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Computer Vision

Lecture 3
The structure tensor
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Estimation of local orientation

e Problem 1: VI may be zero, even though there is a well
defined orientation.

e Problem 2: The sign of VI changes across a line.
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Estimation of local orientation

o Avery simple description of local orientation at
image point p = (u,v) is given by:
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e Here, Vlis the gradient at point p of the image
intensity /. In practice:
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Estimation of local orientation

* Partial solution:

¢ Form the outer product of the gradient with itself:
\VAAA

This is a symmetric 2 x 2 matrix (tensor)
Problem 2 solved!
Also: The representation is unambiguous
¢ Distinct orientations are mapped to distinct matrices
¢ Similar orientations are mapped to similar matrices
¢ Continuity / compatibility
e Problem 1 remains
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The structure tensor

* Compute a local average of the outer product of the gradients around
the point p:

T(p) = [ waIVI()[VTI(x) dx

* Here, x represent an offset from p

*  W,(x) is some LP-filter (typically a Gaussian)

* Tisasymmetric 2 X 2 matrix: T;; =T

* This construction is called the structure tensor
¢ Solves also problem 1 (why?)

¢ Tis computed for each point p in the image
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Orientation representation

e For a signal that is approximately i1D in the
neighborhood of a point p, with orientation £n:
VI is always parallel to n (why?)

¢ The gradients that are estimated
around p are a scalar multiple of n

¢ The average of their outer products
results in

. T=Ann'
» for some value A
* A depends on w;, w,, and the local signal /
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Motivation for T

* The structure tensor has been derived based on
several independent approaches

For example

 Stereo tracking (Lucas & Kanade, 1981) (Lec. 5)

* Optimal orientation (Biglin & Granlund, 1987)

¢ Sub-pixel refinement (Forstner & Giilch, 1987)

* Interest point detection (Harris & Stephens, 1988)
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Local orientation in the Fourier domain

e Structures of different orientation end up in different
places in the frequency domain

Spatial domain

Frequency domain
gl
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Optimal orientation estimation

* Basic idea:
¢ The local signal /(x) has a Fourier transform F(u).
¢ We assume that fis a i1D-signal

* Fhas its energy concentrated mainly on a line
through the origin

¢ Find a line, with direction n, in the frequency
domain that best fits the energy of F

Described by Biglin & Granlund [ICCV 1987]
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Sub-pixel refinement

e Consider a local region and let V/(p) denote the image
gradient at point p in this region

¢ Let p, be some point in this region

e (VI(p) | p—p, ) is then a measure of compatibility
between the gradient V/(p) and the point p,

e Small value = high compatibility
¢ High value = small compatibility

vz,
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Optimal orientation estimation

e The solution to this constrained maximization
problem must satisfy

Th = \n (why?)

e Means: nis an eigenvector of T with eigenvalue A

¢ In fact: Choose the eigenvector with the largest
eigenvalue for best fit

[ KT e
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Sub-pixel refinement

In the case of more than one
line/edge in the local region:

¢ We want to find the point p, that

optimally fits all these
lines/edges

¢ We minimize

e(po) = [KVI(p)|p — po)ll%

* where w is a weighting function

that defines the local region
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Sub-pixel refinement

¢ The normal equations of this least squares
problem are:

: 2 .
(.J};w(r’){%) dp ng(p)?—i%d") p
=
. a7 5 a2
/ JowP)Zigs dp [ w(p) (55) dp
=T

:f’“’(P)\_I(X)V”(p)pdp
Q

:=b
This equation is

* Solve the linear equation: Tp,=b [l i

region of the image!
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The Harris-Stephens detector
* S(n, n,) is a measure of how much /(u, v)
deviates from /(u + n,, v+n,)in alocal region Q,
as a function of (n, n,):
S(nu,ny) = | I(u+ny,v+n,) = Iuv)]?
= f w(u, v) - | T(w + Ny v+ ny) — I{u,v)|? dudy
Q
= f w(u,v) - (VI -n)? dudv
Q
= n" {/ w(u,v) - (VIVTT) dudv| n = nTTn
Q
=T
Iouis
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The Harris-Stephens detector

¢ A Taylor expansion of the image intensity / at
point (u, v):

(w,v) + VI - (N, ny)
(w,v) +VI-n
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The Harris-Stephens detector

¢ |f Q contains a linear structure, then S is small
(=0) when n is parallel to the line/edge

¢ T must have one small (= 0) eigenvalue

¢ |f Q contains an interest point (corner) any
displacement (n,, n,) gives a relatively large S

¢ Both eigenvalues of T must be relatively large
* By analyzing the eigenvalues A;, A, of T:
e If \; large and A, small: line/edge
e If both A, and J, large: interest point
e See Harris measure below
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Example: Structure tensor Example: Structure tensor

Original image 5 Gradient images %,
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Example: Structure tensor Example: Structure tensor

T,, image T,, image
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Example: Structure tensor

T,, image
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Structure tensor in 2D, i0OD
e If the local signal is constant (iOD),
then VI=0
e Consequently: T=0
e Consequently: A\; =\, =0
® The idea of optimal orientation
becomes less relevant the closer A;
getsto 0
hovizs
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Example: Structure tensor in 2D

¢ In the general 2D case, we obtain

T=Xx& &l +xexel wh?
e where A, 2 ), are the eigenvalues of T and é,, &, are the
corresponding normalized eigenvectors

¢ We have already shown that for locally i1D signals we get
A;20and A\, =0
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Structure tensor in 2D, i2D

e If the local signal is i2D, VI is not parallel
to some n for all points x in the local
region, i.e. the terms in the integral that
forms T are not scalar multiples of each
other

e Consequently: A, >0 if fnot i1D

¢ The idea of optimal orientation becomes
less relevant the closer ), gets to \;

[ KT e
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Isotropic tensor
¢ If we assume that the orientation is uniformly
distributed in the local integration support, we
get A\, = A,
T=X)& el +)eel
= A (é18] +exel)
=M1 —
e i.e. Tisisotropic:nTn=n"In=1
e Why is the parenthesis equal to I?
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Confidence measures
e Using the identities
—trT =T +T,, =\ + )\,
—detT=T,T,,-T,,2= A\,
* we obtain ()\ N )2
— (AM1—Xo
R

* andc, +c,=1 (why?)

—_2X X

2 =03
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Confidence measures
e From det T and tr T we can define two
confidence measures:

_ tr2T—4detT _ 2detT
Cl — T A 3w
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Confidence measures
* Easy to see that
* ilDsignalsgivec;=1andc,=0
* |sotropic T givesc;=0andc,=1
* In general: an image region is somewhere between
these two ideal cases
* An advantage of these measures is that they can be
computed from T without explicitly computing the
eigenvalues \; and ),
i
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tr2T—2detT 2~ t2T—2detT
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Decomposition of T

e We can always decompose T into an
i1D part and an isotropic part:

T=2X\& & +Xéel A >,
=1 —X)e el + (818l +exeld)
=(1—-A)é el + 1
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Color coding of the double angle representation
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Double angle representation

* With this result at hand:

Remember:
2119

(A1 — Aa) (cos2 o — sin? a)

2 cos arsin

* zisadouble angle representation of the local orientation
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Example

determinant of T
[ KT e

32

(A1 — Az2) (C?S ;a) z cannot distinguish
S 2o between iOD and i2D
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Example

vz,

33

Example

Double angle descriptor

vz,

35

34

36

Example

At A2
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Rank measures

¢ The rank of a matrix (linear map) is defined as
the dimension of its range

* We can think of ¢, and c, as (continuous) rank
measures, since

—ilD signal = T hasrank 1 =
¢,;=1 and ¢,=0.

— Isotropic signal = T has rank 2 =
;=0 and ¢,=1.
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Harris measure

e The Harris-Stephens detector is based on c,,

defined as
cy = detT — k(traceT)?, k=~ 0.05

— . 2

B Al /\2 h(/\l + )\2) Different values for
A have been proposed in

2 the literature!
cy,>0
A
howiezs
Example

RELS

h.v

LINKOPING
UNIERSITY

2019-01-28

Harris measure

* By detecting points of local maxima in c,,,
where Cy, > 7, we assure that the eigenvalues of T
at such a point lie in the colored region below
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