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TSBB15
Computer Vision
Lecture 3
The structure tensor

Estimation of local orientation

• A very simple description of local orientation at 
image point p = (u,v) is given by:

• Here, ∇I is the gradient at point p of the image 
intensity I. In practice:

Estimation of local orientation

• Problem 1: ∇I may be zero, even though there is a well 
defined orientation.

• Problem 2: The sign of ∇I  changes across a line.

Estimation of local orientation

• Partial solution:

• Form the outer product of the gradient with itself: 
∇I ∇TI.

• This is a symmetric 2 £ 2 matrix (tensor)

• Problem 2 solved!

• Also: The representation is unambiguous
• Distinct orientations are mapped to distinct matrices

• Similar orientations are mapped to similar matrices

• Continuity / compatibility

• Problem 1 remains
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The structure tensor
• Compute a local average of the outer product of the gradients around 

the point p:

• Here, x represent an offset from p

• w2(x) is some LP-filter (typically a Gaussian)

• T is a symmetric 2 £ 2 matrix: Tij = Tji

• This construction is called the structure tensor

• Solves also problem 1 (why?)

• T is computed for each point p in the image

Orientation representation
• For a signal that is approximately i1D in the 

neighborhood of a point p, with orientation ±n:
∇I is always parallel to n (why?)

• The gradients that are estimated
around p are a scalar multiple of n

• The average of their outer products
results in 

• T = ¸ nnT

• for some value ¸

• ¸ depends on w1, w2, and the local signal I

Motivation for T
• The structure tensor has been derived based on 

several independent approaches

For example

• Stereo tracking (Lucas & Kanade, 1981) (Lec. 5)

• Optimal orientation (Bigün & Granlund, 1987)

• Sub-pixel refinement (Förstner & Gülch, 1987)

• Interest point detection (Harris & Stephens, 1988)

Local orientation in the Fourier domain

• Structures of different orientation end up in different 
places in the frequency domain

Spatial domain

Frequency domain
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Optimal orientation estimation
• Basic idea:

• The local signal I(x) has a Fourier transform F(u).

• We assume that f is a i1D-signal

• F has its energy concentrated mainly on a line
through the origin

• Find a line, with direction n, in the frequency 
domain that best fits the energy of F

• Described by Bigün & Granlund [ICCV 1987]

Optimal orientation estimation
• The solution to this constrained maximization 

problem must satisfy

• Means: n is an eigenvector of T with eigenvalue ¸

• In fact: Choose the eigenvector with the largest 
eigenvalue for best fit

(why?)

Sub-pixel refinement
• Consider a local region and let rI(p) denote the image 

gradient at point p in this region

• Let p0 be some point in this region

• hrI(p) | p – p0 i is then a measure of compatibility 
between the gradient rI(p) and the point p0

• Small value = high compatibility

• High value = small compatibility
An p0 that lies on the edge/line that 
creates the gradient minimizes
| hrI(p) | p – p0 i |

Sub-pixel refinement
• In the case of more than one 

line/edge in the local region:

• We want to find the point p0 that 
optimally fits all these 
lines/edges

• We minimize

• where w is a weighting function 
that defines the local region

p0
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Sub-pixel refinement
• The normal equations of this least squares 

problem are:

• Solve the linear equation: T p0 = b

The structure 
tensor!

This equation is 
solved for each local 
region of the image!

The Harris-Stephens detector

• A Taylor expansion of the image intensity I at 
point (u, v):

The Harris-Stephens detector
• S(nu, nv) is a measure of how much I(u, v) 

deviates from I(u + nu, v + nv) in a local region ,
as a function of (nu, nv):

The Harris-Stephens detector

• If  contains a linear structure, then S is small 
(=0) when n is parallel to the line/edge

• T must have one small (¼ 0) eigenvalue

• If  contains an interest point (corner) any 
displacement (nu, nv) gives a relatively large S

• Both eigenvalues of T must be relatively large

• By analyzing the eigenvalues ¸1, ¸2 of T:
• If ¸1 large and ¸2 small: line/edge

• If both ¸1 and ¸2 large: interest point

• See Harris measure below
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Example: Structure tensor

Original image

Example: Structure tensor

Gradient imagesfx fy

Example: Structure tensor

T11 imageBefore averaging After averaging

Example: Structure tensor

T22 imageBefore averaging After averaging
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Example: Structure tensor

T12 imageBefore averaging After averaging

Example: Structure tensor in 2D

• In the general 2D case, we obtain

• where ¸1 ≥ ¸2 are the eigenvalues of T and ê1, ê2 are the 
corresponding normalized eigenvectors

• We have already shown that for locally i1D signals we get 
¸1 ≥ 0 and ¸2 = 0

(why?)

Structure tensor in 2D, i0D

• If the local signal is constant (i0D), 
then rI = 0

• Consequently: T = 0

• Consequently: ¸1 = ¸2 =  0

• The idea of optimal orientation 
becomes less relevant the closer ¸1

gets to 0

Structure tensor in 2D, i2D

• If the local signal is i2D, ∇I is not parallel 
to some n for all points x in the local 
region, i.e. the terms in the integral that 
forms T are not scalar multiples of each 
other

• Consequently: ¸2 > 0 if f not i1D

• The idea of optimal orientation becomes 
less relevant the closer ¸2 gets to ¸1
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Isotropic tensor
• If we assume that the orientation is uniformly 

distributed in the local integration support, we 
get ¸1 ¼ ¸2:

• i.e. T is isotropic: nTT n = nTI n = 1

• Why is the parenthesis equal to I?

The identity matrix

Confidence measures
• From det T and tr T we can define two 

confidence measures:

Confidence measures
• Using the identities

– tr T = T11 + T22 = ¸1 + ¸2

–det T = T11T22 – T12
2 = ¸1¸2

• we obtain

• and c1 + c2 = 1 (why?)

Confidence measures
• Easy to see that

• i1D signals give c1 = 1 and c2 = 0

• Isotropic T gives c1 = 0 and c2 = 1

• In general: an image region is somewhere between 
these two ideal cases

• An advantage of these measures is that they can be 
computed from T without explicitly computing the 
eigenvalues ¸1 and ¸2
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Decomposition of T
• We can always decompose T into an 

i1D part and an isotropic part:

¸1 ¸ ¸2

Double angle representation
• With this result at hand:

• z is a double angle representation of the local orientation

Remember: 
¸1 ¸ ¸2

z cannot distinguish 
between i0D and i2D

Color coding of the double angle representation Example

trace of T determinant of T
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Example

c1 c2

Example

¸1 ¸2

Example

Double angle descriptor

Rank measures
• The rank of a matrix (linear map) is defined as 

the dimension of its range

• We can think of c1 and c2 as (continuous) rank 
measures, since

– i1D signal ⇒ T has rank 1 ⇒
c1 = 1  and  c2 = 0.

– Isotropic signal ⇒ T has rank 2 ⇒
c1 = 0  and  c2 = 1.
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Harris measure
• The Harris-Stephens detector is based on cH, 

defined as

¸1

¸2

cH > 0

Different values for ·
have been proposed in 
the literature!

Harris measure
• By detecting points of local maxima in cH,

where cH > ¿, we assure that the eigenvalues of T
at such a point  lie in the colored region below

¸1¸2

Example

HarrisOriginal
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