TSBB15 Computer Vision

Lecture 14 Image enhancement

Why image enhancement?

 Example of artifacts caused by image encoding

2016-04-19

Why image enhancement?

Why image enhancement?

- Example of an image with sensor noise
 - ultrasound image of a beating heart

2016-04-19 3 2016-04-19 4

Why image enhancement?

- IR-image
 - fixed pattern noise = spatial variations in gain and offset
 - Possibly even variations over time!
 - Hot/dead pixels
- A digital camera with short exposure time
 - Shot noise (photon noise)

2016-04-19

Additive noise

- Some types of image distortion can be described as
 - Noise added on each pixel intensity
 - The noise has the identical distribution and is independent at each pixel (i.i.d.)
- Not all type of image distortion are of this type:
 - Multiplicative noise
 - Data dependent noise

What about pixel shot noise?

- Position dependent
- The methods discussed here assume additive i.i.d.-noise

Methods for image enhancement

- <u>Inverse filtering</u>: the distortion process is modeled and estimated (e.g. motion blur) and the *inverse* process is applied to the image
- Image restoration: an objective quality (e.g. sharpness) is estimated in the image.
 The image is modified to increase the quality
- <u>Image enhancement</u>: modify the image to improve the visual quality, often with a subjective criterion

2016-04-19

Removing additive noise

- Image noise typically contains higher frequencies than images generally do
 - \Rightarrow a low-pass filter can reduce the noise
- BUT: we also remove high-frequency signal components, e.g. at edges and lines
- HOWEVER: A low-pass filter works in regions without edges and lines

Example: LP filter

Basic idea

The problem of low-pass filters is that we apply the same filter on the whole image

We need a filter that locally adapts to the image structures

A space variant filter

2016-04-19

Ordinary filtering / convolution

• Ordinary filtering can be described as a convolution of the signal *f* and the filter *g*:

$$h(\mathbf{x}) = (f * g)(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y}) g(\mathbf{y}) d\mathbf{y}$$

For each **x**, we compute the integral between the filter *g* and a shifted signal *f*

Adaptive filtering

• If we apply an adaptive (or position dependent, or space variant) filter g_x , the operation cannot be expressed as a convolution, but instead as

$$h(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y}) g_{\mathbf{x}}(\mathbf{y}) d\mathbf{y}$$

For each \mathbf{x} , we compute the integral between a shifted signal f and the filter $g_{\mathbf{x}}$ where the filter depends on \mathbf{x}

How to choose g_x ?

According to the previous discussion, we choose $g_{\mathbf{x}}$ such that:

- It contains a low-pass component that maintains the local image mean intensity
- It contains a high-pass component that depends on the local signal structure

 Dependent of x
- Also: the resulting operation for computing h should be simple to implement

Computational efficient

2016-04-19

High-frequency components in g_x

- If the signal is ≈ i1D the filter can maintain the signal by reducing the frequency components orthogonal to the local structure
- The human visual system is less sensitive to noise along linear structures than to noise in the orthogonal direction
- Results in good subjective improvement of image quality

2016-04-19

Oriented noise

Oriented noise

2016-04-19 15 2016-04-19 16

Oriented noise

17 2016-04-19 2016-04-19

Oriented noise

Edges and lines

- A. Without noise
- B. With oriented noise along
- C. With isotropic noise
- D. With oriented noise across

Oriented noise

18

Local structure information

- We compute the local orientation tensor **T**(**x**) at all points **x** to control / steer $g_{\mathbf{x}}$
- At a point **x** that lies in a locally i1D region, we obtain

$$\mathbf{T}(\mathbf{x}) = A \,\hat{\mathbf{e}} \hat{\mathbf{e}}^T$$

2016-04-19

ê is normal to the linear structure

Ansatz for g_x

We apply a filter that is given in the Fourier domain as

$$G_{HP}(\mathbf{u}) = G_{\rho}(u) \, (\hat{\mathbf{u}}^T \hat{\mathbf{e}})^2 \qquad \mathbf{u} = u \, \hat{\mathbf{u}}$$

 $-G_{HP}$ is polar separable

2016-04-19

- It attenuates frequency components that are \bot to $\mathbf{\hat{e}}$
- It maintains all frequency components that are || to ê

2016-04-19

How to implement g_x ?

$$\begin{split} (\hat{\mathbf{u}}^T \hat{\mathbf{e}})^2 &= \sum_{k=1}^N \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \hat{\mathbf{N}}_k \rangle \, \langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k \rangle \\ &= \sum_{k=1}^N \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \hat{\mathbf{n}}_k \hat{\mathbf{n}}_k^T \rangle \, \langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k \rangle \\ &= \sum_{k=1}^N (\hat{\mathbf{u}}^T \hat{\mathbf{n}}_k)^2 \, \langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k \rangle \\ &\text{depends on } \mathbf{u} \\ &\text{but not on } \hat{\mathbf{e}} \end{split}$$

23

How to implement g_x ?

• We know that [EDUPACK – ORIENTATION]

$$(\hat{\mathbf{u}}^T \hat{\mathbf{e}})^2 = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \hat{\mathbf{e}} \hat{\mathbf{e}}^T \rangle = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \mathbf{T}(\mathbf{x}) \rangle$$

where
$$T(x) = \hat{e}\hat{e}^T$$
 (assume $A = 1!$)

• Using a *N*-D tensor basis $\hat{\mathbf{N}}_k = \hat{\mathbf{n}}_k \hat{\mathbf{n}}_k^{\mathsf{T}}$ and its dual $\tilde{\mathbf{N}}_k$, we obtain:

22

24

$$\mathbf{T}(\mathbf{x}) = \sum_{k=1}^{N} \langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k
angle \, \hat{\mathbf{N}}_k$$

2016-04-19

How to implement g_{x} ?

• Plug this into the expression for G_{HP} :

2016-04-19

How to implement g_x ?

Consequently, the filter G_{HP} is a **linear combination** of N filters, where each filter has a Fourier transform:

$$G_{HP,k}(\mathbf{u}) = G_{\rho}(u) (\hat{\mathbf{u}}^T \hat{\mathbf{n}}_k)^2$$

Independent of x

27

and N scalars:

Dependent of x

2016-04-19

How to implement g_x ?

If the filter is applied to a signal, we obtain

$$\begin{array}{lcl} h(\mathbf{x}) & = & \int f(\mathbf{x}-\mathbf{y}) \left[g_{LP}(\mathbf{y}) + \sum_{k=1}^{N} \langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k \rangle \, g_{HP,k}(\mathbf{y}) \right] \, d\mathbf{y} \\ \\ & = & \left(f * g_{LP} \right)(\mathbf{x}) + \sum_{k=1}^{N} \langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k \rangle \, (f * g_{HP,k})(\mathbf{x}) \end{array}$$

Position dependent scalars

How to implement g_{x} ?

Summarizing, the adaptive filter can be written as

$$g_{\mathbf{x}} = g_{LP} + \sum_{k=1}^{N} \langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k
angle \, g_{HP,k}$$
 A fixed LP-filter N fixed HP-filters

2016-04-19 26

Outline of method, version 1

- Estimate the local orientation tensor T(x) at each image point x
- 2. Apply a number of fixed filters to the image; one LP-filter g_{IP} and the N HP-filters g_{HPk}
- 3. At each point **x**:
 - 1. Compute the *N* scalars $\langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k \rangle$
 - 2. Form the linear combination of the *N* HP-filter responses and the *N* scalars and add the LP-filter response
- 4. At each point ${\bf x}$, the result is the filter response $h({\bf x})$ of the locally adapted filter $g_{\bf x}$

The filter g_x is also called a steerable filter

28

Observation

- **T** can be estimated for any image dimension
- The filters g_{LP} and $g_{HP,k}$ can be formulated for any image dimension
 - ⇒ The method can be implemented for any dimension of the signal (2D, 3D, 4D, ...)

2016-04-19

Non i1D signals

- The tensor's eigenvectors with non-zero eigenvalues span the subspace of the Fourier domain that contains the signal's energy
- Equivalent: For a given local region with orientation tensor T, let û define an arbitrary orientation. The product û^TT û is a measure of how much of this orientation the region contains.

Remaining questions

- 1. What happens in regions that are not i1D, i.e., if **T** has not rank 1?
- 2. What happens if A≠1?
- 3. How to choose the radial function G_{ρ} ?

2016-04-19

Non i1D signals

• But

$$\hat{\mathbf{u}}^T \mathbf{T} \, \hat{\mathbf{u}} = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \mathbf{T} \rangle$$

which means that the adaptive filtering should work in general, even if the signal is non i1D

How about A = 1?

- Previously we assumed A = 1, but normally A depends on the local amplitude of the signal (depends on x)
- In order to achieve A = 1, T must be pre-processed
- The resulting tensor is called the control tensor C

2016-04-19 33

Pre-processing of **T**

 T_{IP} must then be *normalized*:

$$\mathbf{T}_{LP} \ = \ \sum_{k=1}^n \lambda_k \, \hat{\mathbf{e}}_k \hat{\mathbf{e}}_k^T \qquad \lambda_k \geq \lambda_{k+1}$$

$$\mathbf{C} \ = \ \sum_{k=1}^n \gamma_k \, \hat{\mathbf{e}}_k \hat{\mathbf{e}}_k^T \qquad \gamma_k \geq \gamma_{k+1}$$

$$\gamma_k \ = \ \gamma_k(\lambda_1, \dots, \lambda_n)$$
 Same eigenvectors as \mathbf{T}_{LP} but different eigenvalues

Pre-processing of **T**

- The filter g_x is supposed to vary slowly with x, but T contains high-frequency noise that comes from the image noise
- This noise can be reduced by an initial LP-filtering of T (i.e., of its elements)
- The result is denoted T_{LP}

2016-04-19

Modification of the eigenvalues

Examples of γ_1 as funcion of, e.g., $\|\mathbf{T}\| = \sqrt{\lambda_1^2 + \lambda_2^2 + \dots}$

Modification of the eigenvalues

Examples of γ_{k+1}/γ_k as function of λ_{k+1}/λ_k

The radial function G_{ρ}

- Should "mainly" be equal to 1
- Should tend to 0 for $u = \pi$
- Together with the LP-filter $g_{\rm LP}$: an all-pass filter

The adaptive filter in 2D

Outline of method, version 2

- 1. Estimate the local tensor in each image point: **T**(**x**)
- 2. LP-filter the tensor: $T_{LP}(x)$
- 3. In each image point:
 - 1. Compute the eigenvalues and eigenvectors of $\mathbf{T}_{LP}(\mathbf{x})$.
 - 2. Map the eigenvalues λ_k to γ_k .
 - 3. Re-combine γ_k and the eigenvectors to form the control tensor ${\bf C}$
 - 4. Compute the scalars $\langle \mathbf{C} | \tilde{\mathbf{N}}_k \rangle$ for all k = 1,..., N
- 4. Filter the image with g_{LP} and the N HP-filters $g_{HP,k}$
- 5. In each image point: form the linear combination of the filter responses and the scalars

2016-04-19 40

Example

Original noisy image

Image after enhancement

2016-04-19

An iterative method

- Adaptive filtering can be iterated for reducing the noise
- If the filter size is reduced at the same time, a close-to continuous transition is achieved (evolution)
- This leads to another method for image enhancement: *anisotropic diffusion*

Example

QuickTime™ and a YUV420 codec decompressor are needed to see this picture.

2016-04-19 42

Scale space recap (from lecture 2)

 The linear Gaussian scale space related to the image f is a family of images L(x,y;s)

$$L(x, y; s) = (g_s * f)(x, y)$$

Convolution over (x,y) only!

parameterized by the scale parameter *s*, where

$$g_s(x,y) = \frac{1}{2\pi s} e^{-\frac{1}{2s}(x^2 + y^2)}$$

A Gaussian LP-filter with $\sigma^2 = s$

2016-04-19

Note: $g_s(x,y) = \delta(x,y)$ for s = 0

Scale space recap (from lecture 2)

• L(x,y;s) can also be seen as the solution to the **PDE** The diffusion equation

$$\frac{\partial}{\partial s}L = \frac{1}{2}\nabla^2 L$$

 $\frac{\partial}{\partial s}L = \frac{1}{2}(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2})L$

with boundary condition L(x,y;0) = f(x,y)

2016-04-19

Image enhancement based on linear diffusion

- This means that L(x,y;s) is an LP-filtered version of f(x,y) for s > 0.
- The larger s is, the more LP-filtered is f
 - High-frequency noise will be removed for larger s
- As before: also high-frequency image components (e.g. edges) will be removed
- We need to control the diffusion process such that edges remain
 - How?

2016-04-19

Step 1

• Modify the PDE by introducing a parameter μ :

$$\frac{\partial}{\partial s}L = \frac{\mu}{2}\nabla^2 L$$

• This PDE is solved by

 μ can be seen as a "diffusion speed":

Example:

s = time

L = temperature

Small μ : the diffusion process is slow when s increases

Large μ : the diffusion process is fast when s

$$L(x,y;s) = (g_s * f)(x,y)$$

Same as before

$$g_s(x,y) = rac{1}{2\pi\mu s} e^{-rac{1}{2\mu s}(x^2+y^2)}$$
 Slightly different

Step 2

- We want the image content to control μ
 - In flat regions: fast diffusion (large μ)
 - In non-flat region: slow diffusion (small μ)
- We need to do *space variant* diffusion
 - $-\mu$ is a function of position (x,y)

Compare to the space variant filter q, in adaptive filtering

Inhomogeneous diffusion

• Perona & Malik suggested to use

$$\mu(x,y) = \frac{1}{1 + |\nabla f|^2 / \lambda^2}$$

where ∇f is the image gradient at (x,y)and λ is fixed a parameter

– Close to edges: $|\nabla f|$ is large $\Rightarrow \mu$ is small

– In flat regions: $|\nabla f|$ is small $\Rightarrow \mu$ is large

2016-04-19

Inhomogeneous diffusion

• Example

Inhomogeneous diffusion

Inhomogeneous diffusion

Noise is effectively removed in flat region

Edges are preserved

Noise is preserved close to edges

We want to be able to LP-filter along but not across edges, same as for adaptive filtering

2016-04-19 52

Step 3

- The previous PDEs are all isotropic
 ⇒ The resulting filter q is isotropic
- The last PDE can be written:

2016-04-19

$$\frac{\partial}{\partial s} L = \frac{\mu}{2} \nabla^2 L = \frac{1}{2} \mathrm{div} (\mu \ \mathrm{grad} \ L)$$
 Gradient of L , a 2D vector field Divergence of (...) maps 2D vector field to scalar field

Ansiotropic diffusion

- The filter *g* is now anisotropic, i.e., not necessary circular symmetric
- The shape of g depends on eigensystem of **D**
- **D** is called a *diffusion tensor*
 - Can be given a physical interpretation, e.g. for anisotropic heat diffusion

Step 3

• Change μ from a scalar to a 2 \times 2 symmetric matrix ${\bf D}$

$$\frac{\partial}{\partial s}L = \frac{1}{2}\operatorname{div}(\mathbf{D} \operatorname{grad} L)$$

• The solution is now given by

$$L(\mathbf{x};s) = (g_s * f)(\mathbf{x})$$

← Same as before

$$g_s(\mathbf{x}) = \frac{1}{2\pi \det(\mathbf{D})^{1/2} s} e^{-\frac{1}{2s} \mathbf{x}^T \mathbf{D}^{-1} \mathbf{x}}$$

2010-04-19

The diffusion tensor

• Since **D** is symmetric 2 × 2:

2016-04-10

$$\mathbf{D} = \alpha_1 \mathbf{e}_1 \mathbf{e}_1^T + \alpha_2 \mathbf{e}_2 \mathbf{e}_2^T$$

where α_1 , α_2 are the eigenvalues of **D**, and \mathbf{e}_1 and \mathbf{e}_2 are corresponding eigenvectors

 \mathbf{e}_1 and \mathbf{e}_2 form an ON-basis

The filter *g*

The corresponding shape of g is given by

Iso-curves for $a \Rightarrow$

2016-04-19

57

Step 4

- We want g to be narrow across edges and wide along edges
- This means: **D** should depend on (*x*, *y*)
 - A space variant anisotropic diffusion
- This is referred to as *anisotropic diffusion* in the literature
- Introduced by Weickert

2016-04-19 58

Anisotropic diffusion

- Information about edges and their orientation can be provided by an orientation tensor, e.g., the structure tensor ${\bf T}$ in terms of its eigenvalues λ_1, λ_2
- However:
 - We want α_k to be close to 0 when λ_k is large
 - We want α_k to be close to 1 when λ_k is close to 0

From T to D

- The diffusion tensor **D** is obtained from the orientation tensor **T** by modifying the eigenvalues and keeping the eigenvectors
 - similar to the control tensor **C**, e.g.

2016-04-19 59

Anisotropic diffusion: putting things together

- 1. At all points:
 - 1. compute a local orientation tensor **T(x)**
 - 2. compute D(x) from T(x)
- 2. Apply anisotropic diffusion onto the image by locally iterating

Left hand side: the change in L at (x,y) between s and $s+\partial s$

$$rac{\partial}{\partial s}L=rac{1}{2}{
m div}({f D}\
abla\,L)$$
 can be computed locally at each point (x y)

This defines how scale space level $L(x,y;s+\partial s)$ is generated from L(x,y;s)

2016-04-19

Implementation aspects

- The anisotropic diffusion iterations can be done with a constant diffusion tensor field D(x), computed once from the original image (faster)
- Alternatively: re-compute **D(x)** between every iteration (slower)

Numerical implementation

• We assume **D** to have a slow variation with respect to **x** (cf. adaptive filtering)

Regularization

This means

$$\frac{\partial}{\partial s}L\approx\frac{1}{2}\operatorname{tr}\left[\mathbf{D}\left(\operatorname{div}\operatorname{grad}L\right)\right]=\frac{1}{2}\operatorname{tr}\left[\mathbf{D}\left(\mathbf{H}L\right)\right]$$

The Hessian of L = second order derivatives of L

$$\mathbf{H} L = \begin{pmatrix} \frac{\partial^2}{\partial x^2} L & \frac{\partial^2}{\partial x \partial y} L \\ \frac{\partial^2}{\partial x \partial y} L & \frac{\partial^2}{\partial y^2} L \end{pmatrix}$$

- Several numerical schemes for implementing anisotropic diffusion exist
- Simplest one:
 - Replace all partial differentials with finite differences

$$L(x, y; s + \Delta s) = L(x, y; s) + \Delta s \operatorname{tr} [\mathbf{D}(\mathbf{H}L)]$$

convolving L with:

The Hessian of
$$L$$
 can be approximated by $H_{11}: \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $H_{12}: \begin{pmatrix} \frac{1}{4} & 0 & -\frac{1}{4} \\ 0 & 0 & 0 \\ -\frac{1}{4} & 0 & \frac{1}{4} \end{pmatrix}$ $H_{22}: \begin{pmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

62

Algorithm Outline

1. Set parameters

e.g.: k, Δs , number of iterations, ...

- 2. Iterate
 - 1. Compute orientation tensor **T**
 - 2. Modify eigenvalues \Rightarrow **D**
 - 3. Computer Hessian H L
 - 4. Update *L* according to:

$$L(x, y; s + \Delta s) = L(x, y; s) + \Delta s \operatorname{tr} [\mathbf{D}(\mathbf{H}L)]$$

2016-04-19 65

Comparison

Inhomogenous diffusion

A note

- The image f is never convolved by the space variant anisotropic filter q
- Instead, the effect of *g* is generated incrementally based on the diffusion eq.
- In adaptive filtering: we never convolve f with $g_{\mathbf{x}}$, instead several fixed filters are applied onto f and their results are combined in a nonlinear fashion

2016-04-19