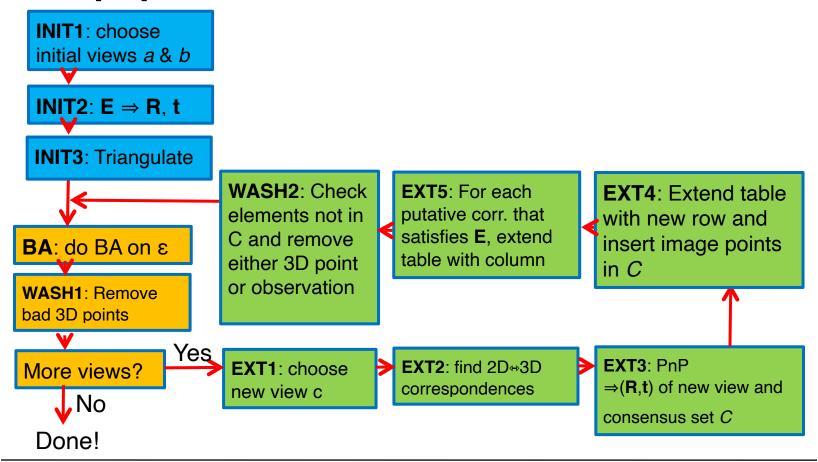


TSBB15 Computer Vision

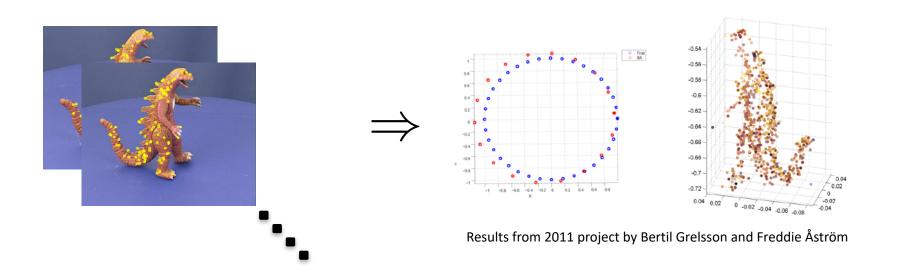
Lecture 14
Multi-view stereo

Per-Erik Forssén

Recap: Incremental SfM pipeline from Lecture 12



Incremental SfM

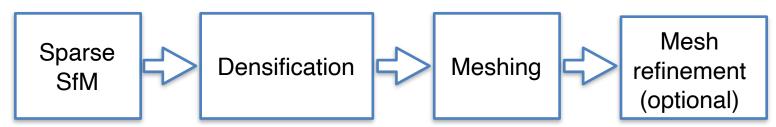


The output of incremental SfM is a sparse 3D model and a set of camera poses.

Dense 3D models

The output of incremental SfM is a sparse 3D model and a set of camera poses.

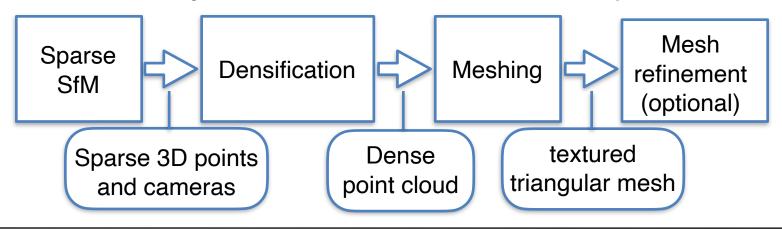
In commercial 3D modelling systems, sparse SfM is followed by two or three additional steps:



Dense 3D models

The output of incremental SfM is a sparse 3D model and a set of camera poses.

In commercial 3D modelling systems, sparse SfM is followed by two or three additional steps:

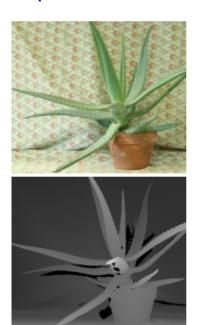


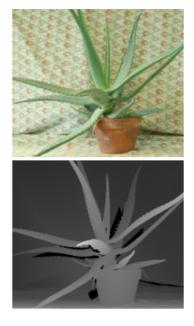
Densification Approaches

Densification needs at least two views.

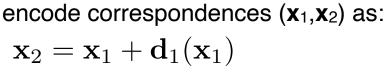
- Two-view stereo methods need view selection
 - we want a wide baseline
 - but also many correspondences
 - same criteria as for the initial pair in incremental SfM See e.g. Schönberger&Frahm, Structure from Motion Revisited, CVPR16 (linked on the project 2 page)
- Multi-view stereo methods are in general more accurate, but also much more expensive.

 Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02] http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf



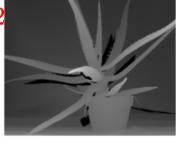


 Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02] http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf

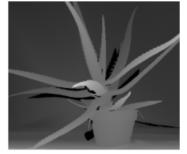


These disparity maps d(x)

$$\mathbf{x}_1 = \mathbf{x}_2 + \mathbf{d}_2(\mathbf{x}_2)$$



 Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02] http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf



These disparity maps d(x) encode correspondences (x_1,x_2) as:

$$\mathbf{x}_2 = \mathbf{x}_1 + \mathbf{d}_1(\mathbf{x}_1)$$

$$\mathbf{x}_1 = \mathbf{x}_2 + \mathbf{d}_2(\mathbf{x}_2)$$

Other algorithms instead use correspondence maps c(x), and then we have:

$$\mathbf{x}_2 = \mathbf{c}_1(\mathbf{x}_1)$$

$$\mathbf{x}_1 = \mathbf{c}_2(\mathbf{x}_2)$$

 Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02]

http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf

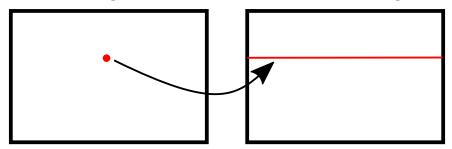
1. Rectify images to have horizontal epipolar lines (See TSBB06) This results in the fundamental matrix

$$\mathbf{F}_{R} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \sim (\mathbf{H}_{1}^{-1})^{T} \mathbf{F} \mathbf{H}_{2}^{-1}$$

 Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02]

http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf

- 1. Rectify images to have horizontal epipolar lines
- 2. For each point in the left image we then search for a corresponding point only on the line with the same y-coordinate. E.g. with block matching.

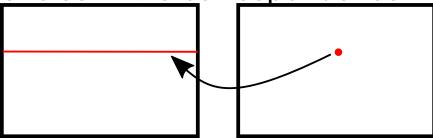


 Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02]

http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf

- 1. Rectify images to have horizontal epipolar lines
- 2. For each point in the left image we then search for a corresponding point only on the line with the same y-coordinate. E.g. with block matching.

3. Do the same in the right image, and remove inconsistencies in the correspondence maps.



 Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02]

http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf

- 1. Rectify images to have horizontal epipolar lines
- 2. For each point in the left image we then search for a corresponding point only on the line with the same y-coordinate. E.g. with block matching.
- 3. Do the same in the right image, and remove inconsistencies in the correspondence maps.
- I.e. check that these are small:

$$J_1(\mathbf{x}_1) = \|\mathbf{x}_1 - \mathbf{c}_2(\mathbf{c}_1(\mathbf{x}_1))\|$$

$$J_2(\mathbf{x}_2) = \|\mathbf{x}_2 - \mathbf{c}_1(\mathbf{c}_2(\mathbf{x}_2))\|$$

- Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02] http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf
- PatchMatch on two frames, followed by epipolar constraint. [Barnes et al. SIGGRAPH09] https://gfx.cs.princeton.edu/pubs/Barnes 2009 PAR/

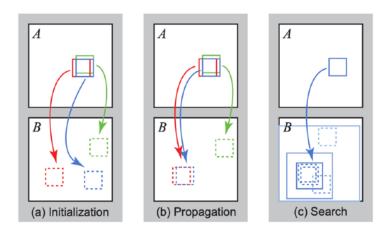


Image from Barnes et al. SIGRRAPH'09

- Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02] http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf
- PatchMatch on two frames, followed by epipolar constraint. [Barnes et al. SIGGRAPH09] https://gfx.cs.princeton.edu/pubs/Barnes 2009 PAR/

(a) View of the scene.

(b) Sparse point cloud from Kontiki

(c) Result after densification.

Images from CDIO-project GoPro Trails 2018

- Classic stereo, using two images and the epipolar constraint [Scharstein & Szeliski IJCV02] http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf
- PatchMatch on two frames, followed by epipolar constraint. [Barnes et al. SIGGRAPH09] https://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/
- Depth map search by optimization.
 Can be parallelized on GPU using the plane-sweep algorithm. [Gallup et al. CVPR07]
 https://inf.ethz.ch/personal/pomarc/pubs/GallupCVPR07.pdf

Multi-view Densification

- Multi-view methods, e.g. from the Furukawa&Hernández tutorial.
- Other methods on leaderboards for MVS datasets:

Middlebury:

https://vision.middlebury.edu/mview/

Tanks and temples:

https://www.tanksandtemples.org

ETH 3D:

https://www.eth3d.net/overview

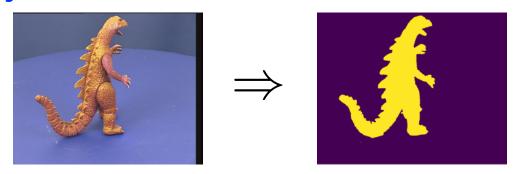
DTU dataset:

http://roboimagedata.compute.dtu.dk/

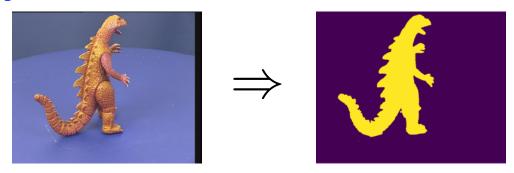
Robust vision challenge:

http://www.robustvision.net

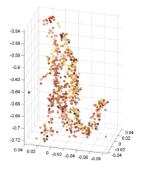
- There are two main sources of information for volumetric methods:
- Object outlines/silhouettes



- There are two main sources of information for volumetric methods:
- Object outlines/silhouettes



• 3D points



- There are two main sources of information for volumetric methods:
- Object outlines/silhouettes

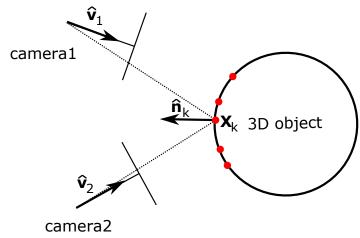
A classic silhouette method is **space carving**, see:

A. Fitzgibbon, et al., *Automatic 3D Model Construction for Turn-Table Sequences*, Springer Verlag 1998 Linked on the project webpage.

3D points

Classic methods use Delaunay tetrahedralization from convex hull of the point cloud. Or triangulation from successive projections of point cloud. See the Furukawa&Hernández tutorial.

- Volumetric methods compute a volume from the 3D points.
- Such methods are more robust to errors in the 3D points (both noisy points, and outliers)
- They require an oriented point cloud as input, i.e. each 3D point X_k, should have a surface normal n_k.
 - n_k can be determined up to sign from neighbours of X_k
 - Sign can be determined by requiring that v^Tn_k<0 for cameras that see X_k



- Volumetric methods compute a volume from the 3D points.
- Opt 1: Define the volume as a density:

$$V(x, y, z) = \tau \quad \tau \in [0, 1]$$

 τ =0 means free space τ =1 means fully occupied.

E.g. M. Kazhdan, H. Hoppe, *Screened Poisson Surface Reconstruction*, **ToG** 2013

 Opt 2: Define the volume as a truncated signed distance to the surface

$$D(x, y, z) = d$$
 $d \in [-d_{\text{max}}, d_{\text{max}}]$

E.g. B. Curless, M. Levoy, A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH'96

Voxels to Mesh

 Voxels can be converted to a mesh using marching cubes:

W. Lorenzen, H. Cline, *Marching cubes: A high resolution 3D surface construction algorithm*, **SIGGRAPH'87** https://dl.acm.org/doi/10.1145/37401.37422

- in ray casting, a ray is cast from each pixel in a camera, and stopped at the first surface intersection.
 R. Newcombe et al. KinectFusion: Real-time Dense Surface Mapping and Tracking. ISMAR'11
 - + This method is very fast.
 - However, a mesh generated in this way may have holes if viewed from other directions.

Mesh texture sampling

- Normally a textured mesh is desired. The texture is obtained by sampling from the input images.
- For each triangle in the mesh, a suitable frame is selected. Desirable properties include:
 - The area of the projected triangle in the image should be large
 - The texture resolution on the 3D surface should be the same in all directions.

Mesh refinement

Mesh refinement is covered in the Furukawa and Hernández tutorial.

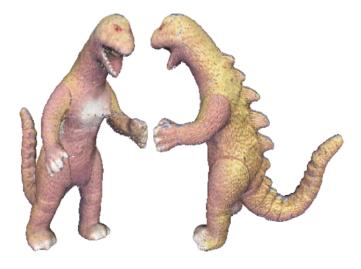


Image source: A. Fitzgibbon, G. Cross and A. Zisserman, Automatic 3D Model Construction for Turn-Table Sequences, in 3D Structure from Multiple Images of Large-Scale Environments, Editors Koch & Van Gool, Springer Verlag 1998