
Version: February 11, 2020

c© Computer Vision Laboratory

Linköping University

Name of student

Personal number

Date

Teaching assistant

Motion estimation
Lab Exercise 2

1 Introduction

In this exercise you will implement methods for estimation of motion in image sequences (or rather optical
flow which is the apparent motion). The methods will be implemented in Python.

1.1 Preparations

Before the exercise you should have read through this exercise guide and completed the home exercises.
They are all clearly marked with a pointing finger. To be able to do this you should have read, and
understood, the simplified paper on LK tracking that can be found at the course homepage and also
completed lab exercise 1.

1.2 Initialization

To use Python in the ISY computer rooms, issue the following command at the shell prompt:
$ module add courses/TSBB15

After that you can use python3 script.py to run a Python script. For interactive work you can op-
tionally use ipython3, which allows e.g. tab-completion and syntax highlighting (you should still use
python3 to run any scripts!).

1.2.1 Help code and notes

The helper functions referenced in assignments can be found by importing the lab2 and lab1 modules.
Familiarize yourself with the available functions:
>>> import lab2

>>> help(lab2)

We suggest using scipy.signal.fftconvolve for convolutions, instead of convolve2d, as the latter
can be slow for larger arrays.

2 Algorithm outline

Present a description of how the tasks outlined in Section 3 are to be solved, including

• A flowchart showing the needed steps

• The filters that are needed

• The pixel(point)wise operations that are needed

• The parameters that are set by the user

1

• Other possible parameters that are constant

• Suggestion of simple synthetic test data for debugging

• An idea of how to test each step of the algorithm

3 Single-scale LK

You will implement the Lucas-Kanade equation (Lucas-Kanade method with only one iteration). You
can choose either the symmetric version1 or the original non-symmetric version2.

Implement a function LK equation(I, J, param1, param2,...)→ V, C

that solves the Lucas-Kanade equation for all pixels. The input is a pair of images I,J with size M1×M2,
and a set of user parameters. Then the output is a dense motion vector field V of size M1 ×M2 × 2 ,
i.e. a motion vector for every pixel/region. This is similar to lab 1, but you may not use this function to
loop over pixels in this lab.
Preparation Question: How can you use the broadcasting capabilities of numpy.linalg.solve to solve an

equation system in each pixel:

Extra
For 2 × 2 matrices we can use the analytic expression for the inverse instead of solving the system.

Derive the analytic expression for the 2 × 2 case and implement the LK equation function using this
instead of the linear solver. Is your implementation faster?

Extra
Some estimates will be more reliable than others depending on local image content, try to design a

confidence measure C for every estimate as well (this is optional).

3.1 Demonstration

Create a script file that contains the following:

• A demonstration of the single-scale method on a simple synthetic motion between two frames of
your own choice (e.g. global translation), where the true optical flow is known.

• A demonstration of the single-scale method on two frames from the real sequence ’forwardL.zip’ (un-
packed at /courses/TSBB15/sequences/forwardL/ so you can use lab2.load image greyscale) .
This sequence contains a zooming towards the center of the image. There is no ground truth, but you
can at least show that the method gives a reasonable result by comparing the error ‖J(x)− I(x)‖
with ‖J(x + v) − I(x)‖ (possibly ignoring pixels near the image border). The latter should be
smaller. You can also make a plot function that toggles between the images J(x + v) and I(x).

You may downsample the images once before the motion estimation if your implementation seems
too slow for the full resolution.

Hint: To visualize your estimated motion field V, use the gopimage help function, or plot with
quiver.

1S. Birchfield, Deriviation of Kanade-Lucas-Tomasi Tracking Equation, http://www.ces.clemson.edu/~stb/klt/

birchfield-klt-derivation.pdf
2B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, In

Proceedings of Imaging Understanding Workshop, 1981. The original article for KLT, http://www-cse.ucsd.edu/classes/
sp02/cse252/lucaskanade81.pdf

2

http://www.ces.clemson.edu/~stb/klt/birchfield-klt-derivation.pdf
http://www.ces.clemson.edu/~stb/klt/birchfield-klt-derivation.pdf
http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf
http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf

4 Multi-scale LK

Implement a function LK equation multiscale(I,J,param1,param2,...)→ V, C that solves the Lucas-
Kanade equation using the previous function in multiple scales. The basic idea is that you first estimate
the motion field in a coarse scale. Then you use this estimate as prediction for the next finer scale, and
so on.

Demonstrate the results as in the previous exercise. As another sequence you may also choose ’SC-
car4.zip’ that contains aerial images of a moving car (also unpacked at /courses/TSBB15/sequences/).

Hint: The use of prediction could be implemented in a similar manner as in lab 1, where the tem-
plate was re-interpolated in each iteration. But doing this for every pixel region in the image will be too
slow. Instead, use the dense motion field on the coarse scale to re-interpolate the entire image all at once
(i.e. create the image J(x + v)). Then use this image instead of the original one for the next finer scale.

Hint: You can use the same image size in all the scales and have different parameters when calling
LK equation, (standard deviation of the gradient filters, standard deviation of the region size and the
size of the filters) which depend on the current scale n, see sc in the Python example below.

V tot = . . .
Jn = J
for n in range (number o f s ca l e s , 0 , −1):

sc = 2 ∗∗ (n − 1)
Vn, Cn = LK equation (I , Jn , sc ∗ param1 , sc ∗ param2 , . . .)
V tot += Vn
Jn = . . .

4.1 Outliers

The estimated dense motion field (at any scale) may contain outliers. Try to remove the outliers, using
e.g. median filtering (see scipy.signal), before re-interpolating the image and computing the next finer
scale.

3

	Introduction
	Preparations
	Initialization
	Help code and notes

	Algorithm outline
	Single-scale LK
	Demonstration

	Multi-scale LK
	Outliers

