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Motion estimation Motion estimation

+ The techniques described next (and in the previous + There are other approaches,
lecture) are suitable for determining an estimate of for example
m(x), the optic flow, at each point x in the image

. . . . . — Global smoothness of v
 This is referred to as dense motion estimation

11 be ch db d d (Horn & Schunck)
— Can still be characterized by a position dependent ) .
certainty measure — Second order differential methods

 An alternative is tracking, where the motions of
only a small set of points, or a single point, are — Et cetera

. Will not be
determined — And so on

— Later in this lecture...
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« At each point we seek the motion vector
v = (v,, V,) that satisfies the BCCE:

+ Problem: one equation but two unknowns

+ Previqusly, we dealt with this problem by
considering a local set of equations, assuming v
constant in a local region

+ Finding v can also be dealt with by means of a
global approach (with respect to the image)
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* We can (in principle) always find
v(U, v) that gives £= 0:

_af VI 9L
R A (%
(Why?) | Arbitrary function of (u, v) |
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 Let v(u, v) denote the velocity vector field in an
image, as a function of image position (u, v)

» BCCE suggests that we should find
v(u, v) that minimizes

(vt w1+ 21 ax
/((}vum)\d

| Image gradient at (u, v) | | Time derivative at (u, v) |

Integration is now made over an entire image!
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* ProblemI:
Singularities when VI= 0

e Problem II:

Does not provide a unique solution since a(u, v)
can be arbitrary chosen

e Problem III:

Strong variations in VI may not correspond to
strong variations in v(u, v)

II." LINEOPING
LMIVERSITY



* H&S 1981: Let’s make v(u, v) unique by adding a « H&S used a smoothness term:
smoothness term to &

 This term should assure that v(u, v) is as smooth at
possible, seen as a function of (u, v)

Vo]l + [ Voa

+ Smoothness =
“as little variation in v as possible”

+ Other types of smoothness terms are appear in the
literature
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< This was one of the first established methods for motion
estimation

2 » Often referred to as a “global” method
e — / (V(u, ’U) VI + gi ) dx » Can (to some extent) deal with t.he aperture problem

» 1In practice: v cannot be determined by solvi linear
eql?afaion,?nsteagl}teraﬁve melﬁlogs ar}é requrllrgeﬁ

— Efficient algorithms exist
| 2 dx - %?fn%%]]e)s', %’{}113 ﬁt ;lg,lg?crets of Optical Flow Estimation and Their

» New cost function

2 ] IV0r]? + [V

* Not obvious how to choose A
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+ The integrals are taken over the entire image
* \is a “smoothness weight”
* Our goal: find v(u, v) that minimizes &
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— constant or dependent on x?
The smoothness constraint is not always valid
— Sharp motion boundaries exist in practice
%191{165 “sophisticated” methods use other types of smoothness
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The Horn & Schunck method Local vs global methods

NOTE!!

» Horn & Schunck’s method is not correctly described
in the book by R. Szeliski

— In the printed book and e-book: on page 360,
equation (8.70)

/' = true motion

— In the draft version on the web: on page 410,
equation (8.70)

+ The cost function £, lacks the regularization term

1 = =normal motion
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Second order differential methods Second order differential methods

* Another approach for obtaining sufficient * BCCE:

information to uniquely determine v at each point is
to differentiate BCCE again with respect to u and v
+ This method is again based on local computations

« Differentiate with respect to u and v:
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Second order differential methods

» Now we get 2 additional equations in
variables v(v,, v,):

* H is the Hessian matrix (second order derivatives) of
fwrtuandv

 Solve in a similar way as the LK-equation
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Multi order differential methods

* We get 3 (or more) equations and have 2 unknowns

+ Solutions can still be found using various least
squares techniques
(how?)
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Multi order differential methods

+ There is nothing that prevents us from using both
first and second order derivatives simultaneously!
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Motion estimation, summary
-_'l Global methods (e.g. H&S) |

Second and higher order

- differential methods

Total least squares solution

Based on T,
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 In the ideal case, all methods
(in principle) should give the same solution
* They differ mainly with respect to
— Sensitivity to
* noise
* deviations from model assumptions
— Computational demand
— Certainty measures
 For all methods: different sizes of Q and different

ways to estimate gradients give different quality
of results

vz,
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* The basic methods described here are based on a set
of assumptions, e.g.:

— Brightness constancy: e.g., for 2-image case:
Jx)=Ix+d)

— High order terms in Taylor expansions can be
neglected

— Constant d (or v) within Q

+ In general these assumptions are not all correct:
estimate of d (or v) is inaccurate

vz,

23

22

24

22

» These basic methods for motion estimation, in particular

the local ones, can be significantly improved (at moderate
cost) by using one or more advanced techniques, such
as

— Refinement iterations

— Course-to-fine refinement

— Spatial filtering of motion estimates
— Robust error norms

— Symmetry in I and J

— Affine transformation

[ KT e
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* The estimate d (or v) should, however, in most cases

be approximately correct

» Warp I in accordance to estimated d (or v)

— If vis correctly estimated, the two images are
more or less equal

— If not, there is some remaining d (or v) that can be
estimated from the new I and the old J

— Iterate N times and accumulate new estimates of v
(refine v) in each iteration

[ KT e



Refinement iterations Refinement iterations

* N = number of iterations, depends on the application
Warp and on the data (images)
Image / - Image / Image J
according to d * Does not have to be very large

» For most applications: a “few” iterations are often
/ \ / sufficient
Estd

Initialize Iterate

to 0 Displacement d l N times
—

+
<«
vz v
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Coarse-to-fine refinement Coarse-to-fine refinement

+ Inlocal motion analysis, the motion of each point is

analyzed within a region Q Coarsest
. scale a—
— Qhas some radius R 1
* d cannot be robustly determined if |d|> R -

* R cannot be made too large: 1 _

B IﬁD

— d will not be constant in Q

— Taylor expansion of I(x +y + d) not only linear ﬁ ﬁ
+ To deal with larger d, use course-to-fine refinement based T

on scale pyramids

1
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+ Start at the coarsest level

» Perform refinement iterations where d is initiated to
0 at all points

» Produces an initial estimate of d at this level

0
i J
Refinement
a4 iterations L7
d
Il.u LINKOPING
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Estimate of d at next coarser level
Up-sample by 2
Mult by 2
li J
D Refinement
iterations E
Estimate of d at this level
Il.u LINKOPING
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« This initial estimate of d is then up-sampled to fit the
image size at the next finer level

+ Also: d is multiplied by 2 (or suitable factor) since
displacements at the next finer level are 2 times as
large as at the previous level

+ Use this new d as initial estimate in refinement
iterations at the finer level

[ KT e
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+ Continue this processing from the coarsest level all
the way to the finest level

+ Estimate of d from the finest level is the final
estimate from this coarse-to-fine processing

+ Can manage magnitudes of d which are in the order
of R for Q) at the coarsest level

» Note: estimates of d at a coarser level does not have
to be very accurate, it will be refined at the next
finer level!
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32



34

+ Definition: an outlier is a point (or data entry) that

; + If outliers are allowed to affect estimation of a model
doesn’t fit the model assumed for the data

in the same way as inliers, the model can become
* Data that fits the model: inliers very distorted

« Example: fitting a line to a set of points

Typical result if the line Correct line
. is estimated by minimizing
. ¢ Correct line sum of squared distances ; ;
. Line estimated
.

. . from the data,
Outlier // including the
S point

outlier
o

[ X1 B oz
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» Motion estimates at two adjacent pixels should often

e To reduce these effects it make sense to allow the
be very similar

estimate of d to be affected by its neighbors
— The points are projections of 3D points on the

— Local averaging, weighted by a spatial window
same rigid object

Nott ¢ motion b daries! — Corresponds to LP-filtering of d
— Not true at motion boundaries!

) ] » Even better: use normalized convolution
» Motion estimates can also be degraded by

) — Takes certainty of d into account
— Image noise

) ) ) + Alternatively: use median filtering
— Invalid assumptions (e.g., because of outliers)

— Avoids large influence from outliers

[ X1 B oz
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+ Adding squared distances implies:

Computing a weighted average of the
distances, where each weight = the distance

+ Implies: outliers are given a high weight
— Not what we want!!

+ This effect can be reduced by using
robust errors
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+ The 2-image version of the LK-method does not treat
images I and J in the same way

— Spatial gradients are only computed in I
— In refinement iterations, only one image is warped

+ Inthe ideal situation, swapping I and J should
produce a consistent result

— Not always true

vz,
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 Replace the square function with alternative

function, for example

/

All functions
have continuous
derivatives!

N/

Vit +a?
Linear for large x

?,‘2

) T i w? + o
{1+ ) Y ——
e
38
40
+ Use a symmetric formulation:
Jx-d/2)=I(x+d/2)
instead of
Jx)=Ix+d)
e
40
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+ Finding d as the minimizer of

= fﬂ wly) (I(x +y +d/2) — J(x+y —d/2))* dy

+ Can be solved in a similar way as before:

T and s contain h 5
= gradients from OW?r
T d s both /and J ( )
hvizs
41
43
* Aisa2 x 2 matrix
» Inpractice,setA=1+A’
« A’is then often a small matrix, easier to estimate
¢ Set a1y
a2
A= (0 mz) g dy R
as;  azo do asn
1
and minimize e overz  (how?) da
e LeadstoT'z=+s’ T 56 %6
s’ is 6-dimensional
hvizs
43
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* The local motion model for the 2 image case only

includes a translation:

Jx)=Ix+d)

* A more complex model could also include an affine

transformation:

v
Jx)=IAx+d)

Unknown parameters
to be estimated,
depend on x

II." LINKOPING
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Imageatt=t,

Image at t = t, + At

-lmage template that
we want to find in
the target image
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* Inmotion estimation, the motion field m(x) is

estimated either as a displacement field d(x) between
two images, or as a velocity field v(x) based on a
continuous time model

— The result is d(x) (or v(x)) as a function of x for all
image points

In tracking, we determine d(x) (or v(x)) for a single
point, or for a region Q around this point (the
template)

— The result is d (or v) for this template
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Tracking can be used for

Following specific objects in an image sequence
— People, vehicles, targets, etc

For efficiency:
— assume small v between each image

Producing point correspondences for specific interest points in two or
more images of the same scene

— Structure from motion
— Ego-motion estimation
Determine 3D motion based on motion in the image
Segmentation based on distinct objects moving with distinct motions
Stereo matching (original app for LK-tracking!)
Video compression

vz,
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» Tracking can also be applied to a smaller set of points
(templates) determined as interesting to track

— As a consequence, tracking can be done with low
computational cost, alternative it allows more
complex methods to be used since they are not
applied to every image point

+ Typically, tracking of a template is made over several
consecutive images in an video sequence

— As long as the template can be robustly re-
identified in each target image

[ KT e
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+ See tracking as a special case of 2-image motion
estimation where image I is the template, and image J is
an image from a video sequence (the target image) (or the
other way around)

— Use the LK-approach, or other local methods for
motion estimation.

— Referred to as LK-tracking

— Use the advanced methods mentioned previously
+ In particular refinement iterations and scale pyramids

— Can be efficiently implemented in software & hardware
* GPGPU (Graphics hardware)

[ KT e
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* See tracking as the problem of re-identifying a
template in a target image

— Block matching (grid-based method)

* See tracking as the problem of re-identifying a “blob”
of pixels that have been determined as “not
background”

— See subsequence lecture
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. Com%are the template with all patches, find best

— We need some similarity measure to do this!

— Generates a matching function e(d,, d,)

— Find minjmum of ¢, (or maximum, depending on how ¢
5 defined ; ( P &

— TIts position in J is (x, + dy, x, + d,), =N/2 < d,, d, < N/2
— The estima ée_d dlsglaceme t o{ the t)emplate between
image 1 and imagg 2 given by (d,, d,
. Refer}l;ed to as block matching or template
matching

+ Can he implemented efficiently on GPGPU
ardware
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A rather straight-forward approach:
+ Given

— Atemplate Q

— Atargetimage J

— A predicted position of Q in J

— Arange N

. Predlctlorhcan be: where Q was found in the previous
image 1n the sequence

— Can also include statistical models (Kalman filter)

« Extract a set of regions in J around x,
of same size as Q)

— For example, in the ranges (x, +/- N/2, x, +/- N/2)
— Typically with integer shifted displacements
— Number of patches is in the order of N?

[ KT e
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Some issues that need to be resolved

* How d(f we compare patches (=blocks of pixels)?
Exa

= Sum of squared differences (SSD)

= Sum of absolute differences (SAD)

= Cross-correlation (CC), normalized cross-correlation (NCC)
* How do we choose a reasonable N?

- ust be large enough to cover the displacements that occur for
e application

- Computatlonal complexity grows with N2
+ Best match may not be for a unique displacement
= Repetitive patterns
* Sub-pixel accuracy
= ¢(d,, d,) can be interpolated to determine inter-pixel optima

[ KT e
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+ A paper by Tomasi & Kanade analyzes which
templates are feasible for tracking

+ Conclusion: we should consider templates that give
T, which are definitely
non-singular (big surprise?)

» T&K propose that min(},, A,) > threshold
is a useful criteria for template selection

Il.u LINKOPING
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Template update

« 3D objects tend to change appearance over time when
moving in a scene

— Change of aspect and apparent size relative to the
camera

 Suggests that the template should be updated from the
target image, e.g.,

— At regular time intervals
— When the matching measure degrades too much
« Tricky to implement robustly

— Difficult to ayoid that Q starts to contain the
background instead of the relevant object

vz,
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» The TK-criteria can be used to find interest points in
an image, i.e., points that easily can be identified in
several images

+ In some applications we may be interested in
tracking all such interest points

» Compare to the Harris-detector
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Track-retrack

* 3D Tracking of an object over N images creates a motion
trajectory, from image 1 to image N

— A “curve” defined by the image coordinates x(k) of
where Q is found in each image, k=1, ..., N

* Generated by starting at x(1) in image 1 and successively
finding the position of Q in each new, x(k), image
Jorward in time

+ Ideally, if we instead start in image N, at position x(IN),
ar(ld) track Q backward in time, we should end up at
x(1

+ If the forward and backward trajectories differ too much,
the tracking can be considered as failed, cannot be trusted
for further processing
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In the literature

+ The basic LK-based methods (gradient based) appear
in the literature under a variation of names, e.g.,

— Lucas-Kanade (LK)

— Kanade-Lucas (KL)

— Lucas-Kanade-Tomasi (LKT), or permutations
— Shi-Tomasi (ST)

« Can also be used as a refinement after block
matching
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