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Lecture 10

Recap. of TSBBOG,
Maximum Likelihood and RANSAC
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Computer Vision Laboratory

Prelude to Project 2

Image credit: Bundler home page http://www.cs.cornell.edu/~snavely/bundler/

« Project 2: Start with two views, and successively add more.

* Finally perform simultaneous refinement of 3D point positions
and camera positions (Bundle adjustment).
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Prelude to Project 2

Highlights of differences compared to Project 1:

* Less programming
 More math skills

* More ways to get lost in 3D
Unit testing (also of external functions) even more important
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Recap: 2D homogeneous
coordinates

« A 2D point (y,, ¥,) is given a homogeneous
representation as: y € R*

Y1 homogeneous
y = | ys coordinates for a

Canonical form of

2D point
1

* Any scalar multiple of this v is also a
homogeneous representation of (y., y,)

* We will use y to refer to the 2D point as well as
its homogeneous coordinates!
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Recap: 2D homogeneous
coordinates

* A 2D line, at distance d from the origin, and with
(cos a, sin a) as a normal vector is given a (dual)

homogeneous representation as 1 € R*;

COS ¥ Canonical form of
1= | sino homogeneous
coordinates for a
—p 2D line

* Any scalar multiple of this | is also a homogeneous
representation of the same line

 We will use | to refer to the 2D line as well as its
homogeneous coordinates!
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| Recap: 2D homogeneous

coordinates

* From these homogeneous representations
follow:

 Pointyliesonlinel & y-1=0
Pointy intersects linesl, and |, & y =11 x 1o

Line | intersects pointsy, andy, & 1=1y; X y»

* The distance from point y to line | is given by
'y - 1| if they both are in canonical form
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Recap: 2D homogeneous
coordinates

 Rigid transformations: translation + rotation
« Scaling

 Affine transformations

* Projective transformations (homographies)

Can be represented as linear mappings of
the homogeneous coordinates:

BIVEL

y/ — Hy ] = H_Tl Y_Jl transformations

of lines!
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' Recap: Cross product
operator

The cross product between vectors a and b:

axDb

can sometimes be written more conveniently
as a 3x3 matrix |a]« applied to b:

axb=|alb
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®  Recap: 3D homogeneous

coordinates

 Homogeneous coordinates for 2D points
and lines can be extended in a straight-
forward way to homogeneous

coordinates for 3D points x and planes p

* Also 3D lines can be given a
homogeneous representation

« Parameter form: tx, +(t—1) X,

- Plucker coordinates: L =x,Xx,T —Xx,X,T
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Recap: Pinhole camera

* The pinhole camera maps 3D points to a
2D image:

y ~ Cx

e C is the 3x4 camera (projection) matrix

* Does not represent geometric distortion
from the camera lens
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Recap: Pinhole camera

 The camera matrix can be decomposed as

h

C=10

Intrinsic camera
calibration matrix
3x3

C1 1 0 O
Ca 0 0 O
1 0 1 0

Normalized
camera projection

matrix
3x4

ri1 T2 T3 b1
o1 T2 T23 o
31 T32 T33 3

0 0 0 1

\

Extrinsic camera
calibration matrix

(a rigid transformation)
4x4
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Recap: Pinhole camera

In a more compact form:
C=K[RIt] [RIt]is 3x4

K = intrinsic calibration matrix (3x3)
Constant in this project
Camera calibration

R, t = extrinsic calibration
The camera pose for each image in the sequence
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Recap: Camera center

The pinhole camera projects 3D point onto the
image plane through its center n:

The camera centre n € R* satisfiesCn =0
f C=K[RIt] =

The 3D coordinates of nis t’' = —RTt

Alternatively: if C=K[RI-Rt] =

The 3D coordinates of nis t

Mar 25, 2019 Computer Vision lecture 10 13



& Computer Vision Laboratory

A practical issue

The numerical values of a specific camera
matrix always refer to a specific coordinate
system in the image and in 3D space

There may be more than one coordinate
system that is used for particular problem:
- A camera centred coordinate system
- Another camera coordinate system
- The world coordinate system

We need to know which coordinate system
it refers to in order to use it practically
Maybe transform it to a standard coordinate system
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Recap: Equivalent cameras

« Two cameras C, and C, with identical
cameracentern: C. n=C,n=0
are called equivalent

* The images of two equivalent cameras can
always be made identical by means of a
homography transformation

Disregarding that images are of finite size

« Cameras that are not equivalent are called
distinct

Mar 25, 2019 Computer Vision lecture 10 15




% omputer Vision Laboratory

Recap: Estimation

Many problems where we estimate some type
of geometric object can be formulated as

Ax=0

X is a representation of the unknown
geometric object that we want to determine

Usually in terms of homogeneous coordinates
Or, at least, in terms of a projective element

A is data dependent
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Recap: Estimation

In practice, the data in A includes noise
The equation A x = 0 is not satisfied exactly
Solution (homogeneous method):

MINMISE: (%) = || Ax|| subject to [|x|| = 1

This approach minimises an algebraic error
Optimal for Gaussian residuals, i.e. Ax ~ N (0, 1)
This is not the case in general...
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Recap: Estimation

* Algebraic errors lead to linear solution methods
(e.g. using SVD), they are simple to use

» The actual data noise, however, occurs in the
Euclidean geometric space (2D or 3D)

« Geometric errors are almost always non-linear
functions of the free parameters that we optimise
* No closed form solutions exist
* Iterative minimisation methods must be used
» Good initial solutions are critical (use linear estimators!)
« Use optimisation tools, e.g., in scipy.optimize
» To be continued...
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Recap: Epipolar geometry

A 3D point x is viewed by two distinct cameras

C,and C,
y1 ~ Ci1x y, and y, are
@ corresponding
y2 ~ CoX points
Either:

Two physically distinct cameras
The same camera that is moving over time
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Recap: Epipolar geometry

A 3D point x is viewed by two distinct cameras C, and C,
y1 ~ Cix y2 ~ Caox

Epipolar

Camera l Camera 2
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Recap: Epipolar points

The image of camera center n, in camera 2 is
called the epipole (or epipolar point) e,,:

e,; = C,n,

Correspondingly, the image of n, in camera 1
defines the epipole e,:

e, =Cn,
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&

Recap: Epipolar constraint

In this case, it follows that there exists a 3x3
matrix F, the fundamental matrix, such that

The epipolar constraint

yfny 5 = O between corresponding image
pointsy, and y,

F depends only on C, and C.:

INVerse B calibrated case: Fis

F — |@ C C_I_ determined from known
[ 12] X 1%~2 C, and C,
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Recap: epipolar lines

F maps y, to aline 1, = Fy, in the first view
|, is an epipolar line:

it goes through the epipole, e, -1; = 0
If y, corresponds to y,:

theny,liesonl;: y; -1, =0

Similarly for the other epipolar line 1, = F7y,

Mar 25, 2019 Computer Vision lecture 10 23



% omputer Vision Laboratory

Recap: 8-point algorithm

F can also easily be estimated from a set of
8 (or more) corresponding image points:
Form a data matrix A
Determine right null vector f of A (SVD)
Reshape fto F
Enforce internal constraintdet F =0

Important to use Hartley normalisation to
Increase accuracy!
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Recap: triangulation

Given two corresponding image points
y, and y, we want to determine the 3D point x

Mid-point method
Algebraic method
Probabilistic method ("optimal” triangulation)

In general, different methods give slightly different
results if y, and y, are noisy
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Maximum Likelihood

* For normally distributed noise we can often define a
maximum likelihood solution to estimation problems

e Consider a direct observation x:
r~N(u,o)

 with the observation likelihood:

L —05@-p?/0?

V2mo?

Pr(z|p, o) =

Mar 25, 2019 Computer Vision lecture 10 27



%
Maximum Likelihood

* If we have several independent observations:
T1,...,en ~N(u, o)
* Their joint likelihood becomes:

N
Pr(zi|lp,0) ... - Pr(xn|p, o) = H Pr(x,|p, o)
n=1

* \WWe can now consider the estimation problem as one

of finding the parameters that maximise this joint
likelihood.
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Maximum Likelihood

« Maximise the joint likelihood:
{p*, 0"} = arg max H Pr(x,|p, o)
p,o
n=1
» Take the negative log of this expression:

{p*, 0"} = argmin J(u, o)
H,o

T1.0) = 3 3w — /0 — §log(2m0?)

n=1

e For:
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Maximum Likelihood

» Setting partial derivatives to zero gives us estimates:

0J(p, o) 1 <
O " N;m
 and
6J(IIJ’7 O-) — O — 0_2 _

oo
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Optimal triangulation

 Given two cameras and two observations of the same
3D point:
Y1~ Cix and Y2 ~~ Cox

Epipolar

Camera l Camera 2
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Optimal triangulation

 Given two cameras and two observations of the same
3D point:
Y1~ Cix and Y2 ~~ Cox

* Gives us the joint likelihood to maximize:
x* = arg max Pr(y;|C1x)Pr(yz2|C2x)
X
* Negative log gives us a least squares problem:

x* = argmin d*(y1, C1x) + d*(y2, Cax)
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Optimal triangulation

A least squares problem:

x* = arg min d*(y1, C1x) + d*(y2, Cox)

Each 3D point x defines an epipolar plane, which defines two
epipolar lines.

We can look for an epipolar line in one image, and transfer it
to the other image.

This leads to a 6th degree polynomial.

For the best line pair, find the closest auxiliary points (y1'=C1x
and y2'=C2x)

Triangulate these, using linear triangulation (OK as these
satisfy the EG perfectly, and have zero reprojection error)
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Optimal triangulation

* You will use optimal triangulation in CES.
« Source code is provided.
* Full algorithm is described in IREG 16.3

* More details on the derivation are given there.
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Robust estimation

« We often have two categories of errors:

« Measurement noise: we cannot determine numerical
values of the data with high accuracy

 Outliers: all measurements in the dataset cannot be fitted
to a consistent model

 \We refer to data that can be fitted to the model as
inliers

e Robust estimation: to determine a model from a
dataset that contains significant amount of outliers
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3

A chicken and egg problem

We need Point correspondences
corresponding points can be verified if we
to estimate F know F

Can we determine F and
verify correspondences
at the same time?
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Robust estimation

Model estimation from measured data
where some of the data items are
incorrect. E.q.

Points in 2D or in 3D A 2D line, A 3D plane
Lines in 2D or planes in 3D Point of intersection in 2D or 3D

Corresponding points in 2 views Homography
Corresponding points in 2 views Fundamental matrix
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“*  Example: estimation of a line from
points

N -cints "na ire
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“* Example: estimation of a line from
points

D pans with aorre naise "o a ire
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“* Example: estimation of a line from
points

70 povints wity =ome nnie cnoa e ard A0 afliers
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Observations

We need (in this case!) a minimum of 2 points to
determine a line

Given such a line |, we can determine how well any
other point y fits the line |

For example: distance between y and |

If we pick 2 random points from the dataset:
We can easily determine a line |
| is the correct line with some probability p, e

p_ne is related to the chance of picking only inliers
p.ne I8 larger the fewer points that are used to determine |

In general: if | is supported by the data there are more additional
points that lie on it.
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Probabillities

Let S be a set of |S|=M points in total and M,
of them are inliers

There are M (M- 1) ways to draw 2 distinct
points in a certain order, (= M2 if Mis large)

This means py e = P’poin = (My/M)?

This is in practice an upper bound:

Even if we pick two inliers, the corresponding line
may not be supported by the remaining inliers
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Line estimated from 2 inliers

70 points wity some nrdee cnoa e ard X o fliers

0.5~

0.3
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Basic iteration

1. Draw 2 random points from S
2. Fit aline | to the points

3. Determine how many other points2in S

that support the line | within some
error bound.

2 These form the consensus set C

4. If Cis sufficiently large, then the found
line is probably OK. Keep it
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Basic algorithm

* lterate rtimes
1. Draw 2 random points from S
2. Fitaline |l to the points

3. Form the consensus set C, together and

Count the number of points in C
(or p(S|l) average likelihood of the dataset given the line)

4. If the consensus set is sufficiently large, then the found
line is OK. In particular, keep | if N or p(Sll) is the best
one this far.

« Each iteration increases pg-cess = the probability that
the correct line has been found

* We need to iterate sufficiently many time to raise
Psuccess [0 a useful level
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RANSAC

 This algorithm is called RANSAC
« RANdom SAmple Consensus

* Published by Fischler & Bolles in 1981

"Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and
Automated Cartography". Comm. of the ACM 24: 381—
395.

 Several extensions / variations in the literature
Preemptive RANSAC, MLESAC, PROSAC, ...
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RANSAC for F

* For estimation of the
fundamental matrix F, points

that satisfy an epipolar N e
constraint for some F are 0
assumed to be inliers ‘

« The points that violate the e TP
epipolar constraint are
outliers
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Chicken and egg revisited

» Let there be two views with a point
set P, in one view and P, in the

other view

* Drawing correspondences randomly
from the two point sets is futile:
Pr(correct)=min(1/|P1|,1/|P2|).

* We need to find a subset S C P; x P,
of likely correspondences, or
tentative correspondences

* Typically done using some heuristic
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RANSAC for F

Pick 8 random correspondences from S

We do not know if they really correspond, but
this can be tested:

1. Use the 8-point algorithm to estimate F

2. Check how well F matches each pairin S

3. Collect those that fit well into the consensus set
C

4. If Cis sufficiently large: F is OK: keep F and C
lterate rtimes
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Probability of success

Let w be the fraction of inliers in S

In each iteration we pick N points that are all inliers
with probability wV (approximately)

The probabillity of not all N points are inliers is then
given by 1 —

The probability of not all N points are inliers in r
iterations is (1 — wN )r

The probabillity that in iteration r, at least once, all N
points are inliers: p=1—-(1—wN)r

Solve for r: . log(1 —p)

log(1 — w?)
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‘ u u u | u
Minimising geometric errors

* The 8-point algorithm uses an algebraic error. We
would like to also estimate F using ML.

« This requires us to use an error that corresponds
to a likelihood.

* We know that image coordinates from detection
are well modelled as normally distributed. Via
the negative log we can then obtain a least-
squares problem.

* Thus, we can look for a geometric error, but will all
geometric errors lead to independent normally
distributed likelihoods?
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Geometric errors for F

Given a set of N corresponding image points
Viw Youd, k=1, N

We can formulate a geometric error as
N

€1 = Z dpr(yik, Fyor)? + dpr(yor, Flyix)?

k=1 /Y
\ Epipolar lines!

where dp. is the Euclidean distance between a
point and a line

Referred to as an L, error
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Geometric errors for F

This error does not take into account that the epipolar lines
also, are perturbed by noise

As an alternative, we want to find
A fundamental matrix F
A set of auxiliary points {y’;,, ¥'o }
where (y',,)T Fy',, = 0 (exactly!) for all k

such that
N

I \2 I \2
€ = ZdPP(YUmYQk) +dpp(Y2k: Y1)
k=1
IS minimised
dpp IS the Euclidean point-to-point distance

Mar 25, 2019 Computer Vision lecture 10 53



L )mputer Vision Laboratory
&

Re-parameterisation of F

This means that we want to optimise over

combinations of F and the auxiliary points
that always satisfy the epipolar constraint!

Cannot be done directly in a simple way
Instead:
Let F be determined from C, and C,

Let the auxiliary points be the images of some virtual
3D points projected through C, and C,

The auxiliary points and F are then always consistent
Vary the 3D points and C, and C,
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Cameras from F

Each camera matrix has 11 degrees of
freedom: two cameras have 22 DOF

F has 7 DOF

There are many combinations of two
cameras that produce the same F
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Cameras from F

Choose C, =[110] (set WCS=CCS for camera 1)

A convenient choice of C, is then given by

Cq = [[621]><FT|921] (why?)

Note that e,, is given by Fe,, =0
C.,=C,HandC’, =C, H, for arbitrary 3D
homography H, also gives the same F (why?)
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Gold Standard estimation of F

Determine an initial F, using a linear method
From F,: determine initial C, and C,

From{y,. ¥, } and C,, C,, triangulate virtual 3D points x,

* Relative to some arbitrary 3D coordinate system
* Projective triangulation

Re-project the 3D points through C, and C, to the auxiliary points {y’,,, y’,, }

« These are consistent with F

« Minimise € over the 3D points x, and C, (C, is fixed)
* Use a non-linear optimisation tool, e.g., Isgnonlin
« € is referred to as an L2 reprojection error

- The resulting C, (+ C,) gives F ;... that

* Minimises a geometric error
» Maximises the likelihood of the correspondences under Gaussian noise
* This is referred to as Gold Standard estimation of F

« Computer Exercise 3

Mar 25, 2019 Computer Vision lecture 10 57



| % Computer Vision Laboratory

Summary

* The math introduced here and in the next two
lectures builds on TSBB06 Multidimensional
Signal Analysis

* The Maximum Likelihood(ML) trick is to look for
models that make observations likely.

* Optimal Triangulation, and the Gold Standard
method to find F are two examples of ML.
More examples will follow..

* The RANSAC algorithm is an important tool for
handling data with outliers. Other tools are
clustering and mode finding (LEOG).
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