

TSBB15 Computer Vision

Lecture 12
PnP, 3D reconstruction pipeline
Bundle adjustment, Project 2

Calibrated 2-view geometry

Recap from previous lecture:

- Given corresponding points in two views, and known intrinsics K, we can determine E
- Given E we can determine the relative pose of the cameras
 - The rotation R and translation t of camera 2 relative camera 1
- R can be determined and the direction of t can be determined, not its absolute scale

To get going we can e.g. set Itl=1

Adding views with PnP

If we have correspondence also with a third view we can use the Perspective n-Point problem (PnP) to find the third camera:

given: a set of 2D ↔ 3D correspondences

$$\{\mathbf y_n \leftrightarrow \mathbf x_n\}_{n=1}^N$$

sought: the absolute camera pose, such that

$$\mathbf{y}_n \sim [\mathbf{R}|\mathbf{t}] \mathbf{x}_n$$
, for $n = 1, \dots, N$

Adding views with PnP

Minimal case: N = 3 (P3P)

Gives up to 4 possible solutions for [R|t]

Use together with RANSAC

Refine the found solution by optimisation on the inlier set C

For N > 3, we minimise a cost function over **R** and **t**:

$$J(\mathbf{R}, \mathbf{t}) = \sum_{n=1}^{N} d_{PP}^{2}(\mathbf{y}_{n}, [\mathbf{R}|\mathbf{t}] \mathbf{x}_{n})$$

Note: Here we also get a length on **t**. The relative scale of the translation compared to the model.

Adding views with PnP

Minimisation over R and t...

$$J(\mathbf{R}, \mathbf{t}) = \sum_{n=1}^{N} d_{PP}^{2}(\mathbf{y}_{n}, [\mathbf{R}|\mathbf{t}] \mathbf{x}_{n})$$

- If we minimize over the elements of ${\bf R}$ we will in general not get an ${\bf R}\in {\rm SO}(3)$
- By choosing an appropriate representation of R this can automatically be enforced, more on this later.
- Note also that J(R,t) is not a true ML estimator (why?)

Minimal solvers for P3P

- E.g. Kneip's method from CVPR11:
- https://github.com/urbste/MLPnP_matlab_toolbox/ tree/master/p3p_code_final
- More recent CVL solver from ECCV18:

https://github.com/midjji/lambdatwist-p3p

Calibrated Structure from Motion(SfM)

Given:

- N views I_n (images) of a static scene
- In each view: a set of interest points
 - Tentative (likely) correspondences between views
- The internal camera calibration

Sought:

- The 3D positions of the interest points
- The camera poses of each view
 For a moving camera this is the ego-motion

These two are determined simultaneously!

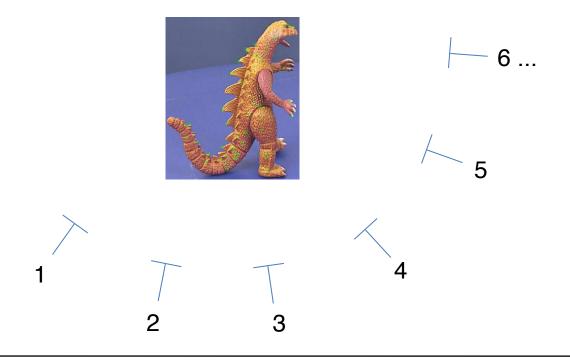
Reconstruction ambiguity

- The choice of world coordinate system is arbitrary we can put it in camera 1, ..., N or elsewhere.
- The reconstruction also has a scale ambiguity:
 - Scale the scene by a factor s
 - Scale the camera positions by a factor s
 - All images will look the same!
- The SfM problem can, at best, determine relative 3D positions, without absolute scale
- The scale can be resolved using known distances e.g.
 - the distance between cameras 1 and 2 is lt₁₂l=0.43m
 - the modelled object is known to be 2.5dm high
- Similarly, the WCS can be set using georeferencing.

An SfM pipeline

- A program that solves the structure from motion problem is called an SfM pipeline; a graph of processing blocks
- The pipeline can be formulated in many different ways, depending on, for example,
 - computational architecture (PC or cluster)
 - robustness and/or, required accuracy in the result
 - ...
- Main variants: incremental and parallel/global.

Multiple cameras in a static scene



Simple incremental SfM pipeline

- 1. Select a pair of views
- 2. Find correspondences
- 3. Estimate \mathbf{E} , then extract \mathbf{R}_2 , \mathbf{t}_2

For each new view *n*:

- 4. Add new correspondences between new view and the old ones
- 5. Find new camera pose [\mathbf{R}_n , \mathbf{t}_n] with PnP Repeat 4,5 until all views have been used.

Simple SfM pipeline

- This approach is simple
 - Based on solving small local problems
 - Using standard techniques
- However, no global consistency of the resulting 3D points is enforced
- In practice, small errors will accumulate to large errors ⇒ the pipeline is brittle.

To reduce drift, and to obtain a more robust pipeline we need to periodically make a global refinement of all camera poses and all 3D points

This is called **bundle adjustment** (BA)

Issue: The 3D points are visible only in a limited number of views

- Bundle adjustment implies that we have two sets:
 - P is a set of reconstructed 3D points
 - Q is a set of images or camera views
 - For each view in Q there exists an estimate of the corresponding camera pose, and visible image points
- All 3D positions in P and poses in Q are expressed in a global coordinate system, e.g., one of the camera coordinate systems

 The matching between P and Q can be measured in terms of the total squared re-projection error ε, defined as

$$\epsilon = \sum_{\substack{\text{3D points views} \\ i \in \mathcal{P}}} \sum_{j \in \mathcal{Q}} v_{ij} d_{\text{PP}}^2 \left(\mathbf{y}_{ij}, \left[\mathbf{R}_j, \mathbf{t}_j \right] \mathbf{x}_i \right)$$

$$v_{ij} \in \{0,1\}$$
 - visibility index

 v_{ij} is a binary mask that describes if point $i \in \mathcal{P}$ is visible in view $j \in \mathcal{Q}$ (v_{ij} =1) or not (v_{ij} =0) aka. missing data pattern

Fig. 14 Missing data pattern for a subset of the Oxford dinosaur sequence. The gray elements correspond to observed data.

Viktor Larsson, Carl Olsson. "Convex Low Rank Approximation", IJCV 2016

Given initial estimates of the 3D points $\mathbf{x}_i \in \mathcal{P}$ and the poses $[\mathbf{R}_j \ \mathbf{t}_j] \in \mathcal{Q}$:

$$\epsilon(\{\mathbf{R}_j, \mathbf{t}_j\}_{j \in \mathcal{Q}}, \{\mathbf{x}_i\}_{i \in \mathcal{P}}) = \sum_{i \in \mathcal{P}} \sum_{j \in \mathcal{Q}} v_{ij} d_{\text{PP}}^2 \left(\mathbf{y}_{ij}, \left[\mathbf{R}_j \ \mathbf{t}_j\right] \mathbf{x}_i\right)$$

In summary: bundle adjustment minimizes re-projection error by varying both 3D points and camera poses

- The bundle adjustment step optimizes the highly non-linear function ε
- Must be done with iterative minimization procedures
- Good initial solutions are critical for success!

Proposed: Incremental SfM Pipeline

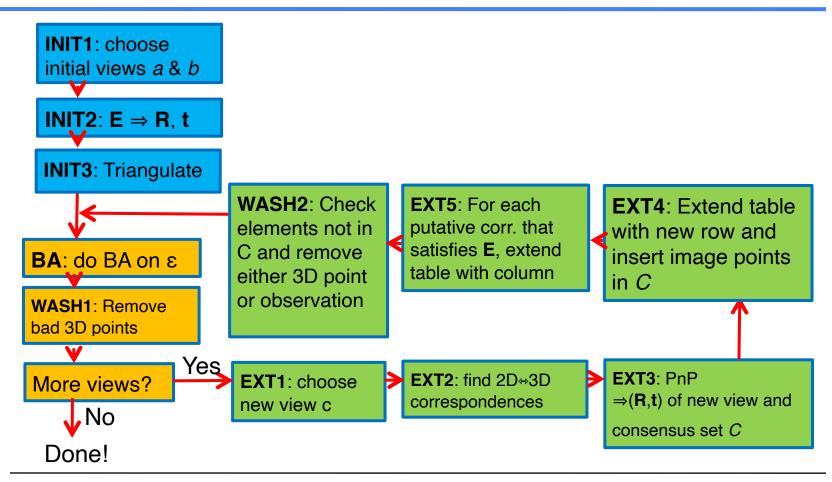
Start with minimal P and Q

- 1. The initial Q contains only two views, e.g. I_1 and I_2
- 2. The initial *P* contains only the 3D points that can be triangulated from these two views

Iterate:

- 3. Bundle adjust over P and Q
- 4. Add a new view to Q
- 5. Extend *P* with new 3D points that can be triangulated from the extended *Q*
- 6. Repeat until all views are added to Q

Proposed: Incremental SfM Pipeline



Initialization of P and Q

Initially, P and Q are empty

STEP: INIT1:

- Pick two views, a and b (e.g. I_1 and I_2)
- Choose a and b wisely:
 - We want high accuracy in the triangulation step
 - They should have as large baseline as possible
 - Be far apart in the image sequence
 - We want high accuracy in the pose estimation
 - · They should have as many common points as possible
 - Be close to each other in the sequence

Initialization of P and Q

STEP INIT2:

- Solve the correspondence problem and determine \mathbf{E}_{ab} (RANSAC)
 - We have putative correspondences that can help!
- From E_{ab}, get R_b and t_b (no absolute scale!)
- Set $\mathbf{R}_a = \mathbf{I}$ and $\mathbf{t}_a = \mathbf{0}$
 - Camera a defines the global coordinate system!
- Put {I_a, I_b} together with their poses in Q

Initialization of P and Q

- STEP INIT3:
- With $C_a = [IIII]$ and $C_b = [RIII]$
- Triangulate 3D points from point correspondences in views I_a and I_b
 - Use only correspondences consistent with E
 - These can still be outliers!
- Put these 3D points in P
- Set $v_{ii} = 1$ for all points in P for views I_a and I_b

Given that *P* and *Q* are defined, the next step is bundle adjustment (BA)

STEP BA:

The bundle adjustment step optimizes the highly non-linear function ε

NOTE: ϵ depends on P and Q!

Use a non-linear least squares minimiser

Python: scipy.optmize.least_squares

Matlab: lsqnonlin

C: levmar, ceres-solver

- The result of the bundle adjustment step is a set P of 3D points and a set Q of camera poses that are optimally compatible
 - According to the total squared re-projection error
 - Implies a Maximum-Likelihood estimate of 3D points and poses assuming Gaussian noise on the image coordinates y_{ij}

Wash P

- The set of 3D points, P, may contain false 3D points
 - They are triangulated from 2D correspondences that satisfy an epipolar constraint, but such a constraint is not sufficient for true correspondence.

STEP WASH1:

Remove bad 3D points:

- Move a lot before and after BA
- Have large re-projection errors

Q contains views $I_1 \dots I_{l+1}$

If N = I-1, done!

STEP EXT1:

Choose a new camera view I_{i} and add it to Q

Relatively close to at least one view in Q

STEP EXT2:

- We have putative correspondences between views I_{i-1} and I_i
 - Most of the points in I_{I-1} have corresponding 3D points in P
 - We have putative correspondences between 3D points in P and image points in view I_i
- Form set of putative 3D-2D correspondences

STEP EXT3:

- Use robust PnP and the putative correspondences to determine the camera pose of view I_I
- Produces a camera pose (R, t) of the new view
- And a consensus set C of 3D-2D correspondences that are consistent with this camera pose
- Question: What do we do with the outliers?

STEP EXT4:

- Add a new row to the table
 - Q is increased by one new view
- Insert coordinates of the 2D points in C into this row
 - Set all other entries to "invisible"

STEP EXT5:

- Determine **E** between views I_{l-1} and I_{l} (e.g. $\mathbf{E} = [\mathbf{e}_{12}]_{\times} \mathbf{C}_1' \mathbf{C}_2'^+$)
- Go through all putative correspondences between views I_{l-1} and I_l, not already triangulated
- If they are compatible with E:
 - Triangulate 3D point and add to table
 - Can still be outliers since epipolar constraint is only necessary (not sufficient)

STEP WASH2:

- There may be 2D

 3D corresp. in S that do not appear in the consensus set C
 - If the feature has only been visible in a few views, remove it completely
 - If it has been visible for some time, only the 2D observation should be removed

Iterate

Return to

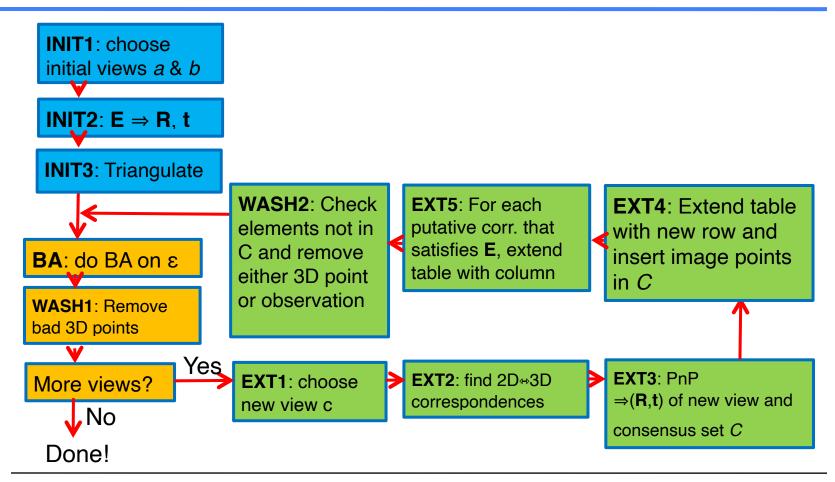
STEP BA:

- Setup ε
- do bundle adjustment (minimise)

If not all views are in Q goto EXT1

Otherwise: done

Proposed: Incremental SfM Pipeline



BREAK

Bookkeeping

In addition: each row can contain image points for a view that has not been associated with any 3D points in P

One column for each point in *P* X_1 X₂ X_3 X_P $\mathbf{R}_1, \mathbf{t}_1$ One row for **y**₁₁ y_{21} **y**₃₁ \mathbf{y}_{P1} each view in $\mathbf{R}_{2}, \mathbf{t}_{2}$ **y**₁₂ **y**₂₂ **y**₃₂ \mathbf{y}_{P2} Q $\mathbf{R}_{\mathsf{Q}}, \mathbf{t}_{\mathsf{Q}} \mathbf{y}_{\mathsf{1Q}}$ **y**_{2Q} \mathbf{y}_{3O} **y**_{PQ}

Each frame adds one row and some columns to the table

Same shape as the visibility v_{ij}

Outlier removal

The step **WASH1** may have to be extended to be more strict.

Options: Remove 3D-points that

- Have moved far during BA
- Have large re-projection errors after BA
- Lie far from the 3D centroid
- Are only visible in a few views

Also rerun BA after this step

Parameterization of R:

- unit quaternions, exponential coordinates
 (aka. axis-angle vector) αn, ...
- See IREG compendium chapter 11.
- define functions rmatrix_to_expc() and expc_to_rmatrix()
- Set up test cases that verify that these are each other's inverse.

Parameterization of the projection operators [R t]:

- The camera center is located at -R^Tt
- Possible problem in the optimization:
- The camera center depends on both R and t
 - Small variations in R means large variations in the camera center if t is large
- Alternative parameterization: R^T[I −t]
- R,t are now in the world coordinate system (WCS)
 e.g. camera center is located at t (and is
 independent of R)

scipy.optimize.least_squares (and others)
minimizes functions like:

$$\epsilon(\mathbf{r}) = \mathbf{r}^T \mathbf{r}$$

Here $\mathbf{r} = (r_1 \ r_2 \ \dots \ r_P)^T$ is the **residual vector** for our problem. The squaring is done implicitly in the optimizer.

Each r_k is a **residual**, a difference between a prediction from the model and an observation

For best results, each reprojection should thus generate two residuals (why?)

 r_{k1} is the <u>signed</u> difference in the *x*-direction r_{k2} is the <u>signed</u> difference in the *y*-direction

The corresponding ε now becomes

$$\epsilon = r_{11}^2 + r_{12}^2 + r_{21}^2 + r_{22}^2 + \dots + r_{P1}^2 + r_{P2}^2$$

We need to implement a function returning

$$\mathbf{r} = (r_{11} \ r_{12} \ r_{21} \ r_{22} \dots \ r_{P1} \ r_{P2})^T$$

In general, a non-linear least squares minimizer operates on a parameter vector Θ

$$\epsilon(\boldsymbol{\theta}) = \mathbf{r}(\boldsymbol{\theta})^T \mathbf{r}(\boldsymbol{\theta})$$

It uses a Taylor expansion of the residual vector \mathbf{r} around $\mathbf{\Theta}$:

 $r(\theta + h) \approx r + Jh$

J is the **Jacobian** of \mathbf{r} with respect to $\boldsymbol{\Theta}$

J contains the derivatives of the elements in \mathbf{r} w.r.t. the elements in $\boldsymbol{\Theta}$

An approximation of ε is then given as

$$\epsilon(\boldsymbol{\theta} + \mathbf{h}) \approx (\mathbf{r} + \mathbf{J}\mathbf{h})^T(\mathbf{r} + \mathbf{J}\mathbf{h}) =$$

$$= \mathbf{r}^T \mathbf{r} + 2\mathbf{h}^T \mathbf{J}^T \mathbf{r} + \mathbf{h}^T \mathbf{J}^T \mathbf{J}\mathbf{h}$$

Given this approximation, we want to determine \mathbf{h} such that $\varepsilon(\mathbf{\Theta} + \mathbf{h})$ is minimized

Determine **h** such that $\nabla_{\mathbf{h}} \varepsilon = 0$:

$$\mathbf{J}^T \mathbf{r} + \mathbf{J}^T \mathbf{J} \mathbf{h} = 0$$

Normal equations of the least squares problem defined by $\varepsilon(\Theta + \mathbf{h})$

The minimizer will thus first compute or approximate **J** and then solve the normal equation to update the parameters as:

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n + \mathbf{h}$$

Several simplifying tricks can be applied to these computations, see:

Triggs, McLauchlan, Hartley, Fitzgibbon, Bundle Adjustment – A Modern Synthesis, Vision Algorithms: Theory and Practice, 2000

In our case, the parameters are:

- a set of 3D points in P (3/4 parameters each)
- a set of camera poses in Q (3+3=6 parameters each)
- Each element of **r** is a signed distance in *x* or *y*-direction between an image point **y**_{ij} and the corresponding projected 3D point in view *j*:
 [**R**_j **t**_j] **x**_i

Useful observation:

- The re-projection error for point \mathbf{y}_{ij} depends on
 - the pose of camera j but not on any other cameras
 - The position of 3D point x_i but not on any other 3D points
- Each row in J has, at most, 6 + 3 = 9 non-zero elements, in well defined positions

- J is very sparse (many elements are = 0)
- Implies, we only need to compute the "non-zero" elements of J
- A significant improvement in speed (and accuracy) is possible if we can tell the optimizer which the "non-zero" elements in J are
- For example, see:

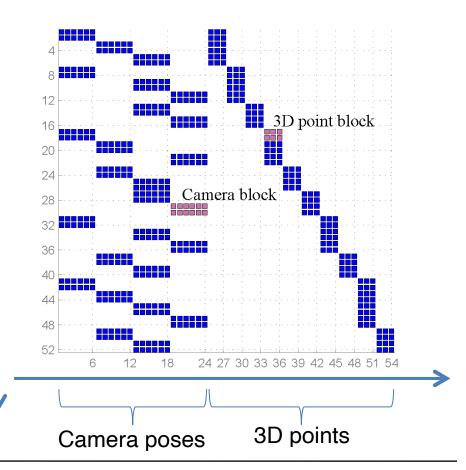
```
jac_sparsity parameter to optimize.least_squares
```

This is tested in extra task of CE3

 $\frac{\partial \epsilon}{\partial y_1}$ and $\frac{\partial \epsilon}{\partial y_2}$ for image points in different views

Example of **J**

From PhD thesis of Johan Hedborg 2012



To make things simple, all coordinates and re-projection errors may be expressed in C-normalized coordinates

The real errors appear in the pixel coordinates

- A more correct approach is thus to use pixel coordinates for the points and the re-projection errors
- Include also **K** (and lens distortion) in the calculations of ϵ
- For zero skew, equal focal lengths, and no lens distortion the results are the same though.

Project 2

Project description at:

http://www.cvl.isy.liu.se/education/undergraduate/tsbb15/3d-reconstruction-project

Same groups as in project 1.

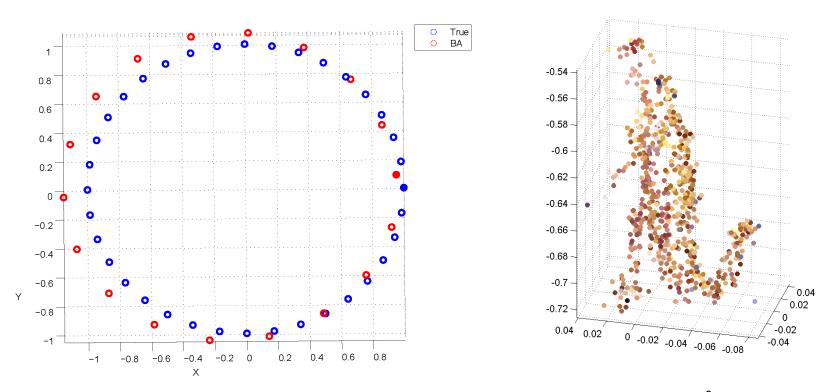
Timeline:

- Introductory lecture on April 6 (today)
- Design plan due April 14
- Report due May 20 (checked by guide before)
- Presentation seminar on May 26

Example: initial data

Two examples of images from the *dinosaur* sequence, with corresponding interest points

Example: result



Results from 2011 project by Bertil Grelsson and Freddie Åström

Project 2

Additional recommendations:

- Develop small modules
- Test each module before integration
- Test on data that gives predictable results
- Verify which coordinate system you are using!!
- Make use of supervision

Good Luck!