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Computer Vision

Lecture 14
Image enhancement

Why image enhancement?

(od)

* Example of artifacts
caused by image
encoding
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Why image enhancement?
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Why image enhancement?

e Example of an
image with sensor
noise

— ultrasound image
of a beating heart
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Why image enhancement?

* |R-image
— fixed pattern noise = spatial variations in gain and
offset

— Possibly even variations over time!
— Hot/dead pixels

e Adigital camera with short exposure time
— Shot noise (photon noise)

Methods for image enhancement

* |nverse filtering: the distortion process is modeled
and estimated (e.g. motion blur) and the inverse
process is applied to the image

* |mage restoration: an objective quality
(e.g. sharpness) is estimated in the image.
The image is modified to increase the quality

* Image enhancement: modify the image to improve
the visual quality, often with a subjective criterion

Additive noise

e Some types of image distortion can be described
as
— Noise added on each pixel intensity

— The noise has the identical distribution and is
independent at each pixel (i.i.d.)

* Not all type of image distortion are of this type:
— Multiplicative noise :
. What about pixel
— Data dependent noise shot noise?
— Position dependent

* The methods discussed here assume additive
i.i.d.-noise

Removing additive noise

* Image noise typically contains higher
frequencies than images generally do

= a low-pass filter can reduce the noise

e BUT: we also remove high-frequency signal
components, e.g. at edges and lines

e HOWEVER: A low-pass filter works in regions
without edges and lines




Example: LP filter

Image with some noise

Filter, 0 =2
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Basic idea

The problem of low-pass filters is that we
apply the same filter on the whole image
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Ordinary filtering / convolution

* Ordinary filtering can be described as a
convolution of the signal f and the filter g:
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Adaptive filtering

* If we apply an adaptive (or position
dependent, or space variant) filter g,, the
operation cannot be expressed as a
convolution, but instead as
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How to choose g, ?

According to the previous discussion,
we choose g, such that:

— It contains a low-pass component that maintains the local
image mean intensity Independent of x

— It contains a high-pass component that depends on the local

signal structure
Dependent of x

— Also: the resulting operation for computing h
should be simple to implement

| Computational efficient |
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High-frequency components in g,

* If the signal is = i1D the filter can maintain the
signal by reducing the frequency components
orthogonal to the local structure

e The human visual system is less sensitive to
noise along linear structures than to noise in
the orthogonal direction

e Results in good subjective improvement of
image quality
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Oriented noise
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Oriented noise

White noise in the
Fourier domain
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Oriented noise

Oriented white noise in
the Fourier domain
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Oriented noise

2016-04-19
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Oriented noise

Edges and lines

A. Without noise

A
B. With oriented noise along
C. With isotropic noise
5 D. With oriented noise across
C
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Local structure information

* We compute the local orientation tensor T(x)
at all points x to control / steer g,

e At a point x that lies in a locally i1D region, we

obtain
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e

é

€ is normal to the
linear structure
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Ansatz for g,

We apply a filter that is given in the Fourier domain as

Gup(u) = G,(u) (0Te)? u=uu

— G, is polar separable
— It attenuates frequency components that are 1 to é
— It maintains all frequency components that are || to &
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How to implement g, ?

* We know that [EDUPACK — ORIENTATION]

(078)? = (an'|ee”) = (aa’|T(x))

where T(x) = éé’ (assume A = 11)

e Using a N-D tensor basis N, = h,n,” and its dual
N,, we obtain:

T(x) = ¥y (T(x)[Nx) Ny

2016-04-19 22

How to implement g, ?
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How to implement g, ?

* Plug this into the expression for G, :

ny,)?

Gup(u) =) (T(x)|Ng)G,

(u) ("
VAR

depends on é depends onu
but notonu but noton é
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How to implement g, ?

Consequently, the filter G, is a linear
combination of N filters, where each filter has a
Fourier transform:

GHp,k(u) = Gp(u) (ﬁTﬁk)Z Independent of x

and N scalars:

<T(X)|Nk> Dependent of x
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How to implement g, ?

Summarizing, the adaptive filter can be
written as
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How to implement g, ?

If the filter is applied to a signal, we obtain

N
h(x) = /f x—y) [gLp(y) + > _(T(x)|Nk) gupily )] dy
k=1
N
= (Frgrp)(®)+ Y _(T)|Ng) (f * grpr)(x)
[ 7 \
Standard convolution | |Standard convolutions |
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Outline of method, version 1

1. Estimate the local orientation tensor T(x) at each image
point x
2. Apply a number of fixed filters to the image;
one LP-filter g,, and the N HP-filters g,
3. At each point x:
1. Compute the N scalars (T(x)|Ny,)

2. Form the linear combination of the N HP-filter responses
and the N scalars and add the LP-filter response

4. At each point x, the result is the filter response h(x) of the
locally adapted filter g,
The filter g, is also called a steerable filter |
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Observation Remaining questions

e Tcan be estimated for any image dimension 1. What happens in regions that are not il1D,

* The filters g,, and g, can be formulated i.e., if T has not rank 1?
for any image dimension
2. What happens if Az1?

= The method can be implemented for any

dimension of the signal (2D, 3D, 4D, ...) ) )
3. How to choose the radial function Gp?

Non i1D signals Non i1D signals
* But
* The tensor’s eigenvectors with non-zero eigenvalues
span the subspace of the Fourier domain that T T
contains the signal’s energy ' Ta=(aa"|T)
e Equivalent: For a given local region with orientation which means that the adaptive filtering should

tensor T, let G define an arbitrary orientation. The
product G'T @ is a measure of how much of this
orientation the region contains.

work in general, even if the signal is non i1D




How about A=17

* Previously we assumed A =1, but normally A
depends on the local amplitude of the signal
(depends on x)

* |n order to achieve A =1, T must be
pre-processed

e The resulting tensor is called the
control tensor C
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Pre-processing of T

e The filter g, is supposed to vary slowly with x,
but T contains high-frequency noise that
comes from the image noise

* This noise can be reduced by an initial
LP-filtering of T (i.e., of its elements)

e The result is denoted T,
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Pre-processing of T

T, must then be normalized:

| Eigen-decomposition of T, |

/

n
A AT
Trp = E Ak €rep, Ak = Akl
k=1
n
& AT
C = E Y€k Yk = Y+l
k=1
Ve = YA A) Same eigenvectors as T,

016,041 but different eigenvalues

Modification of the eigenvalues

Examples of v, as funcion of, e.g., || T|| = /A2 + A3 +...
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Modification of the eigenvalues

Examples of yx+1/7 as function of A\gy1/Ak

1

0.8- . . : : : L

0.6 4

0.4F . . : : : : _

O t 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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The radial function Gp

e Should “mainly” be equal to 1
e ShouldtendtoOforu=m
e Together with the LP-filter g ;: an all-pass filter

Radial part of G, Radial part of G,p Radial part of G, + G p
1 1 1
0 0 0
0 p T 0 N p  n 0 L -
2016-04-19 38

The adaptive filter in 2D
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Examples of G(u) for
2016-04-19 different C(x) 29

Outline of method, version 2

1. Estimate the local tensor in each image point: T(x)

2. LP-filter the tensor: T p(x)

3. In each image point:
1. Compute the eigenvalues and eigenvectors of T ().
2. Map the eigenvalues A, to y,.
3. Re-combine y, and the eigenvectors to form the control tensor C
4. Compute the scalars (C|N,) forallk=1,.., N

4. Filter the image with g,, and the N HP-filters g,

5. In each image point: form the linear combination of the filter
responses and the scalars
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Example

Original noisy image Image after enhancement
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Example

QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.
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An iterative method

* Adaptive filtering can be iterated for reducing
the noise

* |f the filter size is reduced at the same time, a
close-to continuous transition is achieved
(evolution)

* This leads to another method for image
enhancement: anisotropic diffusion

2016-04-19 43

Scale space recap
(from lecture 2)

* The linear Gaussian scale space related to the
image f is a family of images L(x,y;s)

L(z,y;8) = (95 * f)(z,y) -

parameterized by the scale parameter s,
where

gs(7,y) = g;e =z @)

27s

A Gaussian LP-filter [ Note: g,(xy) = 3xy) fors =0_|

2
2016-04-19 with o” =5 44




Scale space recap
(from lecture 2)

* L(x,y;s) can also be seen as the solution to the
PDE

The diffusion equation
Example:

0 172
%L — §v L L = temperature

s=time

O 1 _ 1/ 82 Rk
5L = 2(azz + 52) L

with boundary condition L(x,y,;0) = f(x,y)

Image enhancement based on linear
diffusion

e This means that L(x,y;s) is an LP-filtered version of
flx,y) for s > 0.
e The larger s is, the more LP-filtered is f
— High-frequency noise will be removed for larger s
* As before: also high-frequency image components
(e.g. edges) will be removed
* We need to control the diffusion process such that
edges remain
— How?

Step 1

* Modify the PDE by introducing a parameter u:

o can be seen as a

) 2 “diffusion speed”:
=L =LV*L o
0s 2 Small w: the diffusion
process is slow when s

* This PDE is solved by increases

Large p: the diffusion
process is fast when s
increases

L@ ys) = (0% DY) ey

1 2 2
gs(2,y) = gz ™= V) [Gighiy e |

Step 2

* We want the image content to control u
— In flat regions: fast diffusion (large 1)
— In non-flat region: slow diffusion (small 1)

* We need to do space variant diffusion
— w is a function of position (x,y)

Compare to the space variant filter
g, in adaptive filtering




Inhomogeneous diffusion Inhomogeneous diffusion

* Perona & Malik suggested to use

1
@ Y) = TR
where Vfis the image gradient at (x,y)

and A is fixed a parameter

— Close to edges: | Vf] is large = p is small
— In flat regions: | Vf| is small = p is large
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Inhomogeneous diffusion Inhomogeneous diffusion

. Eample

* Noise is effectively removed in flat region \3

@

e Edges are preserved

* Noise is preserved close to edges @

We want to be able to LP-filter along
but not across edges, same as for
adaptive filtering
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Step 3

* The previous PDEs are all isotropic
= The resulting filter g is isotropic

* The last PDE can be written:

SL =4V = 3div(p grad L)

/ Gradient of L,

a 2D vector field

Divergence of (...)
maps 2D vector field to scalar field
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Step 3

e Change i from a scalar to a 2 X 2 symmetric
matrix D

L[ = Ldiv(D grad L)

e The solution is now given by

L(X’ S) — (gs k f)(x) |<=Sameasbefore

1 _LXTD—].X
— 2s
9s(%) = 5 Tet )77 ©
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Ansiotropic diffusion

e The filter g is now anisotropic, i.e., not
necessary circular symmetric

e The shape of g depends on eigensystem of D

* Dis called a diffusion tensor

— Can be given a physical interpretation, e.g. for
anisotropic heat diffusion
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The diffusion tensor

* Since D is symmetric 2 x 2:

D = ozleler{ - agegeg

where «,, o, are the eigenvalues of D, and
e, and e, are corresponding eigenvectors

e, and e, form an ON-basis
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The filter g

e The corresponding shape of g is given by

The width of the filter in
direction e, is given by o,

Iso-curves for g =
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Step 4

We want g to be narrow across edges and wide
along edges

This means: D should depend on (x,y)
— A space variant anisotropic diffusion

This is referred to as anisotropic diffusion in the
literature

Introduced by Weickert
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Anisotropic diffusion

* Information about edges and their orientation
can be provided by an orientation tensor, e.g.,
the structure tensor T in terms of its eigenvalues
AL A,

* However:
— We want o, to be close to 0 when ), is large
— We want o, to be close to 1 when ), is close to 0
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FromTto D

* The diffusion tensor D is obtained from the
orientation tensor T by modifying the
eigenvalues and keeping the eigenvectors

— similar to the control tensor C, e.g.

=

sy

o = eXp(—)\k/k> o)
/

| k is a control parameter |
2016-04-19 L s e W pags, 7 o




Anisotropic diffusion:
putting things together

1. Atall points:
1. compute a local orientation tensor T(x)
2. compute D(x) from T(x)

2. Apply anisotropic diffusion onto the image by
locally iterating

Left hand side:
the change in L
at (x,y) between
s and s+0s

0

0s

L

;div(DV L)

This defines how scale space level

L(x,y;s+0s) is generated from L(x,y;s)

Right hand side:
can be computed
locally at each
point (x,y)
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Implementation aspects

* The anisotropic diffusion iterations can be
done with a constant diffusion tensor field
D(x), computed once from the original image
(faster)

e Alternatively: re-compute D(x) between every
iteration (slower)
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Regularization

* We assume D to have a slow variation with
respect to x (cf. adaptive filtering)

* This means

L[ ~1tr[D(divgrad L)] = L tr[D (H L)

S

| The Hessian of L = second order derivatives of L

/

9?2 9
0x2 L 0zdy L
HL= , ,
0 0
2016-04-19 0xdy L 0y? L

Numerical implementation

e Several numerical schemes for implementing
anisotropic diffusion exist

e Simplest one:

— Replace all partial differentials with finite
differences

L(z,y;s+ As) = L(z,y; s) + As tr [D(HL)]

The Hessian of L 0 0 0 0 -1 0
can be approximated by | u: |l -2 1] Hip: | 0 0 0 ) Hp: |0
0 0 0 1 0

convolving L with:
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Algorithm Outline

1. Set parameters

e.g.: k, As, number of iterations, ...

2. lterate

s w N e

Compute orientation tensor T
Modify eigenvalues = D
Computer Hessian H L
Update L according to:

L(z,y; s + As) = L(z,y; s) + As tr [D(HL)]
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A note

e The image f is never convolved by the space
variant anisotropic filter g

* Instead, the effect of g is generated
incrementally based on the diffusion eq.

* In adaptive filtering: we never convolve f with
g, instead several fixed filters are applied
onto f and their results are combined in a non-
linear fashion
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Comparison

Inhomogenous diffusion

Anisotropic diffusion




