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Computer Exercise 4

1 Introduction

The goal of this exercise is to implement and evaluate methods for 2D image denoising and inpainting
based on diffusion-like methods. In order to fully understand all steps, you will make a low-level im-
plementation, where each diffusion iteration is explicitly applied to an image. The correctness of the
implementation will be demonstrated by applying it on a number of images with added noise or miss-
ing data. Note that, as in all iterative numerical schemes, exact details of filters and step-lengths are
important, and incorrect settings make the difference between a great result and garbage.

1.1 Preparations

Before you come to the computer exercise you should have read through this exercise guide and completed
the home exercises. They are all clearly marked with a pointing finger. To be able to do this you
should have read and understood the material related to variational methods, image enhancement and
optimization in lectures 13, 14 and 15.

Expected preparation time: 8h

1.2 Python

This lab requires Python 3.6+, SciPy, and OpenCV. On ISY computers you set up the environment by
calling

$ module add courses/TSBB15

To access the lab functions from within Python use

>>> import lab4

Please familiarize yourself with the available functions in this module by calling (from a Python
prompt):

>>> help(lab4)



2 Algorithm Outline for Anisotropic Diffusion

The partial differential equation (PDE) for anisotropic diffusion is defined as

0

a—;‘ = div(DVu) (1)
where D is the diffusion tensor and Vu denotes the gradient of image u :  — R, where (2 is the image
domain. Rather than implementing the above PDE we will here consider an alternative formulation.

Preparation Question: Expand the divergence form in (1) and make the appropriate simplification to obtain
the Trace-based diffusion equation.

Hint: What does a slow varying D mean for div(DVu)?
In previous computer exercises you implemented the structure tensor 7T'.

Preparation Question: What is the definition of the structure tensor and how do you obtain the diffusion
tensor D from it?

Hint: How do you compute eigenvalues and eigenvectors from a 2 x 2 symmetric matrix?
Consult the lecture notes and prepare an outline of the algorithm for anisotropic diffusion. The plan
should address

e Which operators and computations are required?
Which ones are available, and which ones do you need to implement?

e How do you implement the computations of derivatives (gradients, etc)?

e The implementation must not include any explicit loops over the image positions since they are
very time consuming. How do you avoid explicit loops?

e Which parameters to choose?
e How to test the individual steps of the algorithm?

e What data do you have for evaluation and what is the expected result?



Preparation Question: What result do you expect if you apply the method to an image that does not contain
any noise?

Discuss the plan with the exercise assistant and get an approval before you start to implement it.

2.1 Implementation

Do the implementation according to your plan. Make sure to test each computational step such that they
give the expected result. Make a final test of your implementation by applying it to a synthetic image that
contains a white circle on a black background with a moderate amount of noise added to it, using only a
single iteration of the diffusion process. For this you can use the provided function 1ab4.make circle().

Question: Which values appear to work best for your parameters? How sensitive are they to
variations?

2.2 Parameter tuning

As most of those familiar with PDEs know, the solvers are highly sensitive to parameters - an incorrect
parameter setting will cause unstable behavior in the iterative solver.

Question: Which parameters are not specified by the equations?

When there is no principal way to set the parameters it is required to test a large set of parameters.
The easiest is to just to evaluate the function repeatedly to find a good parameter set. Keep this in mind
during implementation.

2.3 Evaluation

Now it is time to evaluate the method itself, by applying it to real images (e.g. img =
labd.get_cameraman()) with different types of noise. The noise should be additive, of zero mean and
preferably white but can be either uniform, Gaussian, or of some other suitable distribution. It can also
have different signal-to-noise-ratio (SNR). The SNR is formally defined as

SNR — Variance of signal

2
Variance of noise )
where the variance is taken over all image points. Often, the SNR is given in dB which is 10 times the
10-logarithm of the above fraction.

Write a function that adds noise to an image such that the resulting image has a given SNR in dB.
The function takes the image as an input parameter. Choose a fixed type of noise or have an additional
argument control the type of noise.



Question: Apply the method onto real images with additive noise of 3 different SNRs. How
many iterations are needed to get an acceptable result for different noise levels?

Question: What happens if we use many more iterations than necessary? Does the result
converge to the noise free image? Explain the result.

Not all types of noise are additive. For example, it is fairly common that noise can be multiplicative
instead of additive. Such noise can be added by first taking the logarithm of the image intensity, then
adding noise, and then taking the exponential.

Question: Apply the method onto an image with multiplicative noise. What is the main dif-
ference in the result compared to additive noise? Explain the result.

3 Inpainting via Total Variation

In this exercise you will implement a simple scheme for total variation based inpainting. Let Q be the
image domain and I' be the region with missing information in the damaged image g, then

1 for x € Q\I'
XQ\F(:B) - {O forx el ®)

The energy functional for this problem is defined as
1 2
e(u) =~ [ Xoxr-(u—g)°de+ [ |Vu|dx (4)

where A > 0 is a parameter. By computing the variational derivative (useful to do as an exercise) you
will obtain the Euler-Lagrange equations

XQ\F‘(U—Q)—AdiV<§Z> =0 forxe

Vu-n=0 for x € 092

(5)

where m is the normal vector to the image domain. Expanding the divergence term (also useful as an
exercise), you can formulate the following iterative scheme

s s s us, (uf)? — 2us, usus + us, (u)?
vt = OL<XQ\F‘(U g)A( Y |Vyu5|3y vy

(6)

Implement the above numerical scheme by re-using code from the previous exercise and evaluate your
algorithm by interpolating an image to twice its size.



Question: What do the parameters o and A represent and what are suitable values? What

number of iterations is sufficient to obtain the desired result?

Preparation Question: What is the expected behavior of the algorithm in the two regions I" and Q\I'?

Extra

Question: The operator Xo\r defines the observed pixels. The operator can be interpreted as
a projective operator P such that Xo\r = P*P where P* is the adjoint. Can you
give an example of such an operator?

Hint: Think of an operator that describes up- and down-sampling of an image and how it relates to
the definition of an adjoint operator.

In the case that you have finished and been approved on the previous exercises and there is sufficient
time left, you can create your own missing regions I" from an image of your choice. Additionally, think
about how you could extend the method to process color images.
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