Computer Vision Laboratory

TSBB15
Computer Vision

Lecture 6
Clustering and Learning
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Today's topics

* Why learning?

« K-means clustering

* Mixture models and EM

« Background models

* Meanshift clustering

* Generalised Hough Transforms (GHT)
» Channel clustering
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Why machine learning?

e Learning is used in Computer Vision for
the following tasks:

1. Parameter tuning
2. Adaptation to changing conditions
3. Finding patterns in data
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Parameter tuning

e Most Computer Vision systems are
complex pieces of software.

e The more complex a system is, the more
parameters it has.
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& Computer Vision Laboratory

Parameter tuning

e Most Computer Vision systems are
complex pieces of software.

e The more complex a system is, the more
parameters it has. E.g. filter sizes,
thresholds for detection etc. These need
to be tuned! JUDYBATS
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Parameter tuning

e Parameter tuning in brief:

1. Collect a set of examples of the desired

behaviour of an algorithm.
2. Look for the parameters that produce

the desired behaviour on the examples.

February 5, 2020 Computer Vision lecture 6



& omputer Vision Laboratory

Parameter tuning

e Supervised learning in brief:

1. Collect a training set (of the desired

behaviour of an algorithm)
2. Look for the parameters that produce

the desired behaviour on a test set.

Parameters are found by minimizing a loss
function that defines the desired behaviour.
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Parameter tuning

W

e Example: -
Automatically decide C N\ 3

which motion vectors = - 7
are good(ve () and - i
which are bad(veB). .- . . - %
e ook for tracker parameters that minimise
the loss: J(p1,...,pn) = |B|/(|G|+|B|)
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x_Automated Parameter Tuning
= Supervised Learning

e Training set
- with validation holdout part

e Test set
- examples not used in learning/tuning

e This setup allows overfitting to be
detected (and then avoided)
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Adaptation

e Computer Vision systems that are
deployed in live situations face changing
conditions. E.g. different illumination at
night and during the day.
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&
Adaptation

e Computer Vision systems that are
deployed in live situations face changing
conditions. E.g. different illumination at
night and during the day.

e A convenient way to cope with changes,
IS to make the vision system adaptive.
(an alternative is invariance, see LES).
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Adaptation

e Computer Vision systems that are
deployed in live situations face changing
conditions. E.g. different illumination at
night and during the day.

e A convenient way to cope with changes,
IS to make the vision system adaptive.

e Example: Background models
introduced later in this lecture.
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Finding patterns in data

 Recognition and match-
ing (LE 8) uses learned
features (or tuned).

e Applications such as:
object recognition,
object tracking,
Image captioning etc.
[See TSBB17]
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Learning in Vision Systems

e Batch learning: learn once, use forever

e Online learning: learn continuously
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Learning in Vision Systems

e Batch learning: learn once, use forever
Is used to automatically tune
parameters, features, classifiers etc.

e Online learning: learn continuously
Is used to automatically adapt e.q.
classifiers and trackers to changing
conditions.
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Learning paradigms

 Different learning situations/paradigms:

Supervised learning
Reinforcement learning
Unsupervised learning

» Covered in depth in:
TBMI26 Neural Networks and Learning Systems
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Learning paradigms

 Different learning situations/paradigms:

Supervised learning
Reinforcement learning
Unsupervised learning <«this lecture

» Covered in depth in:
TBMI26 Neural Networks and Learning Systems
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Learning paradigms

* Supervised learning
learn y=f(x) from examples {x,,,y,} '
= function approximation
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Learning paradigms

* Unsupervised learning
N
learn y=f(x) from examples{xn};
=manifold learning or clustering

* Manifold learning finds low dimensional
representations of high dimensional data.
E.g. coordinates on a surface in nD.
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Learning paradigms

* Unsupervised learning y Wy
learn y=f(x) from examples{xn}; ?é £
ﬂg' 2

» g'
b ?'."4
=manifold learning or clustering Xk

* Manifold learning finds low dimensional
representations of high dimensional data.
E.g. coordinates on a surface in nD.

* This lecture is mainly about clustering.

« y € N, i.e. each sample xn is assigned a
cluster /abel.

*sd
< LR
.
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Clustering

N
— Our input is a set of data points {X-n}l
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Clustering

— Each data pomt {Xn,}l IS assigned a cluster
labely € [1... K], and a prototype {p; }1°
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Clustering

N
— Each data pomt {Xn,}l IS assigned a Cluster

labely € [1... K] and a prototype {Pa}l

— labels and prototypes are latent (hidden)
variables that we want to estimate.

— Many algorithms, with different representations
of the prototypes/clusters. We will now look at
the K-means algorithm, and Expectation
Maximisation (EM)...
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K-means clustering

* A good clustering has small distances
between prototypes and samples within
that cluster. 10

-10
-10 -5 0 5 10
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K-means clustering

* A good clustering has small distances
between prototypes and samples within
that cluster. Encoded in loss function:

.PxK) LL‘S[% = K]||% — pi|’

E=1n=1
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K-means clustering

 Loss function: y

J(Py:---PK) LL(S[yn—k]Hxn Pi|*

E=1n=1
* Non-convex problem. What is this”

» K-means clustering [MacQueen’67] is a
useful heuristic.
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K-means clustering

1. Pick random sample points as cluster
prototypes.

2. Assign cluster labels {yx }1rto samples {xn}N ‘
according to prototype distances di, = ||x» — p«||*

3. Assign prototypes as averages of samples

within cluster:
Sla,, = k

4. Repeat 2-3 until labels stop changlng.
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K-means clustering

« K-means finds a local min of the loss:
N

J( pK Zzé['yn — k]”xn ph”2

E=1n=1
 Issue 1:Bad repeatability:

9 S |
c g "' , i ﬁ : 1_‘#"’

e |ssue 2:What is the value of K?
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K-means problems

Fix for the local min problem:

— Run the algorithm many times, and pick the
solution with the lowest J.

« Steps 2,3 can be seen as special cases of
the EM-algorithm [Dempster et al. 77]

more on this soon.

 First we need to intfroduce
mixture models.
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Mixture models

A generative model for data that may come from
several distributions.
« E.g. value of a particular plxel mastatlonary
camera. R L ™

- shadow/no shadow

- cloudy/sunny _

- temporary occlusion
(flag or branches)
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Mixture models

« Value of a particular pixel in a stationary
camera: p(l2s6,512)

Empirical distribution at [256,512]
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Mixture models

* We model the probablllty denS|ty of
pixel intensity / as: _ Zi" IT,) P(T
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Mixture models

* We model the probablllty denS|ty of
| intensity /
pixel intensity / as: Zp IT,)P

* Mixture probabllities: Z P(Ty) =1
Q) =

Probability of being in a particular
component.
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Mixture models

* We model the probablllty denS|ty of

ixel intensity [ as:

P y — Zp (I]T) P(T
* Mixture components: -
p(I|T'k)

e.g. " |

I —0.5([—/1;{,)2/0'13 0:03»

I = <=
Gaussian mixture model (GMM) “,___N|
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Mixture models

« Gaussian mixture components:
p(I|Ty) = 1 6—0-5(I—uk)2/02

- \2noy,
* Notation conditioned on the parameters:

1 _ . 2/ 2
p(I|pg, ox) = /_27'('0']{6 0.5(1 — )" /o,

* Also the mixture probabilities are parameters:
P(Fk) — Tk where Zﬂ'k =1
k
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A generative model

* The mixture model is a generative model.

* This means that it can generate samples.
How?

p(I) =) p(I|Tx)P(Ts)
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A generative model

* The mixture model is a generative model.

* This means that it can generate samples.
How?

p(I) = > p(I|T%) P(Tx)

* A: First draw component (How?), then draw
sample from that component’s distribution.
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Expectation Maximisation

N

* Given a set of measurements,{fn}l
how do we estimate the parameters of
the mixture distribution p(/)?

p(I) =) p(I|Tk)P(Ts)
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Expectation Maximisation

N

* Given a set of measurements,{fn}l
how do we estimate the parameters of
the mixture distribution p(/)?

K
(L[ {7k, pores Ok}{{) — Zﬂkp(f\uk, Ok)
k=1

* This can be done with the EM algorithm.
* Note similarities with K-means below.
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Expectation Maximisation

- Maximize a loss which is the log likelihood of
all samples:

J(©) = log (H punr@>) =3 " log p(1,|0)
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Expectation Maximisation

- Maximize a loss which is the log likelihood of
all samples:

J(©) = log (H punr@>) =3 " log p(1,|0)

- Here 0O, is a vector that includes parameters
of the mixture and component assignments
(cf. labels in K-means):

@:(7'('1,...,7TK,O'1,...,O'K,,ul,...,,LLK,CLH,...,CLKN)
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Expectation Maximisation

- Maximize a loss which is the log likelihood of
all samples:

J(©) =) logp(I,|0)

- To do this we alternate between:
E: compute assignments, from sample
likelihoods using current model, ©O+.1
M: estimate other model parameters in G,
given the assignments
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Expectation Maximisation

* The E-step for a mixture: .

(L[ {7k, pores Ok}{{) — Zﬂkp(f\/ik, Ok)
k=1

Computes the assignments according to:
apn = TP (In |k, Ok )

Afn — ZLkn/ leil Afn
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Expectation Maximisation

* The M-step updates the mixture probabilities:
N
1
T — P(Fk) — anlakn

* and mixture paramet?vrs (assuming a GMM):

Mk — ZNl Zakn]n
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The EM Algorithm

1. Postulate a mixture distribution.

2. E: Compute assignments, axn, for samples
{In}iv, using the current mixture model.

3. M: Use assignments to update mixture model
parameters.

4. Repeat 2-3 until convergence.
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Expectation Maximisation

* Generalizes to higher dimensions.

* e.g.in 2D we have 5 parameters in each
mixture component:

1= (Ml) > (011 012)
H2 012 022
« Just like K-means,
EM also finds a local min.

February 5, 2020 Computer Vision lecture 6 46



Expectation Maximisation

« Demo for 2D case:

lter=31 delta=9.374028497877163e-10
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Background modelling

* A popular application of mixture models
IS background modelling (SHB 16.5.1):

— Estimate a mixture model for the image in
each pixel.

— Pixel values far from the mixture are seen
as foreground pixels.

— Popular way track e.g. people and cars in
stationary surveillance cameras.

— Fast compared to motion estimation.

February 5, 2020 Computer Vision lecture 6 48




| } Computer Vision Laboratory

Background modelling

» Background modelling+shadow detection

- e
s A

e — -~
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 CVL Master thesis of John Wood 200%
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Background modelling

« Samples now arrive one at a time.
 EM uses a batch update:

N

Mk — ! Z Andn

N
anl Akn n=1

* On-line update is needed
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Background modelling

« Samples now arrive one at a time.
* On-line update:

prln] = (1 — a)pxn — 1] + al,

opln] = (1 — a)ogn — 1] + a(l, — pkn — 1))°

T n] = (1 — a)me|n — 1] + aakn

* How to design «(ak,, ., k) can be
investigated in project 1.
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Mean-shift Clustering

* A proper solution to the local min
problem is to find all local minima.
* Two steps:

— Mean-shift filter (mode seeking)
— Clustering
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Kernel density estimate

. N
» For a set of sample points {x»};
we define a continuous PDF-estimate

as: N
1 I{ Xn — X
p(x) = E :
]\Thd' h
n=1

10 -
ol e "»';}'{'_,.: ?.
R )
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Kernel density estimate

. N
» For a set of sample points {xx»};
we define a continuous PDF-estimate

as. N
1 X, — X
— K ‘
p(x) Nhd Z ( h )

=1

» K() is a kernel, e.g. K(x) = cexp (—x' x/2)
* his the kernel scale.
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Mode seeking

* By modes of a PDF, we mean the local
peaks of the kernel density estimate.

— These can be found by gradient ascent,
starting in each sample.

— If we use the Epanechnikov kernel,

K (x) = el —-x'x) ifxtx<l1
i 1o otherwise.

a particularly simple gradient ascent is
possible.
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}
Mean-shift filtering

« Start in each data point, m,, = x,,
* Move to position of local average
m, < mean{x, : X, € S(m,)}

* Repeat step 2 until convergence.
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Mean-shift clustering

» After convergence of the mean-shift filter,
all points within a certain distance (e.g.
h) are said to constitute one cluster.
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Q_

Pose estimation

— Mean-shift can be used for “continuous
voting” in pose estimation.

— Each local invariant feature (e.g. SIFT or
MSER) will cast a vote (sample pomt)

x=(z0 w0 a s ¢ b6 type)
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Mean-shift

 Choice of kernel scale affects .results
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Mean-shift

* For the Epanechnikov kernel, the
algorithm is quite fast.

* The Gaussian kernel is another popular
choice.

* There is also a scale adaptive version of
meanshift, that works in a manner
similar to EM in each iteration (slower).
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Generalised Hough Transform

* Another way to find modes of a PDF is
to quantize the parameter space into
accumulator cells.

 Each sample then casts a vote in one or
several cells.

* This is called the Generalised Hough
Transform (GHT).
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Generalised Hough Transform

 Non-iterative = constant time

complexity.
i . 1
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Generalised Hough Transform

* Quantisation can be dealt with by increasing
the number of cells, and blurring.

0.8
06|, A
0.4f

02 . -
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Channel Representation

» A similar technique is to use averaging in
channel representation.

— By first quantizing, and then blurring, we are
actually introducing aliasing of the PDF.

— Better to directly sample the kernel density
estimate at regularly sampled positions.

— Density of samples is regulated by the
kernel scale.
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Channel Representation

* Channel encoding

Channel value

j/)C
o 1 2 3 4 5 6 7 8 9

Signal value
r=4 = enc(z)=x=[B(z—1) B(zx-2) ... B(z-28)

-IT
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Channel Representation

* Channel encoding

Channel value

1
VRN
o 1 2 3 4 &5 6 7 8 9
Signal value
r=4 = enc(z)=x=1[0 0 025 1 025 0 0 0]
» Channel decoding

T = dec(x)

T
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Channel Representation

— Alocal decoding is necessary in order to decode
a multi-valued channel representation.

’
x,=2.51 =1 T |_| I
— 4567809
‘—v—’ ——
x2=7 r2=0.5
— That is
.’i‘l — dEC(:??]_ .. ;'1?3) f?g — dec(a:.ﬁ .. CES)

— Decoding formula depends on the kernel.
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Channel Clustering

» Channel encode data points, xn = enc(:z;n)
* Average channel vectors 5 — ~ Exn
« Compute all decodings (z,7) — »=!

l|=¢llll
0O 1 2 3 4 5 6 7 8

dec (1.23,0.35) (5.41,0.2) (7.88,0.45)
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Channel Clustering

* The decoding step computes /ocation,
density, and standard deviation at mode.

« Optimal decoding is expensive, but fast
heuristic decodings exist.

* |t can be shown [Forssen 04] that
averaging in channel representation is
equivalent to a regular sampling of a
kernel density estimator.
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Summary

e This was a quick overview of clustering,
and related techniques.

 The main purpose with learning is to make
Computer Vision systems adapt to data.

* The alternative, to manually tune
parameters, works for small static
problems, but does not scale and cannot
adapt to changes.
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Course events this week

e Thursday (tomorrow): Lab1
Material on the course web page.
Extensive preparation is necessary to
finish on time.

* Friday: Projects start
Introductory lecture
Assignments into groups (5/4 per group)
If you cannot be there, let us know!

February 5, 2020 Computer Vision lecture 6 71



