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Why learning?

• Learning is a very important part of 
Computer Vision: 
 
1. Parameter tuning 
2. Adaptation to changing conditions 
3. Finding patterns in data
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Parameter tuning

• Most Computer Vision systems are 
complex pieces of software. 
• The more complex a system is, the more 

parameters it has.
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Parameter tuning

• Most Computer Vision systems are 
complex pieces of software. 
• The more complex a system is, the more 

parameters it has. E.g. filter sizes, 
thresholds for detection etc. These need 
to be tuned!
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Parameter tuning

• Tuning in brief: 
 
1. Give examples of the desired behaviour 
of an algorithm. 
2. Look for the parameters that produce 
the desired behaviour. 
 
If you let the computer look for the 
parameters, tuning becomes learning.
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Parameter tuning

• Example: 
Automatically decide 
which motion vectors 
are good(v∈G) and  
which are bad(v∈B). 
• Look for tracker parameters that maximise: 

J(p1,...,pN) = |G|/(|G|+|B|) 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Adaptation

• Computer Vision systems that are 
deployed in live situations face changing 
conditions. E.g. different illumination at 
night and during the day.
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Adaptation

• Computer Vision systems that are 
deployed in live situations face changing 
conditions. E.g. different illumination at 
night and during the day. 
• In order to cope with changes, a vision 

system needs to be adaptive.
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Adaptation

• Computer Vision systems that are 
deployed in live situations face changing 
conditions. E.g. different illumination at 
night and during the day. 
• In order to cope with changes, a vision 

system needs to be adaptive. 
• Example: Background models 

introduced later in this lecture.
9



February 1, 2017 Computer Vision lecture 6

Computer Vision Laboratory

Finding patterns in data

• Recognition and match- 
ing (LE 8) uses learned 
features (or tuned). 

• Applications such as: 
object recognition, 
object tracking, 
image captioning etc.
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Learning systems

• Batch learning: learn once, use forever 
 

• Online learning: learn continuously 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Learning systems

• Batch learning: learn once, use forever 
Is used to automatically tune 
parameters, features, classifiers etc. 
• Online learning: learn continuously 

Is used to automatically adapt e.g. 
classifiers and trackers to changing 
conditions.
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Today’s topics

• Learning paradigms 
• K-means clustering 
• Mixture models and EM 
• Background models 
• Meanshift clustering 
• Generalised Hough Transforms (GHT) 
• Channel clustering

13



February 1, 2017 Computer Vision lecture 6

Computer Vision Laboratory

Learning paradigms

• Different learning situations/paradigms: 
 
Supervised learning 
Reinforcement learning 
Unsupervised learning 

• Covered in depth in: 
TBMI26 Neural Networks and Learning Systems
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Learning paradigms

• Different learning situations/paradigms: 
 
Supervised learning 
Reinforcement learning 
Unsupervised learning  ←this lecture  

• Covered in depth in: 
TBMI26 Neural Networks and Learning Systems
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Learning paradigms

• Supervised learning 
learn y=f(x) from examples {xn,yn}1N  
= function approximation
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• Unsupervised learning 
learn y=f(x) from examples {xn}1N  

=manifold learning or clustering 
• Manifold learning finds low dimensional 

representations of high dimensional data. 
E.g. coordinates on a surface in nD.
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Learning paradigms
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• Unsupervised learning 
learn y=f(x) from examples {xn}1N  

=manifold learning or clustering 
• Manifold learning finds low dimensional 

representations of high dimensional data. 
E.g. coordinates on a surface in nD. 

• This lecture is mainly about clustering. 
•           , i.e. each sample xn is assigned a 

cluster label.
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Learning paradigms

18



– Our input is a set of data points
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Clustering
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– Each data point             is assigned a cluster 
label                      , and a prototype 
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Clustering
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Clustering

• A good clustering has small distances 
between prototypes and samples within 
that cluster: 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Clustering

• A good clustering has small distances 
between prototypes and samples within 
that cluster: 
 

• NP-complete problem. 
• K-means clustering [MacQueen’67] is a 

useful heuristic.
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1. Pick random sample points as cluster 
prototypes. 

2. Assign cluster labels           to samples 
according to prototype distances 

3. Assign prototypes as averages of samples 
within cluster: 

4. Repeat 2-3 until labels stop changing.
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K-means clustering
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K-means clustering

• K-means finds a local min of the cost: 
 

• Issue 1:Bad repeatability: 

• Issue 2:What is the value of K?
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• Fix (partial) for repeatability: 
• Replace binary indicator function 

with a continuous weight, wkn, for each 
sample. 
 

• Smoother cost fcn     fewer local min. 
• Called fuzzy k-means or fuzzy c-means.
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1. Pick random sample points as cluster 
prototypes. 

2. Assign weights, wkn, to samples 
according to 

3. Assign prototypes as weighted averages of 
samples: 

4. Repeat 2-3 until labels stop changing.
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Fuzzy K-means clustering
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• Fix for the local min problem: 
– Run the algorithm many times, and pick the 

solution with the lowest J. 
• Steps 2,3 can be seen as special cases of 

the EM-algorithm [Dempster et al. 77] 
• more on this soon. 
• First we need to introduce 

mixture models.
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Mixture models

• A generative model for data that may 
come from several distributions. 

• E.g. pixel values at a step edge with 
uncertain location:
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Mixture models

• We model the probability density of 
pixel intensity I as: 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Mixture models

• We model the probability density of 
pixel intensity I as: 

• Mixture probabilities: 
 
 
e.g. P(Γ1)=P(Γ2)=0.5  
gives this p(I):
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Mixture models

• We model the probability density of 
pixel intensity I as: 

• Mixture components: 
e.g. 

• Gaussian mixture 
model 

31
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Mixture models
• Gaussian mixture components: 

• Notation conditioned on the parameters: 

• Also the mixture probabilities are parameters:
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Expectation Maximisation

• Given a set of measurements, 
how do we estimate the parameters of 
the mixture distribution p(I)?  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Expectation Maximisation

• Given a set of measurements, 
how do we estimate the parameters of 
the mixture distribution p(I)?  
 
 

• This can be done with the EM algorithm. 
• Note similarities with K-means below.

34



1. Postulate a mixture distribution. 

2. E: Compute partial memberships, wkn, with  
                     to samples          , using the 
mixture distribution.  

3. M: Use partial memberships to estimate 
mixture distribution parameters. 

4. Repeat 2-3 until convergence.
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Expectation Maximisation
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Expectation Maximisation
• For the mixture: 

 

• The E-step becomes:
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Expectation Maximisation
• For the mixture: 

 

• The E-step becomes: 
 
 

• What is                      ? 
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Expectation Maximisation

• The M-step becomes: 
 

• and, assuming a Gaussian mixture:
µk =

1
PN

n=1 wkn

NX

n=1

wknIn

�2
k =

1
PN

n=1 wkn

NX

n=1

wkn(In � µk)2
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Expectation Maximisation

• Generalizes to higher dimensions. 
• e.g. in 2D we have 5 parameters in each 

mixture component: 
 

• Just like K-means,  
EM also finds a local min.

39



February 1, 2017 Computer Vision lecture 6

Computer Vision Laboratory

Expectation Maximisation

• Demo for 2D case:
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Background modelling

• A popular application of mixture models 
is background modelling (SHB 16.5.1): 

– Estimate a mixture model for the image in 
each pixel. 

– Pixel values far from the mixture are seen 
as foreground pixels. 

– Popular way track e.g. people and cars in 
stationary surveillance cameras. 

– Fast compared to motion estimation.
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Background modelling
• Background modelling+shadow detection 

 
 
 
 
 

• CVL Master thesis of John Wood 2007
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Background modelling
• Samples now arrive one at a time. 
• EM uses a batch update: 

• On-line update is needed

43
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Background modelling
• Samples now arrive one at a time. 
• On-line update: 

• How to design                can be 
investigated in project 1.
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Mean-shift Clustering

• A proper solution to the local min 
problem is to find all local minima. 

• Two steps: 
– Mean-shift filter (mode seeking) 
– Clustering
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Kernel density estimate

• For a set of sample points 
we define a continuous PDF-estimate 
as:
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Kernel density estimate

• For a set of sample points 
we define a continuous PDF-estimate 
as: 
 

• K() is a kernel, e.g. 
• h is the kernel scale.
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Mode seeking

• By modes of a PDF, we mean the local 
peaks of the kernel density estimate. 

– These can be found by gradient ascent, 
starting in each sample. 

– If we use the Epanechnikov kernel, 
 
 
a particularly simple gradient ascent is 
possible.
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Mean-shift filtering

• Start in each data point, 
• Move to position of local average 

• Repeat step 2 until convergence.
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Mean-shift clustering

• After convergence of the mean-shift filter, 
all points within a certain distance (e.g. 
h) are said to constitute one cluster.
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Pose estimation
– Mean-shift can be used for “continuous 

voting” in pose estimation. 
– Each local invariant feature (e.g. SIFT or 

MSER) will cast a vote (sample point) 
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Mean-shift

h=1.2 => 26 clusters h=3.2 => 5 clusters

h=7.2 => 1 cluster

• Choice of kernel scale affects results

h=5.2 => 2 clusters
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Mean-shift

• For the Epanechnikov kernel, the 
algorithm is quite fast. 

• The Gaussian kernel is another popular 
choice. 

• There is also a scale adaptive version of 
meanshift, that works in a manner 
similar to EM in each iteration (slower).
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Generalised Hough Transform

• Another way to find modes of a PDF is 
to quantize the parameter space into 
accumulator cells. 

• Each sample then casts a vote in one or 
several cells. 

• This is called the Generalised Hough 
Transform (GHT).
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• Non-iterative      constant time 
complexity.
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Generalised Hough Transform
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Generalised Hough Transform

• Quantisation can be dealt with by increasing 
the number of cells, and blurring.
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Channel Representation

• A similar technique is to use averaging in 
channel representation. 

– By first quantizing, and then blurring, we are 
actually introducing aliasing of the PDF. 

– Better to directly sample the kernel density 
estimate at regularly sampled positions. 

– Density of samples is regulated by the 
kernel scale.
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Channel Representation

• Channel encoding 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Channel Representation

• Channel encoding 
 
 
 
 

• Channel decoding
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– A local decoding is necessary in order to decode 
a multi-valued channel representation. 
 
 
 

– That is  

– Decoding formula depends on the kernel.
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Channel Representation
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Channel Clustering

• Channel encode data points, 
• Average channel vectors 
• Compute all decodings
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Channel Clustering

• The decoding step computes location, 
density, and standard deviation at mode. 

• Optimal decoding is expensive, but fast 
heuristic decodings exist. 

• It can be shown [Forssén 04] that 
averaging in channel representation is 
equivalent to a regular sampling of a 
kernel density estimator.
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Summary

• This was a quick overview of clustering, 
and related techniques. 
• The main purpose with learning is to make 

Computer Vision systems adapt to data. 
• The alternative, to manually tune 

parameters, works for small static 
problems, but does not scale and cannot 
adapt to changes.
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Course events this week

• Thursday: Lab1 
   Material on the course web page. 
   Preparation is necessary to finish on 
   time. 
  
• Friday: Projects start 

   Introductory lecture  
   Assignments into groups (4/5 per group)
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