
Version: March 26, 2019

c© Computer Vision Laboratory

Linköping University

Name of student

Personal number

Date

Teaching assistant

Optimisation:
Stereo correspondences for fundamental matrix estimation

Lab Exercise 3

1 Introduction

In this exercise we will do a robust and accurate estimation of the fundamental matrix that relates a pair
of images. First we will use the RANSAC (RANdom Sample And Consensus) algorithm to make the
estimate, then we will refine the solution using non-linear least-squares optimization with a cost function
based on the re-projection error, i.e. the ‘Gold Standard’ algorithm.

The Python programming language will be used for this lab.

1.1 Preparations

Before the exercise you should have read through this exercise guide and completed the home exercises.
They are all clearly marked with a pointing finger. It is also recommended that you read sections 11.1,
11.2, 11.4.1, (11.5 optional) and 11.6 in ‘R. Hartley and A. Zisserman Multiple View Geometry’ (this book
is available to you electronically through the library system, and is linked to on the course web page).
The algorithms presented in this document are excerpts from these sections of this book, and refer to
equations therein.

Expected preparation time: 4h

1.2 Initialization

This lab requires Python 3.6+, SciPy, and OpenCV. On ISY computers you setup the environment by
calling

$ module add courses/TSBB15

After that you can use python3 script.py to run a Python script. For interactive work you can
optionally use ipython3, which allows e.g. tab-completion and syntax highlighting (you should still use
python3 to run any scripts!).

1.2.1 Help code and notes

The helper functions referenced in assignments can be found by importing the lab3 module. Familiarize
yourself with the available functions:
>>> import lab3

>>> help(lab3)

Remember: Some parts of the code might receive a huge performance boost by using matrix opera-
tions, see https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html for how broadcast-
ing in numpy works.

1

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html


2 Epipolar constraint and fundamental matrix estimation

For two images of the same static scene, corresponding points are related by the epipolar constraint. The
epipolar constraint in homogeneous coordinates assumes the form (x2 y2 1)F (x1 y1 1)

T
= 0, where F is

the so called fundamental matrix, and (x1, y1) and (x2, y2) is a pair of corresponding points in the two
images. In this exercise, you will use the epipolar constraint to simultaneously estimate the fundamental
matrix, and a list of corresponding points.

Preparation Question: Read through algorithm 11.1. How might you obtain the input image point corre-
spondences? Why are n ≥ 8 correspondences needed?

You will not be implementing algorithm 11.1. It is provided for you in a function called fmatrix stls.
A number of other routines are made available to you, listed in the following table. All of these functions
are useful, so make sure you read their help texts, and understand how they work.

2



Misc harris Harris interest point detector.
non max suppression 2D non-max-suppression of a feature image.
joint min Find an index that is minimal along both rows and

columns in a matrix. (e.g. solves the assignment prob-
lem)

fmatrix stls Estimate the fundamental matrix from at least 8 point cor-
respondences, using the normalised-eight-point-algorithm.

cut out rois Cut out regions of interest (ROIs) and store their pixel
values in columns of a matrix.

fmatrix residuals Compute the residuals of a set of points w.r.t. the funda-
mental matrix F. i.e. the signed distances to the epipolar
lines in both images.

fmatrix residuals gs Compute the image plane residuals needed for the Gold
Standard algorithm.

fmatrix cameras Computes two possible cameras from the fundamental ma-
trix F.

triangulate optimal Computes optimal 3D triangulation.
fmatrix from cameras Combine camera projection matrices C1,C2 into a funda-

mental matrix F.
Visualisation plot eplines Plot epipolar lines given a list of points in the other image,

and the fundamental matrix that relates the two images.
show corresp Visualise correspondences by drawing lines between cor-

responding points in image1 and image2.

3 Input data

Wide baseline stereo image pair. One pair is provided, but you may also look for stereo pairs on the web.

Preparation Question: Will the methods work for all stereo image pairs? If not, do you know what cases
might cause failures? Consider both camera motion and the geometry of the world.

4 RANSAC

You will now implement a variant of algorithm 11.4. The three principal differences are: (1) you will use
the normalized 8-point algorithm at step (iii) (a), instead of the 7 point method. So you will therefore
never have three real solutions at step (iii) (d). (2) You are not required to implement steps (iv) or (v).
(3) You may select N (number of RANSAC iterations) manually, rather than adaptively.

Preparation Question: In this algorithm, putative correspondences are obtained by similarity of patch in-
tensity (do not use proximity as suggested in algorithm 11.4). What other ap-
proach might you use to obtain point correspondences? What would be the advan-
tages/disadvantages?

3



Preparation Question: Examine the functions fmatrix residuals and fmatrix residuals gs. What do
these functions compute? What is the difference between the two?

Question: Run your algorithm on an image pair, then use the visualization routines provided.
Are the results as expected? Where do the epipolar lines converge? Why? Is the
result consistent between runs?

Question: What value on the inlier threshold do you use? Compute the inlier ratio - what is
it?

Question: How many RANSAC iterations do you use?

4



5 Non-linear least-squares and the Gold Standard algorithm

You will now implement the Gold Standard algorithm (11.3)1.
In step (iii) of the algorithm you will use the following function:

• Use the least squares function in SciPy

>>> from scipy.optimize import least squares

Preparation Question: Refer to the documentation for the above function to ensure that you understand
its syntax. You need to provide a starting guess, a residual function, and constant
parameters (the observed points). Write out the function call you will use.

Question: Run your algorithm on an image pair then use the visualization routines provided.
Are the results as expected? Where do the epipolar lines converge? Why?

1see page 581 in Multiple View Geometry for definition of matrix cross product operation used in this algorithm

5



Question: Comment on the differences (if any) between the results using RANSAC and the
Gold Standard algorithm.

6 Verification

Preparation Question: Using the tools (functions) provided with this lab, how will you quantitatively com-
pare the solutions generated by the different algorithms?

Question: Evaluate the algorithms you have implemented. Write down qualitative and quan-
titative comparisons.

7 Sparsity pattern for the Jacobian

Extra
This exercise should be done if there is time left.

In the Gold Standard Algoritm (and in Bundle Adjustment problems in general) most of optimisation
time is spent on updating the system Jacobian, J. The Jacobian contains the partial derivatives of the
residual vector r with respect to the parameter vector p:

J =


∂r1
∂p1

. . . ∂r1
∂pN

...
. . .

∂rK
∂p1

. . . ∂rK
∂pN


As most values in the Jacobian will be zero, much time can be saved by telling the optimizer to never
compute these. This is done by providing a sparsity mask for the Jacobian:

• Use the jac sparsity parameter to least squares

Question: Examine fmatrix residuals gs and write down the order of the residuals in the
returned residual vector, and the order of the parameters in the parameter vector.

Now write a function that computes a suitable sparsity pattern as a function of the number of point
correspondences. Run the optimization without and with your sparsity pattern provided. To measure
time

• Use the time.time() function (Note: must import time first)

6



Question: Compare the accuracy of the two solutions. Are they the same? What speedup
factor did you get?

Note that even more speedups of Bundle Adjustment are possible:

1. By default, the Jacobian is computed by finite differencing. If you derive the analytical expressions
for each non-zero element in the Jacobian, the Jacobian can be computed explicitly in the cost-
function.

2. If you write the optimizer yourself, you can use the problem specific structure of JTJ to simplify
the computation of the update step. A common way to do this is to use the Schur complement.

8 Better point correspondences

Extra
This exercise should be done if there is time left.

You will now try to use interest point matching to generate a better set of point correspondences. To
do this, you will use the SIFT or ORB features:

• Both SIFT and ORB are available in OpenCV, and can be accessed by

>>> import cv2

>>> sift = cv2.xfeatures2d.SIFT create()

>>> orb = cv2.ORB create()

See https://docs.opencv.org/3.4.3/db/d27/tutorial_py_table_of_contents_feature2d.html
for an introduction. Note in particular that ORB is a binary feature and should thus be matched
using the Hamming distance instead of least squares, or scalar products, as discussed in Lecture 8.

8.1 Questions

Question: Comment on the quality of the point correspondences

Use the correspondences you get from cv2, as input to your two algorithms.

Question: What impact does using SIFT (or ORB) point correspondences have on the solu-
tions?

7

https://docs.opencv.org/3.4.3/db/d27/tutorial_py_table_of_contents_feature2d.html

	Introduction
	Preparations
	Initialization
	Help code and notes


	Epipolar constraint and fundamental matrix estimation
	Input data
	RANSAC
	Non-linear least-squares and the Gold Standard algorithm
	Verification
	Sparsity pattern for the Jacobian
	Better point correspondences
	Questions


