that is approximately i1D in the neighborhood of a point x₀, with orientation ±n: ∇_wf is always parallel to n (why?)
- The gradients that are estimated around **x**₀ are a scalar multiple of **n**
- The average of their outer products results in

6

Vision Laboratory

 \mathbf{T} = λ nn^T

for some value λ

• λ depends on w_1 , w_2 , and the local signal f

Motivation for **T**

The structure tensor has been derived based on several independent approaches

- Stereo tracking (Lucas & Kanade, 1981) (Later)
- Optimal orientation (Bigün & Granlund, 1987)
- Sub-pixel refinement (Förstner & Gülch, 1987)
- Interest point detection (Harris & Stephens, 1988)

5

7

Local orientation in the Fourier domain

• Structures of different orientation end up in different places in the frequency domain

Optimal orientation estimation

Basic idea:

- The <u>local signal f(x)</u> has a Fourier transform F(u).
- We assume that *f* is a i1D-signal
 - *F* has its energy concentrated mainly on a line through the origin
- Find a line, with direction **n**, in the frequency domain that best fits the energy of *F*

Described by Bigün & Granlund [ICCV 1987]

Computer Vision Laboratory

Optimal orientation estimation

• The solution to this constrained maximization problem must satisfy

 ${f T}\,\hat{f n}=\lambda\,\hat{f n}$ (why?)

- Means: **n** is an eigenvector of **T** with eigenvalue λ
- Choose the eigenvector with the largest eigenvalue for best fit (why?)

<u>~</u>

Sub-pixel refinement

- Consider a local region and let $\nabla f(\mathbf{x})$ denote
- the image gradient at point **x** in this region
- Let \mathbf{x}_0 be some point in this region
- ⟨∇f(x) | x − x₀ ⟩ is then a measure of compatibility between the gradient ∇f(x) and the point x₀
 - Small value = high compatibility
 - High value = small compatibility

Vision Laboratory

- In the case of more than one line/edge in the local region:
- We want to find the point x₀ that optimally fits all these lines/edges
- We minimize

$$\epsilon(\mathbf{x}_0) = \|\langle \nabla f(\mathbf{x}) | \mathbf{x} - \mathbf{x}_0 \rangle \|_w^2$$

where *w* is a weighting function that defines the local region

11

9

Example		nguler Vision Laboratory
		1 20
Before averaging	T ₁₂ image	After averaging
		21

Example: Structure tensor in 2D

- If the local signal is not i1D, ∇f is not parallel to some n for all points x in the local region, i.e. the terms in the integral that forms T are not scalar multiples of each other
- Consequently: $\lambda_2 > 0$
- The idea of optimal orientation becomes less relevant the closer $\lambda_{\rm 2}$ gets to $\lambda_{\rm 1}$

Example: Structure tensor in 2D

• In the general 2D case, we obtain T \rightarrow \hat{T} \hat{T} \hat{T} \hat{T}

 $\mathbf{T} = \lambda_1 \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \lambda_2 \, \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T \quad \text{(why?)}$

- where λ₁ ≥ λ₂ are the eigenvalues of T and **ê**₁, **ê**₂ are the corresponding normalized eigenvectors
- We have already shown that for locally i1D signals we get $\lambda_1 \ge 0$ and $\lambda_2 = 0$

22

Isotropic tensor

- If we assume that the orientation is uniformly distributed in the local integration support, we get $\lambda_1 \approx \lambda_2$: $T = \lambda_1 \hat{e}_1 \hat{e}_1^T + \lambda_1 \hat{e}_2 \hat{e}_2^T$ $= \lambda_1 (\hat{e}_1 \hat{e}_1^T + \hat{e}_2 \hat{e}_2^T)$ $= \lambda_1 I \qquad \leftarrow \text{The identity matrix}$ • i.e. T is *isotropic*: $\mathbf{n}^T \mathbf{T} \mathbf{n} = \mathbf{n}^T \mathbf{I} \mathbf{n} = 1$
- i.e. T is *isotropic*: n^TT n = n^TI n = 1
 Why is the parenthesis equal to I?

• From det T and tr T we can define two confidence measures:

$$c_1 = \frac{\mathrm{tr}^2 \mathrm{T} - 4 \operatorname{detT}}{\mathrm{tr}^2 \mathrm{T} - 2 \operatorname{detT}}$$
 $c_2 = \frac{2 \operatorname{detT}}{\mathrm{tr}^2 \mathrm{T} - 2 \operatorname{detT}}$

sion Laboratory

Confidence measures

• Using the identities tr **T** = $T_{11} + T_{22} = \lambda_1 + \lambda_2$ det **T** = $T_{11}T_{22} - T_{12}^2 = \lambda_1 \lambda_2$

we obtain

$$c_1 = \frac{(\lambda_1 - \lambda_2)^2}{\lambda_1^2 + \lambda_2^2} \quad c_2 = \frac{2\lambda_1\lambda_2}{\lambda_1^2 + \lambda_2^2}$$

(why?)

and $c_1 + c_2 = 1$

26

Confidence measures

- Easy to see that
 - i1D signals give $c_1 = 1$ and $c_2 = 0$
 - Isotropic **T** gives $c_1 = 0$ and $c_2 = 1$
 - In general: an image region is somewhere between these two ideal cases
- An advantage of these measures is that they can be computed from **T** without explicitly computing the eigenvalues λ_1 and λ_2

Decomposition of **T**

• We can always decompose **T** into an i1D part and an isotropic part:

$$\mathbf{T} = \lambda_1 \,\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \lambda_2 \,\hat{\mathbf{e}}_2 \,\hat{\mathbf{e}}_2^T$$

= $(\lambda_1 - \lambda_2) \,\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \lambda_2 \,(\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \hat{\mathbf{e}}_2 \,\hat{\mathbf{e}}_2^T)$
= $(\lambda_1 - \lambda_2) \,\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \lambda_2 \,\mathbf{I}$

27

25

ision Laboratory

Harris measure

 By detecting points of local maxima in C_H, where C_H > τ, we assure that the eigenvalues of T at such a point lie in the colored region below

Example

Harris

Original