

TSBB15 Computer Vision

Lecture 6
Clustering and Learning

Today's topics

- Why learning?
- K-means clustering
- Mixture models and EM
- Background models
- Meanshift clustering
- Generalised Hough Transforms (GHT)
- Channel clustering

Why machine learning?

- Learning is used in Computer Vision for the following tasks:
 - 1. Parameter tuning
 - 2. Adaptation to changing conditions
 - 3. Finding patterns in data

- Most Computer Vision systems are complex pieces of software.
- The more complex a system is, the more parameters it has.

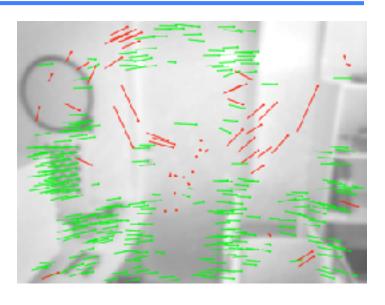
- Most Computer Vision systems are complex pieces of software.
- The more complex a system is, the more parameters it has. E.g. filter sizes, thresholds for detection etc. These need **JUDYBATS**

- Parameter tuning in brief:
 - 1. Collect a set of examples of the desired behaviour of an algorithm.
 - 2. Look for the parameters that produce the desired behaviour on the examples.

- Supervised learning in brief:
 - 1. Collect a training set (of the desired behaviour of an algorithm)
 - 2. Look for the parameters that produce the desired behaviour on a test set.

Parameters are found by minimizing a loss function that defines the desired behaviour.

Example:
 Automatically decide
 which motion vectors
 are good(v∈G) and
 which are bad(v∈B).



 Look for tracker parameters that minimise the loss: J(p₁,...,p_N) = |B|/(|G|+|B|)

Automated Parameter Tuning = Supervised Learning

- Training set
 - with validation holdout part
- Test set
 - examples not used in learning/tuning

 This setup allows overfitting to be detected (and then avoided)

Adaptation

 Computer Vision systems that are deployed in live situations face changing conditions. E.g. different illumination at night and during the day.

Adaptation

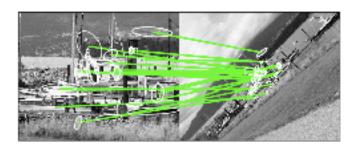
- Computer Vision systems that are deployed in live situations face changing conditions. E.g. different illumination at night and during the day.
- A convenient way to cope with changes, is to make the vision system adaptive. (an alternative is *invariance*, see LE8).

Adaptation

- Computer Vision systems that are deployed in live situations face changing conditions. E.g. different illumination at night and during the day.
- A convenient way to cope with changes, is to make the vision system adaptive.
- Example: Background models introduced later in this lecture.

Finding patterns in data

 Recognition and matching (LE 8) uses learned features (or tuned).



Applications such as:
 object recognition,
 object tracking,
 image captioning etc.
 [See TSBB17]

Learning in Vision Systems

Batch learning: learn once, use forever

Online learning: learn continuously

Learning in Vision Systems

- Batch learning: learn once, use forever Is used to automatically tune parameters, features, classifiers etc.
- Online learning: learn continuously
 Is used to automatically adapt e.g. classifiers and trackers to changing conditions.

Different learning situations/paradigms:

Supervised learning Reinforcement learning Unsupervised learning

 Covered in depth in: TBMI26 Neural Networks and Learning Systems

Different learning situations/paradigms:

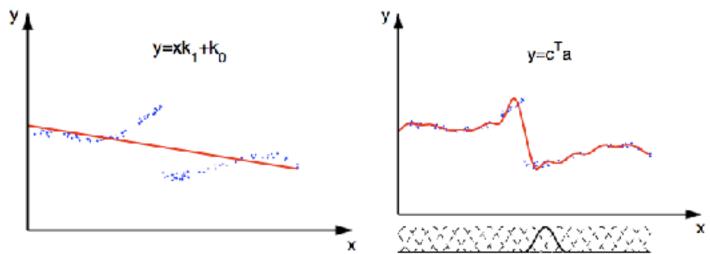
Supervised learning
Reinforcement learning
Unsupervised learning ←this lecture

 Covered in depth in: TBMI26 Neural Networks and Learning Systems

Supervised learning

learn $\mathbf{y} = \mathbf{f}(\mathbf{x})$ from examples $\{\mathbf{x}_n, \mathbf{y}_n\}_1^N$

= function approximation

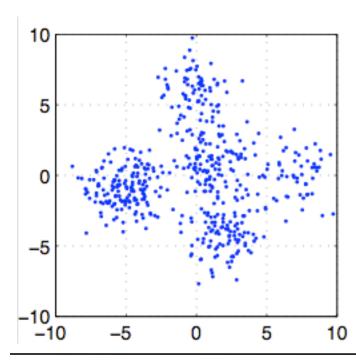


- Unsupervised learning
 learn y=f(x) from examples{x_n}₁^N
 =manifold learning or clustering
 - Manifold learning finds low dimensional representations of high dimensional data.
 E.g. coordinates on a surface in nD.

- Unsupervised learning
 learn y=f(x) from examples {x_n}₁^N
 =manifold learning or clustering
 - Manifold learning finds low dimensional representations of high dimensional data.
 E.g. coordinates on a surface in nD.
- This lecture is mainly about clustering.
- $y \in \mathbb{N}$, i.e. each sample \mathbf{x}_n is assigned a cluster *label*.

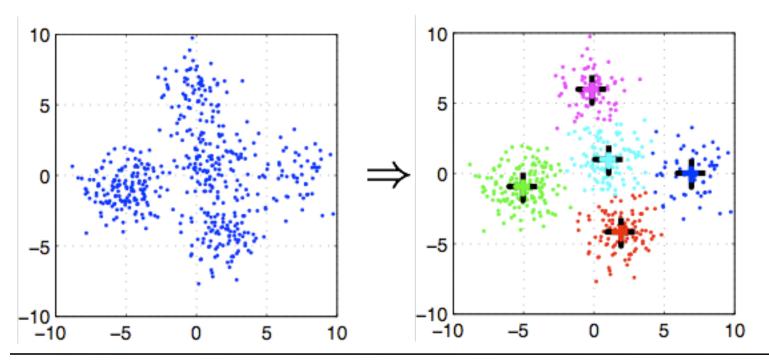
Clustering

– Our input is a set of data points $\{\mathbf{x}_n\}_1^N$



Clustering

– Each data point $\{\mathbf{x}_n\}_1^N$ is assigned a cluster label $y \in [1 \dots K]$, and a prototype $\{\mathbf{p}_k\}_1^K$

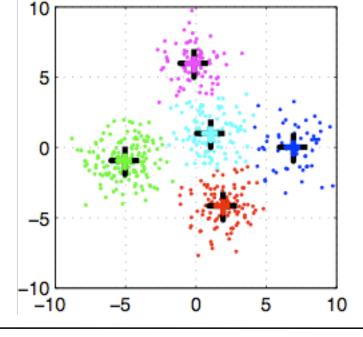


Clustering

- Each data point $\{\mathbf{x}_n\}_1^N$ is assigned a cluster label $y \in [1 \dots K]$, and a prototype $\{\mathbf{p}_k\}_1^K$
- labels and prototypes are latent (hidden)
 variables that we want to estimate.
- Many algorithms, with different representations of the prototypes/clusters. We will now look at the K-means algorithm, and Expectation Maximisation (EM)...

 A good clustering has small distances between prototypes and samples within

that cluster.



 A good clustering has small distances between prototypes and samples within that cluster. Encoded in loss function:

$$J(\mathbf{p}_1, \dots \mathbf{p}_K) = \sum_{k=1}^K \sum_{n=1}^N \delta[y_n = k] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

Loss function:

$$J(\mathbf{p}_1, \dots \mathbf{p}_K) = \sum_{k=1}^K \sum_{n=1}^N \delta[y_n = k] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

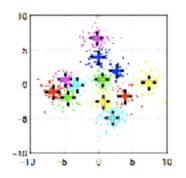
- Non-convex problem. What is this?
- K-means clustering [MacQueen'67] is a useful heuristic.

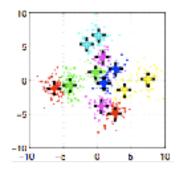
- 1. Pick random sample points as cluster prototypes.
- 2. Assign cluster labels $\{y_n\}_1^N$ to samples $\{\mathbf{x}_n\}_1^N$ according to prototype distances $d_k^2 = ||\mathbf{x}_n \mathbf{p}_k||^2$
- 3. Assign prototypes as averages of samples within cluster: $\mathbf{p}_k = \frac{1}{|\{y_n = k\}|} \sum_{n=1}^N \delta[y_n = k] \mathbf{x}_n$
- 4. Repeat 2-3 until labels stop changing.

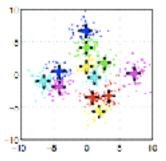
K-means finds a local min of the loss:

$$J(\mathbf{p}_1, \dots \mathbf{p}_K) = \sum_{k=1}^K \sum_{n=1}^N \delta[y_n = k] ||\mathbf{x}_n - \mathbf{p}_k||^2$$

Issue 1:Bad repeatability:







Issue 2:What is the value of K?

K-means problems

- Fix for the local min problem:
 - Run the algorithm many times, and pick the solution with the lowest J.
- Steps 2,3 can be seen as special cases of the EM-algorithm [Dempster et al. 77]
- more on this soon.
- First we need to introduce *mixture models*.

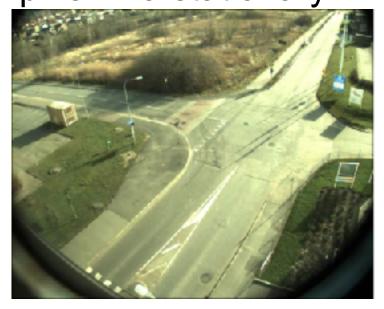
 A generative model for data that may come from several distributions.

E.g. value of a particular pixel in a stationary

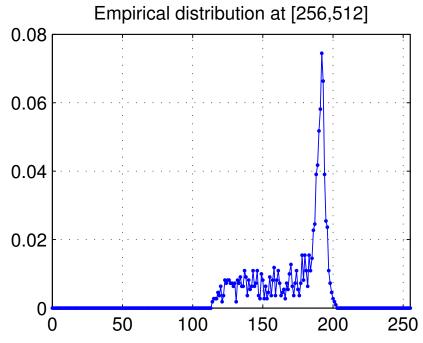
camera:

- shadow/no shadow

- cloudy/sunny
- temporary occlusion (flag or branches)



 Value of a particular pixel in a stationary camera: p(I_{256,512})



• We model the probability density of pixel intensity I as: $p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$

- We model the probability density of pixel intensity I as:
 - $p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$

k=1

Mixture probabilities:

Probability of being in a particular component.

We model the probability density of pixel intensity I as:

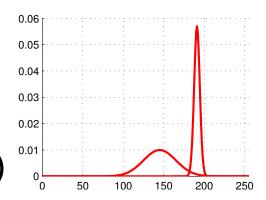
$$p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$$

Mixture components:

$$p(I|\Gamma_k)$$

e.g.
$$p(I|\Gamma_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-0.5(I-\mu_k)^2/\sigma_k^2}$$

Gaussian mixture model (GMM)



Gaussian mixture components:

$$p(I|\Gamma_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-0.5(I-\mu_k)^2/\sigma_k^2}$$

Notation conditioned on the parameters:

$$p(I|\mu_k, \sigma_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-0.5(I-\mu_k)^2/\sigma_k^2}$$

Also the mixture probabilities are parameters:

$$P(\Gamma_k) = \pi_k$$
, where $\sum_k \pi_k = 1$

A generative model

- The mixture model is a generative model.
- This means that it can generate samples.

How?
$$p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$$

A generative model

- The mixture model is a generative model.
- This means that it can generate samples.

How?
$$p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$$

• A: First draw component (How?), then draw sample from that component's distribution.

• Given a set of measurements, $\{I_n\}_1^N$ how do we estimate the parameters of the mixture distribution p(I)?

$$p(I) = \sum_{k=1}^{K} p(I|\Gamma_k) P(\Gamma_k)$$

• Given a set of measurements, $\{I_n\}_1^N$ how do we estimate the parameters of the mixture distribution p(I)?

$$p(I|\{\pi_k, \mu_k, \sigma_k\}_1^K) = \sum_{k=1}^K \pi_k p(I|\mu_k, \sigma_k)$$

- This can be done with the EM algorithm.
- Note similarities with K-means below.

 Maximize a loss which is the log likelihood of all samples:

$$J(\Theta) = \log \left(\prod_{n=1}^{N} p(I_n | \Theta) \right) = \sum_{n=1}^{N} \log p(I_n | \Theta)$$

 Maximize a loss which is the log likelihood of all samples:

$$J(\Theta) = \log \left(\prod_{n=1}^{N} p(I_n | \Theta) \right) = \sum_{n=1}^{N} \log p(I_n | \Theta)$$

Here Θ, is a vector that includes parameters
 of the mixture and component assignments
 (cf. labels in K-means):

$$\Theta = (\pi_1, \dots, \pi_K, \sigma_1, \dots, \sigma_K, \mu_1, \dots, \mu_K, a_{11}, \dots, a_{KN})$$

 Maximize a loss which is the log likelihood of all samples:

$$J(\Theta) = \sum_{n=1}^{N} \log p(I_n | \Theta)$$

To do this we alternate between:

E: compute assignments, from sample likelihoods using current model, Θ_{t-1} **M**: estimate other model parameters in Θ_t , given the assignments

• The E-step for a mixture:

$$p(I|\{\pi_k, \mu_k, \sigma_k\}_1^K) = \sum_{k=1}^K \pi_k p(I|\mu_k, \sigma_k)$$

Computes the assignments according to:

$$\tilde{a}_{kn} = \pi_k p(I_n | \mu_k, \sigma_k)$$

$$a_{kn} = \tilde{a}_{kn} / \sum_{l=1}^{K} \tilde{a}_{kn}$$

The M-step updates the mixture probabilities:

$$\pi_k = P(\Gamma_k) = \frac{1}{N} \sum_{n=1}^{N} a_{kn}$$

and mixture parameters (assuming a GMM):

$$\mu_k = \frac{1}{\sum_{n=1}^{N} a_{kn}} \sum_{n=1}^{N} a_{kn} I_n$$

$$\sigma_k^2 = \frac{1}{\sum_{n=1}^{N} a_{kn}} \sum_{n=1}^{N} a_{kn} (I_n - \mu_k)^2$$

The EM Algorithm

- 1. Postulate a mixture distribution.
- 2. **E**: Compute assignments, a_{kn} , for samples $\{I_n\}_1^N$, using the current mixture model.
- 3. **M**: Use assignments to update mixture model parameters.
- 4. Repeat 2-3 until convergence.

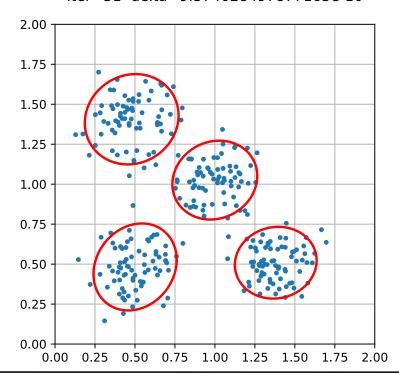
- Generalizes to higher dimensions.
- e.g. in 2D we have 5 parameters in each mixture component:

$$\mu = egin{pmatrix} \mu_1 \ \mu_2 \end{pmatrix} \quad oldsymbol{\Sigma} = egin{pmatrix} \sigma_{11} & \sigma_{12} \ \sigma_{12} & \sigma_{22} \end{pmatrix}$$

Just like K-means,
 EM also finds a local min.

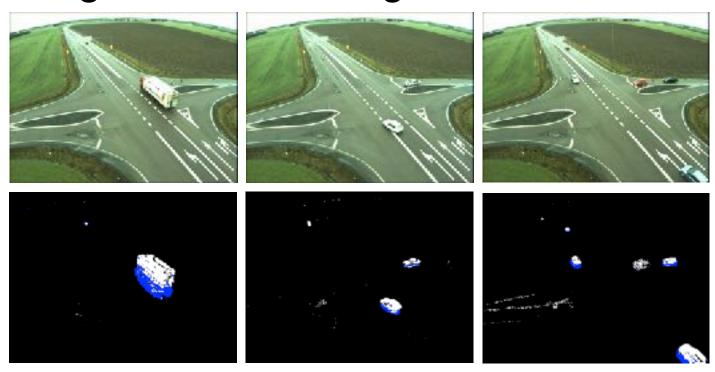
Demo for 2D case:

Iter=31 delta=9.374028497877163e-10



- A popular application of mixture models is background modelling (SHB 16.5.1):
 - Estimate a mixture model for the image in each pixel.
 - Pixel values far from the mixture are seen as foreground pixels.
 - Popular way track e.g. people and cars in stationary surveillance cameras.
 - Fast compared to motion estimation.

Background modelling+shadow detection



CVL Master thesis of John Wood 2007

- Samples now arrive one at a time.
- EM uses a batch update:

$$\mu_k = \frac{1}{\sum_{n=1}^{N} a_{kn}} \sum_{n=1}^{N} a_{kn} I_n$$

$$\sigma_k^2 = \frac{1}{\sum_{n=1}^{N} a_{kn}} \sum_{n=1}^{N} a_{kn} (I_n - \mu_k)^2$$

On-line update is needed

- Samples now arrive one at a time.
- On-line update:

$$\mu_k[n] = (1 - \alpha)\mu_k[n - 1] + \alpha I_n$$

$$\sigma_k^2[n] = (1 - \alpha)\sigma_k^2[n - 1] + \alpha (I_n - \mu_k[n - 1])^2$$

$$\pi_k[n] = (1 - \alpha)\pi_k[n - 1] + \alpha a_{kn}$$

• How to design $\alpha(a_{kn}, \pi_k, k)$ can be investigated in project 1.

Mean-shift Clustering

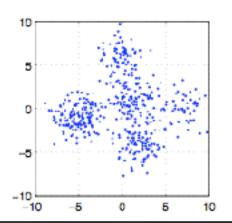
- A proper solution to the local min problem is to find all local minima.
- Two steps:
 - Mean-shift filter (mode seeking)
 - Clustering

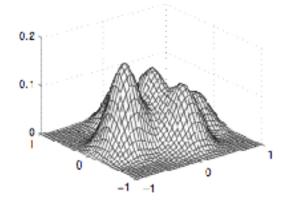
Kernel density estimate

• For a set of sample points $\{x_n\}_1^N$ we define a continuous PDF-estimate

as:

$$p(\mathbf{x}) = \frac{1}{Nh^d} \sum_{n=1}^{N} K\left(\frac{\mathbf{x}_n - \mathbf{x}}{h}\right)$$





Kernel density estimate

For a set of sample points {x_n}₁^N
 we define a continuous PDF-estimate
 as:

$$p(\mathbf{x}) = \frac{1}{Nh^d} \sum_{n=1}^{N} K\left(\frac{\mathbf{x}_n - \mathbf{x}}{h}\right)$$

- K() is a kernel, e.g. $K(\mathbf{x}) = c \exp(-\mathbf{x}^T \mathbf{x}/2)$
- · h is the kernel scale.

Mode seeking

- By modes of a PDF, we mean the local peaks of the kernel density estimate.
 - These can be found by gradient ascent, starting in each sample.
 - If we use the Epanechnikov kernel,

$$K_E(\mathbf{x}) = egin{cases} c(1 - \mathbf{x}^T \mathbf{x}) & \text{if } \mathbf{x}^T \mathbf{x} \leq 1 \\ 0 & \text{otherwise.} \end{cases}$$

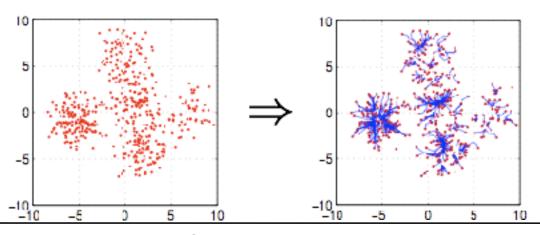
a particularly simple gradient ascent is possible.

Mean-shift filtering

- Start in each data point, $\mathbf{m}_n = \mathbf{x}_n$
- Move to position of local average

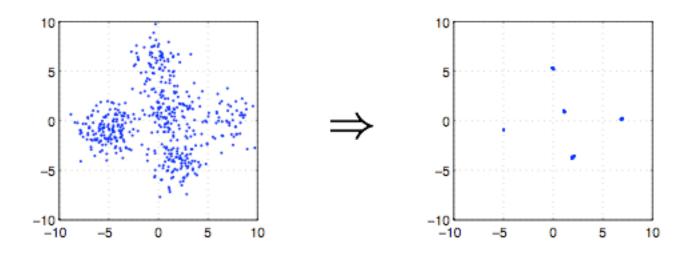
$$\mathbf{m}_n \leftarrow \text{mean} \left\{ \mathbf{x}_n : \mathbf{x}_n \in S(\mathbf{m}_n) \right\}$$

Repeat step 2 until convergence.



Mean-shift clustering

 After convergence of the mean-shift filter, all points within a certain distance (e.g. h) are said to constitute one cluster.



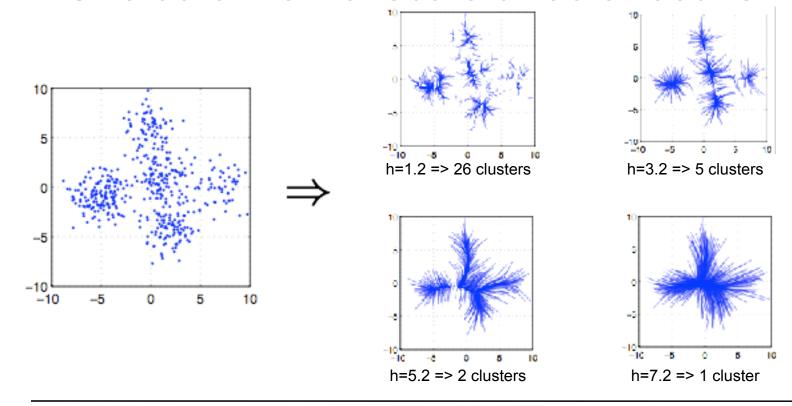
Pose estimation

- Mean-shift can be used for "continuous voting" in pose estimation.
- Each local invariant feature (e.g. SIFT or MSER) will cast a vote (sample point)

$$\mathbf{x} = egin{pmatrix} x_0 & y_0 & lpha & s & arphi & heta & ext{type} \end{pmatrix}^T$$

Mean-shift

Choice of kernel scale affects results



Mean-shift

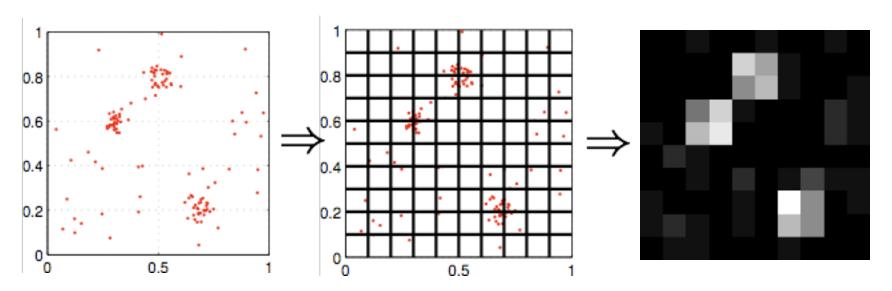
- For the Epanechnikov kernel, the algorithm is quite fast.
- The Gaussian kernel is another popular choice.
- There is also a scale adaptive version of meanshift, that works in a manner similar to EM in each iteration (slower).

Generalised Hough Transform

- Another way to find modes of a PDF is to quantize the parameter space into accumulator cells.
- Each sample then casts a vote in one or several cells.
- This is called the *Generalised Hough Transform* (GHT).

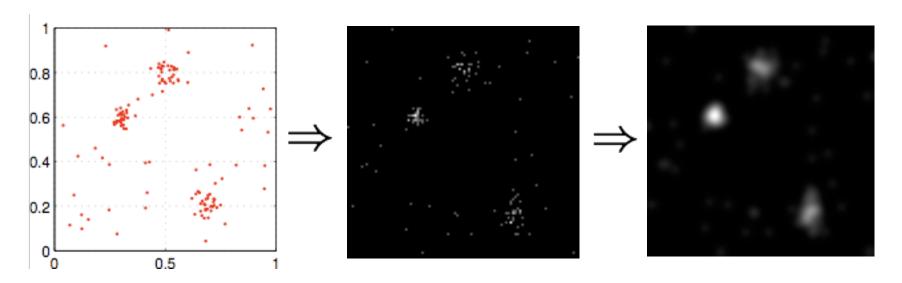
Generalised Hough Transform

 Non-iterative ⇒ constant time complexity.



Generalised Hough Transform

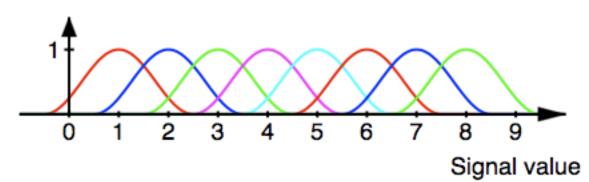
 Quantisation can be dealt with by increasing the number of cells, and blurring.



- A similar technique is to use averaging in channel representation.
 - By first quantizing, and then blurring, we are actually introducing aliasing of the PDF.
 - Better to directly sample the kernel density estimate at regularly sampled positions.
 - Density of samples is regulated by the kernel scale.

Channel encoding

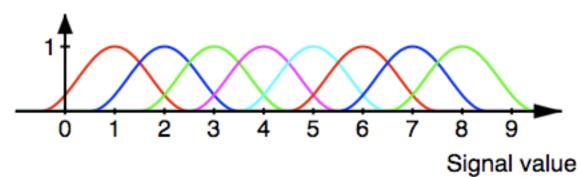
Channel value



$$x = 4 \implies \text{enc}(x) = \mathbf{x} = [B(x-1) \ B(x-2) \ \dots \ B(x-8)]^T$$

Channel encoding

Channel value

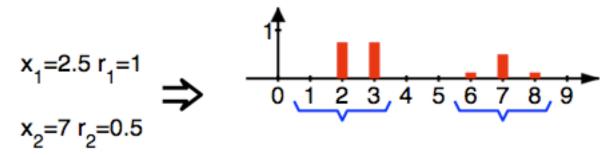


 $x = 4 \Rightarrow \text{enc}(x) = \mathbf{x} = \begin{bmatrix} 0 & 0 & 0.25 & 1 & 0.25 & 0 & 0 \end{bmatrix}^T$

Channel decoding

$$\hat{x} = \operatorname{dec}(\mathbf{x})$$

 A local decoding is necessary in order to decode a multi-valued channel representation.



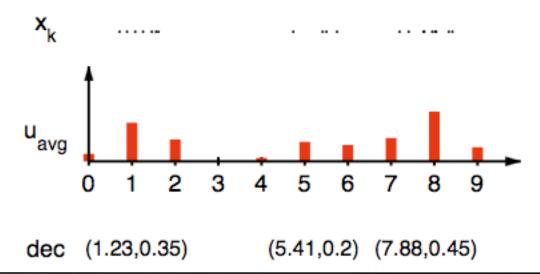
- That is

$$\hat{x}_1 = \det(x_1 \dots x_3)$$
 $\hat{x}_2 = \det(x_6 \dots x_8)$

Decoding formula depends on the kernel.

Channel Clustering

- Channel encode data points, $\mathbf{x}_n = \operatorname{enc}(x_n)$
- Average channel vectors $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$
- Compute all decodings (\hat{x}, \hat{r})



Channel Clustering

- The decoding step computes location, density, and standard deviation at mode.
- Optimal decoding is expensive, but fast heuristic decodings exist.
- It can be shown [Forssén 04] that averaging in channel representation is equivalent to a regular sampling of a kernel density estimator.

Summary

- This was a quick overview of clustering, and related techniques.
- The main purpose with learning is to make Computer Vision systems adapt to data.
- The alternative, to manually tune parameters, works for small static problems, but does not scale and cannot adapt to changes.

Course events this week

- Thursday (tomorrow): Lab1
 Material on the course web page.
 Extensive preparation is necessary to finish on time.
- Friday: Projects start
 Introductory lecture
 Assignments into groups (5/4 per group)
 If you cannot be there, let us know!