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Abstract This work proposes an approach to track-

ing by regression that uses no hard-coded models and
no offline learning stage. The Linear Predictor (LP)

tracker has been shown to be highly computationally

efficient, resulting in fast tracking. Regression tracking

techniques tend to require offline learning to learn suit-

able regression functions. This work removes the need
for offline learning and therefore increases the applica-

bility of the technique. The online-LP tracker can sim-

ply be seeded with an initial target location, akin to

the ubiquitous Lucas-Kanade algorithm that tracks by
registering an image template via minimisation.

A fundamental issue for all trackers is the repre-

sentation of the target appearance and how this rep-

resentation is able to adapt to changes in target ap-
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pearance over time. The two proposed methods, LP-

SMAT and LP-MED, demonstrate the ability to adapt
to large appearance variations by incrementally build-

ing an appearance model that identifies modes or as-

pects of the target appearance and associates these as-

pects to the Linear Predictor trackers to which they are

best suited. Experiments comparing and evaluating re-
gression and registration techniques are presented along

with performance evaluations favourably comparing the

proposed tracker and appearance model learning meth-

ods to other state of the art simultaneous modelling
and tracking approaches.

Keywords Regression Tracking · Online Appearance

Modelling

1 Introduction

This work is concerned with the development of fast

visual feature tracking algorithms that utilise no prior
knowledge of the target appearance. The approach pre-

sented here operates at high frame rates, tracks fast

moving objects and is adaptable to variations in appear-

ance brought about by occlusions or changes in pose
and lighting. This is achieved by employing a novel,

flexible and adaptive object representation comprised

of sets of spatially localised linear displacement pre-

dictors associated to various modes of a multi modal

template based appearance model learnt on-the-fly.

Conventional alignment based tracking approaches

aim to estimate the position of the target in each frame

by aligning an image template of the target with the
new frame; the template (or input frame) is warped in

order to obtain an optimal alignment. The warp pa-

rameters are obtained by optimising the registration
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Table 1 Table of abbreviations used throughout text.

Abbreviations Full meaning

LK Lucas-Kanade: tracking by registration.
LP Linear Predictor: tracking by linear re-

gression.
SMAT Simultaneous Modelling And Tracking:

Adaptive multi-modal template based
appearance model (Dowson and Bow-
den, 2006).

LK-SMAT Tracking approach that combines LK
displacement estimation with SMAT ap-
pearance modelling.

LP-SMAT Tracking approach that combines LP
displacement estimation with SMAT ap-
pearance modelling.

LP-MED Tracking approach that combines LP
displacement estimation with a medoid-
shift based appearance model.

between the appearance model and a region of the in-
put image according to some similarity function (e.g. L2

norm, Normalised Correlation, Mutual Information).

Optimisation is often carried out using gradient descent

or Newton methods and hence assumes the presence of a
locally convex similarity function with a minima at the

true position. The basin of convergence of such methods

is the locally convex region of the cost surface within

which a gradient descent approach will converge. The

size of the basin of convergence determines the range of
the tracker i.e. the maximum magnitude of inter-frame

displacements for which the approach will work. Track-

ers with small range require low inter-frame displace-

ments to operate effectively and hence must either oper-
ate at high frame rates (with high computational cost)

or only track slow moving objects. If the target moves

a distance greater than the range between two consecu-

tive frames then the method will fail. While multiscale

approaches can be used to address this in registration
approaches, regression based tracking allows the user

to select the optimal range as a trade-off against accu-

racy and will be experimentally shown to have a greater

range (not limited by the range of convexity or the pres-
ence of local minima in the cost surface) than regis-

tration methods and due to their simplicity are com-

putationally efficient. The computational efficiency of

the method is a result of learning a simple and gen-

eral mapping directly from patterns of image intensity
differences to desired displacements, and applying this

mapping at each displacement prediction step, rather

than performing an optimisation process for each pre-

diction step.

Whilst prior models can be used to model target ap-
pearance, they place restrictions on the scope of appli-

cations for which the trackers can be easily used. Fur-

thermore, visual tracking approaches that are able to

adapt their representation of the target on-the-fly show

increased robustness over approaches for which the rep-

resentation is either specified (hard coded) or learned

from a training set. Single template models, such as

those employed in the Lucas-Kanade algorithm (Lucas
and Kanade, 1981), aim to model the target appear-

ance as one point on the appearance-space manifold.

In order to increase robustness to appearance changes

and minimise alignment drift, various template update
strategies have been developed. These include naive up-

date (Matthews et al, 2004) where the template is up-

dated after every frame and strategic update (Matthews

et al, 2004) where the the first template from the first

frame is retained and used to correct location errors
made by the updated template. If the size of the cor-

rection is too large, the strategic algorithm acts conser-

vatively by not updating the template from the current

frame. With template update methods, the template
is intended to represent the current single point in the

appearance-space manifold. Approaches that use some

or all templates (Dowson and Bowden, 2006; Ellis et al,

2008), drawn from all frames, represent a larger part

of this manifold. In this work, all stored templates are
incrementally clustered to discover modes or aspects of

the target appearance.

Tracking methods that adapt the representation of

the target during tracking are prone to drift, as the
appearance model may adapt to the background or oc-

cluding objects. The approaches proposed here address

this problem by maintaining modes of an appearance

model that correspond to past appearances. Whilst this

approach reduces the impact of drift, as erroneous ap-
pearance samples do not contaminate all modes of the

appearance model, the method does not address the

drift verses adaptation trade-off directly. The work of

Kalal et al (2010) explicitly addresses the trade-off be-
tween adaptation and drift.

The methods developed herein are designed to oper-

ate at high frame rates and as such need to be computa-

tionally efficient. The overarching design paradigm has

been to use fast/simple methods: linear regression (for
displacement prediction), random sampling (for learn-

ing displacement predictors and template extraction),

incremental template clustering (for appearance mod-

elling) and linear weighting (for associating displace-
ment predictors with appearance modes). The use of

simple regression methods is offset by an evaluation

mechanism that allows both the weighting of the con-

tribution of each displacement predictor and the con-

tinual disposal and replacement of poorly performing
displacement predictors.

There are many different formulations of the track-

ing problem that lead to many and varied solutions:
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tracking by detection (Viola and Jones, 2002), tracking

using graph cut algorithms to iteratively segment the

target (Bray et al, 2006) and condensation algorithms

(Isard and Blake, 1998) to name but a few. Each ap-

proach is thought to have a certain scope of applications
for which it will work best. It has been established that

a significant class of tracking problems can be solved us-

ing the Linear Predictor and this paper aims to extend

this class to problems requiring online feature tracking
with appearance variation and real time operation. In

particular, the approach presented here is, to the best of

the authors knowledge, the first regression based track-

ing approach that continually evaluates and adapts the

regression functions used for tracking on-the-fly. The
experiments in section 7 go some way to delimiting the

class of problems for which the proposed approach is

suitable.

The rest of the paper is organised as follows: Sec-

tion 2 contains a review of the relevant literature re-
garding the following three subjects; tracking via reg-

istration, tracking via regression and online appearance

model learning. An overview of the proposed tracking

methodology is then presented in section 3. Section 4

introduces two methods for learning models of the ap-
pearance of a target object during tracking and section

5 gives details of the registration and regression track-

ing approaches and some illustrative experimental re-

sults comparing the methods on real data are presented.
In section 6 the complete tracking algorithms - that put

together the regression techniques and the appearance

modelling techniques - are presented. In section 7 a set

of experiments are presented that characterise, compare

and evaluate the proposed tracking approaches. Finally
conclusions are discussed in section 8.

2 Background

As this work is concerned with comparing two approaches
(registration and regression) for predicting inter-frame

displacement as well as techniques for combining these

approaches with methods for learning appearance mod-

els online, this section contains a review of the relevant

literature regarding the following three subjects; track-
ing via registration, tracking via regression and online

appearance model learning.

2.1 Tracking via registration

Lucas and Kanade made one of the earliest practical

attempts to efficiently align a template image to a ref-

erence image (Lucas and Kanade, 1981), minimising

Fig. 1 Simultaneous Modelling and Tracking methodology : The
displacement estimator, as well as generating the tracking output,
provides a mechanism for supervision of the appearance model
learning process i.e. it provides new examples of the target ap-
pearance that are added to the appearance model. In return, the
appearance estimator provides information about the structure
of the target appearance space that enables the tracker to cope
with a high degree of variation in appearance.

the Sum of Squared Difference similarity function. Effi-

ciency was achieved by using a Newton-Raphson method

in the space of warp parameters. In Newton-Raphson

optimisation, iterative parameter updates to alignment
parameters are obtained by multiplying the Jacobian

by the inverse Hessian of the similarity function. Lucas

and Kanade mainly considered translations, but later

research considered more complex transformations and

attempted to reformulate the similarity function allow-
ing pre-computation of some terms. In particular, Hager

and Belhumeur (1998) proposed inverting the roles of

the reference and template at a strategic point in the

derivation, and Shum and Szeliski (2000) constructed
the warp as a composition of two nested warps. In a gen-

eral treatise on Lucas-Kanade (LK) techniques, Baker

and Matthews (2004) combined these methods to for-

mulate the inverse-compositional method. Dowson and

Bowden (2008) derived an inverse compositional formu-
lation for aligning a template and a reference image us-

ing Mutual Information and Levenberg-Marquardt op-

timisation.

2.2 Tracking via regression

Cootes et al (1998) proposed a method for pre-learning

a linear mapping between the image intensity difference
vector and the error (or required correction) in AAM

model parameters. Jurie and Dhome (2002) employed

similar Linear Predictor (LP) functions to track rigid

objects. The work of Matas et al (2006) again uses linear
regression for displacement prediction, similar to the

LP functions in (Jurie and Dhome, 2002) and (Cootes

et al, 1998). They extend the approach by introducing
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the Sequential Linear Predictor (SLP) (Zimmermann

et al, 2009). Williams et al (2003) presented a sparse

probabilistic tracker for real-time tracking that uses an

RVM to classify motion directly from a vectorised im-

age patch. The RVM extends the method of forming
a regression between image intensity difference vectors

and the error/correction to non-linear regression. Mayol

and Murray (2008) extend these methods to general re-

gression for tracking planar and near planar objects.

A key issue for LP trackers is the selection of its ref-

erence point, i.e. its location in the image. In the work

of Marchand et al (1999) predictors are placed at re-

gions of high intensity gradient but Matas et al (2006)

have shown that a low predictor error does not neces-
sarily coincide with high image intensity gradients. In

order to increase efficiency of the predictors, a subset

of pixels from the template can be selected as support

pixels used for prediction. Matas et al (2006) present
a comparison of various methods for learning predic-

tor support, including randomised sampling and nor-

malised reprojection, and found that randomised sam-

pling is efficient with minimal and controllable trade-

off in terms of accuracy while Ong and Bowden (2009)
employ an iterative learning scheme to choose optimal

support regions for prediction.

This work avoids the need for costly reference point

and support selection strategies by evaluating the per-
formance of a predictor online and allowing poor per-

formers to be replaced as opposed to minimising a learn-

ing error offline. Each of the displacement prediction

trackers detailed in (Matas et al, 2006; Marchand et al,

1999; Williams et al, 2003; Ong and Bowden, 2009) re-
quire either an offline learning stage or the construc-

tion of a hard coded model or both. As shall be shown,

this work does not require either hard coded models

or offline learning. The approach in Mayol and Mur-
ray (2008), using generalised regression, can be trained

at start up in a reported 0.5sec. However, once trained

the method employs no online learning to adapt the

regression functions.

Here the term ‘online’ implies that the learning is
carried out on-the-fly, from a single frame drawn from

the sequence during tracking.While the prediction func-

tion learning methods employed here are not incremen-

tal, they are less computationally expensive than other

learning methods, and so can be employed at frame rate
during tracking. The use of inexpensive learning meth-

ods results in potentially inaccurate prediction func-

tions which necessitates the inclusion of mechanisms

to evaluate, weight, remove and relearn the functions.
Novel mechanisms for achieving this evaluation during

tracking form an essential component of the proposed

methodology.

2.3 Online appearance model learning

Tracking approaches typically employ appearance mod-

els in order to optimise warp parameters (e.g. transla-

tion or affine) according to some criterion function. Lin-
ear predictor trackers typically rely upon hard coded

models of object geometry (Matas et al, 2006; Marc-

hand et al, 1999). This requires significant effort in hand

crafting the models and like simple template models
(Lucas and Kanade, 1981; Baker and Matthews, 2004;

Matthews et al, 2004), are susceptible to drift and fail-

ure if the target appearance changes sufficiently. Sys-

tems that use a priori data to build the model (Cootes

et al, 1998) or train the tracker offline (Williams et al,
2003; Ong and Bowden, 2009) can be more robust to

appearance changes but still suffer when confronted

with appearance changes not represented in the training

data. Incremental appearance models built online such
as the WSL tracker of Jepson et al (2001) have shown

increased robustness by adapting the model to varia-

tions encountered during tracking, but the overhead of

maintaining and updating the model can prevent real-

time operation. Ross et al (2008) have proposed an
adaptive appearance model that incrementally learns

a low dimensional appearance subspace representation,

that operates at near frame rate (7.5Hz) and requires

no offline training.

A number of methods have been proposed for on-

line learning of discriminative feature trackers (Avidan,
2007; Collins et al, 2005; Grabner et al, 2006). The dis-

criminative tracker of Grabner et al (2006) that uses an

online boosting algorithm to learn a discriminative ap-

pearance model on-the-fly, achieves real-time tracking.

Another entirely online approach that achieves real-
time tracking is Dowson & Bowden’s SMAT algorithm.

Dowson and Bowden (2006) make a preliminary pre-

sentation of the Simultaneous Modelling And Tracking

algorithm, SMAT, and show the benefits of online learn-
ing of a multiple component appearance model when

employing alignment-based tracking.

3 System Overview

This section presents an overview of the proposed track-
ing architecture in general terms. In the following sec-

tions specific methods for each of the architectures com-

ponents are introduced and evaluated.

At the most general level, the proposed tracking ap-

proach can be described by the following process:

1. Estimate the current target appearance using an

appearance model
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2. Adapt the displacement estimation mechanism to

suit current estimate of appearance

3. Estimate inter-frame displacement of the target

4. Adapt the appearance model given new appearance

data
5. Repeat steps 1-4

These stages are achieved by the interaction of two

components, namely the displacement estimator and

the appearance estimator. The displacement estima-
tor, as well as generating the tracking output, provides

a mechanism for supervision of the appearance model

learning process i.e. it provides new examples of the

target appearance that are added to the appearance
model. In return, the appearance estimator provides in-

formation about the structure of the target appearance

space that enables the tracker to cope with a high de-

gree of variation in appearance. This basic methodology

is represented in figure 1.

The target appearance samples - templates drawn

from the image at the targets estimated location - will

change during tracking. This is caused by all appear-
ance variations that are not modeled by the pose pa-

rameters e.g. rotation (if translation transformations

only are considered), lighting change, occlusion or changes

of expression (when tracking faces) as well as frame-to-

frame inaccuracies in displacement estimation. In the
proposed appearance modelling approach, all stored tem-

plates are incrementally clustered to discover modes or

aspects of the target appearance. Identifying the cur-

rent aspect of the target appearance is the role of the
appearance model, as shown in figure 2. By identifying

aspects of the target, it becomes possible to adapt the

displacement estimation mechanisms to suit the current

appearance.

The proposed tracking framework associates these

aspects to banks of displacement estimators - trackers -

via an association matrix, see figure 2. The values in the

association matrix reflect the suitability of each tracker

to each aspect of the target. This provides a flexible
way of controlling the influence of each tracker to the

overall pose estimation.

Within this architecture there are many possible ap-

proaches to implementing the appearance model, asso-
ciation strategy, displacement estimation and final pose

estimation processes. In section 4 two methods for on-

the-fly appearance modelling are introduced. Two dis-

placement estimation methods - template registration
and linear regression - are investigated in section 5. In

section 6 various configurations of the complete track-

ing framework are detailed.

Fig. 2 Generic system architecture: The appearance model
stores all target templates and identifies aspects of the target.
Aspects are associated to feature trackers by an association ma-
trix. Each feature tracker contributes to the overall pose esti-
mation, the level of contribution is determined by the strength
of association to the current aspect i.e. the association matrix
value.

4 Adaptive Appearance Models

Aside from the intrinsic requirement of a representa-

tion of the target appearance for all tracking methods,
appearance models can additionally help cope with ap-

pearance changes not parameterised by the pose param-

eters. Provided a perfect geometric model of the target

and environment was available, it would be possible to
parameterise every possible change to the target ap-

pearance. Such a model would have to include param-

eterisations of not only all degrees of freedom (DOF)

of the target object but also other objects in the en-

vironment that may occlude the target along with en-
vironmental effects such as changes in lighting. This is

simply not feasible in any real scenario. In addition,

the estimation of the huge number of parameters re-

quired by such a model would be intractable. Track-
ing approaches, therefore, tend to model only a subset

of pose parameters, commonly translation (2 DOF) or

affine (6 DOF). Any changes not represented by the se-

lected pose parameters will often cause tracking failure.

An appearance model can provide a means of compen-
sating for this partial parameterisation.

4.1 Aspect learning for tracking

Both regression and registration based trackers, that
are intended to track a 3D object such as, for exam-

ple, a cube, are initialised by identifying the region in

the first frame that contains the cube. If the cube then
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starts to rotate, perhaps exposing a new face of the cube

and hence presenting a new aspect of the target, the ini-

tial target representation may no longer be adequate. It

would therefore be advantageous to identify that a new

aspect of the target had been presented and to adapt
the target representation used for tracking accordingly.

Eventually the cube may rotate back to its original ori-

entation and thus present the initial aspect of the target

again. In this case it would be advantageous to recall
the representation associated to that aspect. This is the

function of the appearance models developed here: to

identify different aspects of the target - clusters of ap-

pearance samples - such that the target representation

used in estimating inter-frame displacement can be par-
titioned and associated with the aspects for which they

perform well.

The term ‘aspect’ is used to describe some mode or
cluster of the appearance manifold. As discussed above,

the appearance manifold may include regions associated

with all appearance variations not modeled by the pose

parameters e.g. rotation, lighting change, occlusion or
changes of object appearance itself.

If a single template appearance of an object is con-

sidered as one point on the appearance-space manifold
(as in the Lucas-Kanade method), the manifold can be

represented by storing the set T of all templates, T =

{G0...Gt} drawn from all frames {F0...Ft}. In order

to identify aspects of the target, the set of templates,

T , should be clustered or partitioned, T = {T 0...TM}
where Tm ⊂ T .

For a subset of templates, Tm ⊂ T , to represent a

real aspect of the target appearance, the templates that
make up an aspect should be similar to one another and

different to the templates in all other aspects. Similarity

is determined by a distance metric. The L2 norm dis-

tance is used in the below methods due to its computa-
tional efficiency but others, such as Mutual Information

or Normalised Correlation could also be used. Both the

clustering methods detailed below compute and main-

tain a matrix of L2 norm distances between templates

and use this to determine each templates aspect mem-
bership i.e. to which aspect that template belongs.

4.2 SMAT: Greedy template clustering

In order to identify different aspects of the target, modes
or clusters of the appearance manifold must be discov-

ered. The method presented here partitions the appear-

ance manifold, assigning templates to partitions with a

greedy incremental algorithm.

Each of the M aspects, Tm ⊂ T , m = 1...M of

the appearance manifold are represented by: a group

Fig. 3 Appearance model medians for the head tracking se-

quence: Two examples of the median templates of the four parti-
tions of the appearance space are shown, ordered with decreasing
weight from left to right. It is clear that the modes identify aspects
of the target such as side/front/occluded views. The matched
component for the current frame is marked with the bullseye.

of templates, the median template µm, a threshold τm,
and a weighting wm. Use of the median rather than

the mean avoids pixel blurring caused by the averag-

ing of multiple intensity values of templates that are

not perfectly aligned. Weight wm represents the esti-
mated a priori likelihood that the mth partition best

resembles the current appearance of the target. Dur-

ing tracking, a template is drawn from the new frame

at the location determined by the displacement estima-

tor. To identify the best matching partition to the new
template, a greedy search is performed starting with the

partition with the highest weight and terminating when

a partition, Tm∗

, is found whose L2 norm distance to

the image patch is less than the threshold τ . The input
image patch is then added to partition Tm∗

and the me-

dian, µm∗

, threshold, τm
∗

, and weights, wm,m = 1...M ,

are updated. See Eq. 1 for the component weight up-

date strategy. If no match is made, a new component is

created with the new template and the template from
the previous frame. The learning rate, α, sets the rate at

which component rankings change and is set to α=0.2

for all experiments. This value was found through ex-

perimentation.

wm =

{

wm+α
1+α

if m = m∗;
wm

1+α
if m 6= m∗.

(1)

To facilitate the efficient update of an appearance

model component, a matrix Qm maintains the L2 norm

distances between each pair of templates in the mth

component. Adding a new template to the component
then requires only the computation of a single row of

Qm i.e. the distances between the new template and all

other templates. The median template index, j∗, is cal-

culated using Eq. 2 and the component threshold τm
∗

is
computed using Eq. 3 which assumes an approximately

Gaussian distribution of distances and sets the thresh-

old to three standard deviations of the distribution.
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j∗ = argmin
j

n
∑

i=0

Qm
ij , j = 1....n (2)

τ j
∗

= 3

√

√

√

√

1

n

n
∑

i=0

(Qm
ij∗)

2 (3)

The dimensions of Qm depend on the number, n,

of templates in the model but can be limited to bound

memory requirements and computational complexity.

In practice, new templates replace the worst template
from the component. It is also possible to limit the

number of components, M . When creating a new com-

ponent the new component replaces the worst existing

component identified by the lowest weight mworst =

argmin
m

wm, {m = 1...M}.

For all the experiments presented in section 7.4 a

maximum of n=60 templates are maintained in each of
a maximum of M=4 components of the model. This

is found to be sufficient to model a stable distribu-

tion whilst preventing computational costs becoming

too high for real-time tracking. Figure 3 illustrates the
SMAT model being used to identify aspects of a head

during a head tracking sequence. It can be seen that

the modes identify aspects of the target such as side,

front or occluded views.

4.3 Medoidshift template clustering

Fig. 4 The distance matrix pre and post clustering is shown
with three subsets of exemplars A, B and C. Sets A and C are
temporally separated but have the same appearance. Templates
from each subset are also shown.

The second appearance model presented is again

constructed online by incrementally clustering image

patches to identify various modes of the target appear-

ance manifold. Here, the clustering is performed by

the medoidshift algorithm introduced by Sheikh et al
(2007). Medoidshift is a nonparametric clustering ap-

proach that performs mode-seeking by computing shifts

toward areas of greater data density using local weighted

medoids. As Sheikh et al (2007) show, the procedure
can be performed incrementally, meaning the cluster-

ing can be updated at the inclusion of new data samples

and the removal of some existing data samples.

During tracking the appearance templates are col-

lected into vectors {G0...Gt} and, as for the greedy

clustering approach, a distance matrix, Q is populated

with the L2 norm distances. Where the SMAT model

maintains a Q matrix for each model component, this
model maintains one Q matrix recording the distance

between each stored frame. The medoidshift algorithm

uses Q to obtain a clustering1. The clustering is incre-

mentally updated given a new G vector and hence (by
computing L2 norm values) a new row/column of Q. In

order to constrain the memory requirements and com-

putational complexity of maintaining the appearance

model, the number of templates retained, and hence

the number of data points clustered, is limited. Once
the limit has been reached the oldest template is re-

moved and replaced with the new template. The clus-

ter update must accommodate both the introduction

and removal of data points. The incremental update is
achieved in a computationally efficient manner exactly

as described in (Sheikh et al, 2007).

The effect of this clustering, illustrated in figure 4,

shows the distance matrix at frame 275 of a head track-

ing sequence before and after matrix indices are sorted
according to the cluster label. As can be seen, two tem-

porally separated subsets, A and C, of templates are

assigned to the same cluster, A ∪ C ⊂ T , identifying

the front view aspect whilst a third subset, B ⊂ T , is
partitioned and identifies a side view aspect of the face.

It is obvious that a displacement estimator that repre-

sents the target appearance of the hidden side of the

face will be less reliable while this side view aspect is

presented.

4.4 Appearance model discussion

While the greedy approach provides a computation-

ally efficient method of partitioning the templates T =
{G0...Gt} into aspects, T = {T 0...TM} where Tm ⊂ T ,

the algorithm lacks some flexibility. Rather than the

number of aspects being a predefined value, M should

ideally be data dependent and reflect (rather than de-
termine) the number of modes present in the data’s dis-

tribution. Also once a template is assigned to a certain

partition it will never become part of another partition.

This rigidity in terms of template-to-cluster assignment

and fixed number of modes is likely to cause problems
as the target appearance manifold evolves during track-

ing.

The data driven, mode seeking medoidshift incre-

mental clustering algorithm offers greater flexibility to

1 As no meaningful partitioning is possible with small sample
sets, the clustering procedure is not carried out until frame 11 of
tracking
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the appearance modelling process. The number of as-

pects, M , are not predefined and, as the appearance

manifold grows and changes over time, so too can the

aspect membership of each template.

Whilst the flexibility of the medoidshift approach al-
lows a representation that is more reflective of the real

underlying appearance distribution, the resulting rep-

resentation of the aspects are less straightforward to

interpret than the SMAT model. As the SMAT model
has a fixed number of aspects, it is straightforward to

construct an association matrix that associates a set of

displacement predictors to each of the models aspects.

With the medoidshift approach however, the varying

number of aspects discovered and the adaptive cluster
membership of templates necessitates a less straightfor-

ward association mechanism. Section 6 gives details of

how both the appearance models are used within the

tracking framework.
A significant factor in the computational overhead

of these appearance models is the maintenance of the

distance matrix, Q. As stated, this can be controlled by

limiting the number of templates stored by the model.

Another way to control the computational cost is to
reduce the dimensionality of the distance function i.e.

to subsample the image templates prior to computation

of L2 norm distances.

5 Regression vs. Registration

This section details and compares the registration and
regression approaches to predicting inter-frame displace-

ment of a target object for tracking. First, details of

the registration and regression tracking methods are

given. The Linear Predictor (LP) regression tracker is
introduced and the method used for learning the LP re-

gression function is detailed followed by a description of

methods of combining the outputs of multiple LPs - LP

flocks. Finally some experimental results are presented

that compare regression and registration techniques on
an example of inter-frame displacement prediction.

The tracking problem is defined as the task of esti-

mating the change of pose or warp parameter, δx, such

that:

IR(W (x, δx)) ≈ IT (4)

Where IR is the new input image, W is a warping

function (e.g. translation, affine) and IT is a template

representing the appearance of the target.

For the LK or registration based method this is
treated as a minimisation problem such that we wish

to find δx that minimises the dissimilarity between IR
and IT .

δx = argmin
δx

||IR(W (x, δx))− IT || (5)

For the regression or Linear Prediction (LP) method,

the prediction directly estimates δx.

δx = P(IR(W (x,dx))− IT ) (6)

Every tracking approach has some representation of
the target; tracking output is a function of both this

representation and new image data. For registration

methods the representation is a template of pixel inten-

sities, IT , drawn from the input image at the location

of the target. Tracking is then the process of aligning
template, IT , with the new input reference image, IR
i.e. finding the warp, W , with parameters δx that min-

imises (maximises) some distance (similarity) function

between IT and IR.
For the linear regression method presented in sec-

tion 5.2 the target representation is a vector of image

intensities. Additionally, the regression function, P, en-

codes information about the target appearance. Track-
ing is then the process of multiplying P with the differ-

ence between target representation vector and an inten-

sity vector sampled from the input image at the current

position.

Looking at equations 5 and 6 it is apparent that
both approaches involve some operation on the differ-

ence between the target representation and the input

image information. Whilst the registration method ex-

plicitly minimises the cost surface to obtain an optimal
alignment, the regression method directly maps from

image intensity difference patterns to required displace-

ments. In fact, as detailed in the following section, the

iterative optimisation methods used in the registration

approaches involve, at each iteration, a linear opera-
tion on the intensity difference. The difference between

the two methods is that the parameters of the linear

function used in the iterative optimisation methods are

based on cost surface gradient information, whereas for
the regression methods, the parameters are learnt from

examples of displacement and intensity difference pat-

terns.

5.1 Tracking by registration

The registration process aims to locate the region in IR
(reference image) that most resembles IT (template im-

age) by minimizing a distance function, f , which mea-
sures the similarity of the two regions. The position of

IT relative to IR is specified by a warp function W with

parameters δx.
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δx = argmin
δx

f [IR(W (x, δx)), IT (x)] (7)

Distance function, f , can be any similarity mea-
sure, e.g., L2 norm or MI. For comparisons of the rela-

tive merits of different similarity measures see (Dowson

and Bowden, 2008). The position of greatest similar-

ity is found using an optimisation method. LK meth-

ods use a group of optimization methods, the so-called
Newton-type methods, i.e. methods which assume lo-

cally parabolic shape and proceed with an update as

follows:

δx(k+1) ← δx(k) −H−1(δx(k))G(δx(k)) (8)

Where H , ∂2f

∂δx2 , is the Hessian of f , and G, ∂f
∂δx

,
is the Jacobian, while k indexes the iteration number.

However, minima in tracking and registration problems

are frequent which results in erroneous alignment of the

template with the target. Multiple initializations can

improve performance but at an obvious computational
cost.

Generally, LK type methods apply Quasi-Newton
optimisation, i.e. an approximation to the Hessian, H̃ ,

is used. In general, Newton and Quasi-Newton only

perform well when near to the minimum. Steepest De-

scent methods, which ignore local curvature and instead
multiply G by a scalar step-size value λ, perform bet-

ter when further from the minimum. The Levenberg-

Marquardt (Marquardt, 1963) method combines these

two methods. In this work a formulation similar to

that presented in (Dowson and Bowden, 2008) (using
Levenberg-Marquardt and L2 norm) of this registration

based tracking is used in comparisons with regression

based techniques. The C++ (or Matlab) warthog library

is used as an efficient implementation2.

5.2 Tracking by regression

Feature tracking by regression is achieved by predict-

ing inter-frame displacement of the target. The dis-
placement predictors explored here use linear models

to predict. These predictors compute motion at a ref-

erence point from a set of pixels sub-sampled from its

neighbourhood called the support set S = {s1, ..., sk}.
The intensities observed at the support set S are col-

lected in an observation vector l(S). The l0(S) vector

contains the intensities observed in the initial training

image. Here the motion is a 2D translation t, we use

2 Link to code found at www.cvl.isy.liu.se/research/adaptive-
regression-tracking

Fig. 5 Intensity difference images for eight translations. Four
support pixel locations illustrate the predictive potential of the
difference image. The input image is in the center. All images to
the left/right of the input have been translated left/right by 10
pixels. Those images above/below the input have been translated
by 10 pixels up/down. Under the images, the motion and support
vectors are illustrated.

(S◦t) = {(s1+t), ..., (sk+t)} to denote the support set

transformed by t. Translation is sufficient as the multi-

modal appearance models developed in section 4 cope
with affine deformations of the image templates, also

shown in (Dowson and Bowden, 2006).

Predictions are computed according to the expres-

sion in Eq. (9) where P is a (2 × k) matrix that forms

a linear mapping <k → <2 from image intensity differ-
ences, d = l0(S)− l(S ◦ x), to changes in warp param-

eters, δx. The state vector, x, is the 2D position of the

predictor after prediction in the preceding frame.

δx = Pd = P(l0(S)− l(S ◦ x)) (9)

This efficient prediction only requires k subtractions

and a single matrix multiplication, the cost of which is

proportional to k.

5.3 Predictor learning

In order to learn P, the linear regressor or projection

matrix, N training examples of {δxi,di} pairs, (i ∈

[1, N ]) are required. These are obtained from a single
training image by applying synthetic warps and sub-

tracting the deformed image from the original. For ef-

ficiency, the warp and difference computation is only
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Fig. 6 The predicted displacement error (vertical axis) versus
the true displacement (horizontal axis) of three LPs is shown.
The response shown in red (or dark grey in black and white) at
the bottom is of a predictor trained on displacements in the range
-40 to 40 pixels. The response shown in green (light grey) in the
middle is of a predictor trained on displacements in the range
-25 to 25 pixels and the response shown in blue (black) at the
top is of a predictor trained on displacements in the range -5 to
5 pixels. It can be seen that, within the range of displacements
used for training, each of the LPs achieve relatively low errors. It
can also be seen, from the error bars, that whilst increasing the
range of displacements used for training extends the operational
range of the LP, it does so at the cost of stability.

performed at the support pixel locations but, for il-

lustration, the result of performing this operation on

the entire image is shown in figure 5 for eight different

translation warps. Also marked on the figure are four
possible locations for support pixels and the unique ob-

servation patterns they produce.

In this approach, support pixels are randomly se-

lected from within a range, rsp, of the predictors ref-

erence point. This is in contrast to other LP learning

strategies (Zimmermann, 2008; Ong and Bowden, 2009)

where the objective is to select an optimal support set.
The next step in learning the linear mapping P is to col-

lect the training data, {δxi,di} into matrices X, (2 ×

N), and D (k × N) where N is the number of training

examples. The Least SQuares (LSQ) solution, denoted
P , is then:

P = XD+ = XDT (DDT )−1 (10)

Where D+ is the pseudo inverse of D. Clearly there

are more sophisticated learning methods, both in the
selection of support pixels and in the method used to

solve the regression problem. However, the methods se-

lected provide a computationally efficient solution. As

shall be shown here and in section 4, the use of LPs with
low computational cost combined with methods to rate

the performance (and hence weight the contribution) of

each LP allows the replacement of poorly performing

LPs during tracking. This essentially spreads the cost

of learning appropriate mappings over a period of time

and allows incremental learning as opposed to batch

(offline) learning.

The LPs have a number of tunable parameters, these
are listed along with the values used in table 2. The pa-

rameter, rsp, defines the range from the reference point

within which support pixels are selected. Parameter rtr
defines the range of synthetic displacements used for

training the predictor. Figure 6 illustrates the displace-
ment prediction errors of LPs with rtr = 10, rtr = 50

and rtr = 80. The predictor complexity, k, specifies the

number of support pixels used and hence the dimen-

sion of P. The number of synthetic translations used in
training is denoted N . In section 7.2, experimental re-

sults are presented to illustrate the effect each of these

parameters has on tracker performance. It is sufficient

to say, increasing rtr increases the maximum inter frame

displacement at the expense of alignment accuracy; k
models the trade off between speed of prediction and

accuracy/stability. N does not affect prediction speeds

but instead parameterises a trade off between predictor

learning speeds and accuracy/stability.

5.4 The linear predictor flock

The displacement predictions made by LPs have limited
accuracy; this is especially the case where no attempt

is made to optimise support pixel selection. A simple

approach to handling the noise introduced by this inac-

curacy is to take the mean prediction from a collection

of LPs as in equation 11.

δx̄ =

∑L

l=1 δx
l

L
(11)

The state vector, x for each of the collection of L

LPs is then updated with this mean prediction, as in

equation 12, causing the LPs to flock together.

xl
t = xl

t−1 + δx̄, l = 1...L (12)

The increase in prediction accuracy, as shown by the

experiments in section 7.4, is due to the noise averaging

characteristics of the mean. Similar results are/would
be obtained using the median but this would complicate

the weighting of LP contribution to flock output as de-

scribed below. Another approach is to use the RANSAC

algorithm to select the subset of LPs who’s prediction
gains most consensus within the flock. Although the

outlier rejection of RANSAC may be better than the

mean value, RANSAC has a higher computational cost
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and again is less well suited to weighting LP contribu-

tions to flock output.

Within an LP flock, it is desirable to down weight
poor predictions or even remove/replace poorly per-

forming LPs. This is especially the case when using

the simple learning strategies detailed above. To weight

the contribution a single prediction makes to the over-
all flock output, some way of assessing the reliability

of the prediction is required - a prediction error. As

no ground truth displacement is available whilst track-

ing, this error function could rely on observation differ-

ences at the support pixels, the assumption being that
when a predictor performs well, the observations at the

support pixels - after the trackers state vector, x, has

been updated - should be similar to those observed in

the initial frame. Alternatively, we can consider flock
output to be ‘truth’ and evaluate predictions based on

flock agreement, i.e. the error is the difference between

‘true’ flock output and the prediction being evaluated.

If an LP ‘strays from the flock’ it can be relied on less.

This approach benefits from its computational simplic-
ity as it requires only difference computations in the

low dimensional pose space, ‖δx̄− xl
t‖ (t is the current

frame) as opposed to in the higher dimensional obser-

vation space ‖ll0 − llt‖. The observation difference error
also requires additional computation for image bounds

checking.

There is considerable scope for different LP flock

contribution weighting strategies using either of the

above prediction errors. A simple and cost effective ap-

proach is linear weighting (see equation 14) with nor-

malised errors (see equation 13). The weighting can be
based on the errors computed in the current frame, the

previous frame or, as investigated in section 4, the his-

tory of the LP’s performance. In section 6, the weight-

ings are computed in such a way as to control the con-
tribution of predictors dependent on its usefulness given

the current appearance of the target. Equation 13 shows

how a weight is computed and equation 14 illustrates

the linearly weighted LP flock.

wl = 1−
‖δx̄− xl

t‖

max ‖δx̄− xl
t‖, l = 1...L

(13)

δx̄ =

∑L
l=1 (w

l · δxl)
∑L

l=1 w
l

(14)

The experiments in section 7.3 show how this weight-

ing strategy improves the accuracy of the LP flock.

The ability to control the level of each LP’s con-

tribution to the overall tracking output enables a high

level of adaptability and flexibility to the feature tracker

- LPs can be associated to various aspects of the target

feature as in section 6. Furthermore, evaluating each

LP’s performance provides the possibility to discard

LPs that consistently perform poorly. The process of

evaluating, discarding, re-learning and weighting per-
forms a similar optimisation process to that performed

in offline training approaches or registration processes

such as the Lucas-Kanade tracker, but it does so incre-

mentally whilst the tracker is operating.

5.5 Inter-frame motion example

Each of the three trackers under investigation (Lucas-

Kanade, LP and LP flock) was applied to an image
sequence, captured from a moving web camera, con-

taining considerable motion blur and large inter-frame

displacements caused by vigorous shaking of the cam-

era. Figures 7(a) and 7(b) show frames 374 and 375

respectively.
On figure 7(a) the reference point being tracked is

indicated by the cross. On figure 7(b), which shows

frame 375 as suffering considerable motion blur, the

same co-ordinate is marked in light blue (grey in black
and white) cross. Also marked on figure 7(b) is the posi-

tion each of the trackers believes to be the target. The

Lucas-Kanade tracker (red circle) has moved a short

distance from the position in the previous frame and

has failed to track the target. The single LP tracker
(yellow X) has done better and the LP flock (green star)

has done better still. The ‘true’ point (white cross) is

obtained by taking a template of the target and find-

ing the global minimum in the cost surface as shown in
figure 7(c).

Figure 7(c) is informative as it illustrates the differ-

ence between the regression and registration processes,

specifically highlighting the problems of using gradient

descent or Newton methods that assume the presence
of a locally convex similarity function with a minima

at the true warp position. Although the global mini-

mum of the similarity function, or cost surface, is at

the true warp position, the Lucas-Kanade tracker is
‘caught’ in a local minimum. The inter-frame displace-

ment was larger than the basin of convergence of the

tracker i.e. it fell outside the area of convexity of the

surface around the true point. On the other hand, both

the regression techniques are able to ‘leap’ across the
cost surface and track successfully despite motion blur

and the large 37 pixel inter-frame displacement. This

is because the regression approach learns how patterns

of image intensity differences relate to displacements.
In section 7 various trackers, including more advanced

registration based approaches, are tested on the entire

1000 frame video sequence and, due mainly to severe
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(a) Frame 374 from video with camera motion. Location of refer-
ence point of feature being tracked is marked with a cross. The
template size (40 by 40 pixels) is also marked with a rectangle.

(b) Frame 375. Location of reference point in last frame marked
with a light blue (grey in black and white) cross. LK point of
convergence marked with a red (dark grey) circle, single LP with
a yellow (white) X, LP flock with a green (black) star and the
true position marked with a white cross. The search area used to
produce the cost surface below is marked with a white rectangle.

(c) Cost surface of L2 norm distance between template drawn from frame 374 and an 80 by 80 pixel region of frame 375 around
reference position in frame 374. Light blue (grey in black and white) cross indicates position in frame 374, red (black) circle is the
location the Lucas-Kanade algorithm converges to, yellow (grey) X is the single LP result, green (grey) star is the LP flock result and
the white cross is the global minimum of the cost surface that corresponds to the true position in frame 375.

Fig. 7 Inter-frame motion example: The registration (circle), regression (X) and flock (star) displacement estimators are tested on
a image sequence featuring vigorous camera shake. The regression methods are shown to accurately estimate the large (37 pixel)
inter-frame displacement while the registration method fails due to a local minimum in the cost surface.
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camera shake and hence large inter-frame displacement,

only the regression methods are successful.

6 Tracking Framework

This section details three configurations of the tracking
framework: LK-SMAT, LP-SMAT and LP-Medoidshift.

The first method uses the appearance model to iden-

tify different aspects of the target appearance and to

provide a template - the median template of the best

matching model component - for use in the registra-
tion process. For the LP methods, the function of the

appearance models developed is to identify different as-

pects of the target such that the set of LPs can be par-

titioned and associated with the aspects for which they
perform well.

Details of the mechanisms used to associate flocks

of LPs with appearance modes identified by each of the
appearance models are presented. Due to differences in

the clustering approaches used - greedy and medoidshift

clustering - different strategies for this partitioning and

association are required. Specifically, with the medoid-

shift approach, there is not a fixed number of modes
and an appearance template may change the cluster to

which it belongs, whereas with the SMAT approach,

there is a fixed number of modes and a template is as-

signed to just one mode for the duration of tracking.

6.1 LK-SMAT: Registration based Simultaneous

Modelling and Tracking

Fig. 8 LK-SMAT system architecture: The SMAT appearance
model identifies aspects by partitioning templates using a greedy
clustering algorithm. Identifying the current aspect selects the
template for use in registration process. The association matrix
in this formulation is simply an identity matrix.

Algorithm 1 LK-SMAT tracking procedure

F0 ←first image
Initialise target position x̄0, height h and width w from user
input
Extract first appearance template G0

Set initial component weight wm = 1
while Ft 6= NULL do

Register currently selected appearance template G∗ with
new frame Ft as in eq. 7
Extract new appearance template Gt at estimated target
location
Assign new template to partition m∗ using greedy search
algorithm
Compute L2 norm distances for a single row of Tm

Compute median template index and , j∗, and component
threshold, τm

∗

, using Eq. 2 and Eq. 3
Update component weights, wm,m = 1...M , as in Eq. 1.
t← t + 1

end while

The LK-SMAT tracker uses the SMAT appearance

model to identify different aspects of the target appear-

ance and thus provide a template - the median template
of the best matching model component - for use in the

registration process.

There is a one-to-one association between the tar-

get aspect and the templates used for tracking, this is
illustrated by the identity association matrix in figure

8. Only one template, the median of the matched com-

ponent, is associated to an aspect.

Tracking is the process of registering new image data

with the median template from the estimated best as-

pect, extracting a template from the estimated loca-

tion, updating the appearance model (with the greedy

algorithm), selecting the best component and hence
medium template for registering with the next frame

and so on.

The complete tracking procedure is detailed in Al-
gorithm 1

6.2 LP-SMAT: Linear Predictors for Simultaneous

Modelling and Tracking

The LP-SMAT tracker learns LPs specific to a partic-

ular aspect of the target object in order to continue to

track through significant appearance changes. This as-

sociation between aspects and LPs is achieved by an

association matrix, A, as illustrated in figure 9. Given
a bank of L linear predictors and M appearance model

components, the association matrix A has dimension

(L × M). A zero value at Alm indicates that predic-

tor l is not associated to component m and therefore is
deactivated when component m is active i.e. m = m∗.

Each of the M components are associated to L/M LPs.

For all the experiments, M = 4 and L=160 meaning 40
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LPs are associated to each component and hence that

40 linear predictions are computed each frame.

Fig. 9 LP-SMAT system architecture: LPs associated to the ac-
tive SMAT appearance model component through association
matrix are activated for tracking. The contribution each LP
makes is determined by its strength of association with the cur-
rent aspect. Association strengths are updated to reflect the LP’s
performance for the current aspect each frame.

An error function is used to continually evaluate

each LP’s performance over time. Rather than assign-
ing a single error value to predictor l, error values are

instead assigned to the association between each of the

L predictors and each of the M appearance model com-

ponents. The error values are stored in the association

matrix A and can also be interpreted as a measure of
the strength of association between a predictor and an

appearance model component. The performance value

used is a running average of prediction error with ex-

ponential forgetting; meaning that high values indicate
poor performance. The error function used is the L2

norm distance between predictor output δxl and the

overall tracker output δx̄, ‖δxl − δx̄‖. Equation 15 de-

tails how the association matrix is updated with these

error values. The rate of forgetting is determined by
parameter β=0.1, set experimentally and unchanged in

all experiments.

At+1
lm = ((1− β) ·At

lm) + (β · ‖δxl − δx̄‖) (15)

This record of LP performance provides a method

for weighting each LP’s contribution to overall tracker

output, δx̄, defined in Eq. 16 and 17.

Wm
l =

{

1− Alm

max(Aim) , i = 1...L if Alm > 0;

0 if Alm = 0.
(16)

Algorithm 2 LP-SMAT tracking procedure

F0 ←first image
Initialise target position x̄0, height h and width w from user
input
M ← 4, L← 160
for l = 0 to L/M do

xl = {rand(−h/2 : h/2), rand(−w/2 : w/2)} {Randomly
select reference point}
Generate {δxi,di} {Training data}
Compute Pl as is Eq. (10)
Al,m=1 = 1 {Assign all initial predictors to first mode with
equal weight}
m∗ = 1 {Set first mode as active}

end for

while Ft 6= NULL do

Compute δxl as in Eq. (9) ∀l∃ Al,m∗ > 0 l = {0...L}
Compute δx̄ as in Eq. (17)
Update predictor states xl = xl + δx̄

Update association matrix, A, as in Eq. 15
Identify the worst predictor, φ, from the current active com-
ponent m∗ using Eq. 18.
Extract new appearance template Gt

Obtain m∗ ⊂ {1...M} {Active component obtained by
greedy assignment of new template to model component}
Assign template Gt to m∗ component
Update m∗ component mean and threshold as in Eq. 2 and
3.
Learn new predictor as in Eq. (10)
if new predictor performance ≥ old predictor performance
then

Replace worst predictor φ
Update association matrix, A, as in Eq. (15)

end if

t← t + 1
end while

δx̄ =

∑L
l Wm

l δxl
∑L

l Wm
l

(17)

A further advantage of maintaining a performance

metric on each LP-aspect association is that it allows

poorly performing LPs to be replaced by LPs learnt

online. A new predictor is learnt for every frame from
synthetic displacements of the previous frame and is

evaluated on its prediction of the current frame. The

worst predictor, φ, is identified from the current ac-

tive component m∗ using Eq. 18. If the prediction error

of the new LP is less than the φth (worst) LP’s error,
‖δxnew− δx̄‖ < ‖δxφ− δx̄‖, then the new predictor re-

places the φth (only in the current active component).

This process serves both to introduce view-specific pre-

dictors as well as prevent outliers from contributing to
the tracker output. Note that a predictor can be used by

multiple components and is only completely destroyed

if it has zero values for all components.

φ = argmax
l

Alm∗ , l = 1...L. (18)
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Fig. 10 LP-MED system architecture: The appearance tem-
plates are incrementally clustered using the medoidshift modes
seeking algorithm. Each LP makes a prediction each frame and
the level of contribution made is determined by its performance
during each of the frames that form part of the current appear-
ance aspect.

Note that when a new component of the appearance

model is created all the predictors from the previously
used component are assigned to the new component by

copying a column of A.

The complete LP-SMAT tracking algorithm is sum-
marised in Algorithm 2.

6.3 LP-Medoidshift: Online partitioning of linear

predictors for tracking

Similarly to the LP-SMAT approach, by learning as-

pect specific predictor weightings, each predictor can be

associated to a greater or lesser extent to each aspect.

However, the medoidshift clustering approach does not
have a predetermined number of clusters, as in the

SMAT model. The flexibility of the model is further en-

hanced by the possibility for appearance templates to

change their cluster membership as the dataset is ex-

panded incrementally. In order to utilise this clustering
for partitioning the set of LPs, a flexible mechanism for

associating clusters to LPs is required. This is achieved

by maintaining a record of the performance of each LP

for each template as opposed to each component in the
SMAT model. A combination of template membership

and these performance measures are used to compute

a strength of association between each LP and any as-

pect.

The weighting mechanism is achieved by an associa-

tion matrix, A, as illustrated in figure 10. Given a bank

Algorithm 3 LP-Medoidshift tracking procedure

F0 ←first image
Initialise target position x̄0, height h and width w from user
input
for l = 0 to L do

xl = {rand(−h/2 : h/2), rand(−w/2 : w/2)} {Randomly
select reference point}
Generate {δxi,di} {Training data}
Compute Pl as is Eq. (10)
wl ← 1 {Set all initial predictor weights to 1}

end for

while Ft 6= NULL do

Compute δxl as in Eq. (9) for l = {0 ... L}
Compute δx̄ as in Eq. (22)
Update predictor states xl = xl + δx̄
Extract new appearance template Gt

Compute new row and column of distance matrix, L2 norm
Gt and {G0...Gt−1}

Obtain Ti∗ ⊂ {G
0...Gt−1} {Obtained by clustering T =

{G0...Gt−1}}
Update association matrix, A, as in Eq. (20)
Identify worst predictor as in Eq. (23)
Learn new predictor as in Eq. (10)
if new predictor performance ≥ old predictor performance
then

Replace worst predictor l∗

Update association matrix, A, as in Eq. (24)
end if

Compute predictor weightings for next frame as in Eq. (21)
t← t + 1

end while

of L linear predictors and a set, T, of M appearance

templates, T = {G0...GM}, the association matrix A
has dimension (L × M). Note that M is much larger

here than for the SMAT model where M indicates the

number of modes rather than the number of templates.

The value at Alm indicates the strength (or weakness)
of association between predictor l and template (exem-

plar) m. The values of A are set and updated using Eq.

(19) and (20). Equation (19) shows how the prediction

error is computed and used to initialise the association

values between each predictor and the new appearance
template mt. The error is the flock agreement error, as

in the LP-SMAT approach, and as detailed in section

5.4.

Almt = ‖δx̄− xl
n‖, l = 1...L (19)

The association values for all the other templates

in the active aspect, Tm∗ ⊂ T, are then updated as

follows, for all predictors l = 1...L:

A′
lm =

{

((1− β) ·Alm) + (β · ‖δx̄− xl
n‖), if G

m ∈ Ti∗

Alm if Gm /∈ Ti∗

(20)
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This has the effect of smoothing the performance

measures within a cluster. The values are a running

average prediction error with exponential forgetting;

meaning that low values of Alm indicate greater as-

sociation between predictor l and clusters containing
exemplar m. As in the LP-SMAT model, the rate of

forgetting is determined by parameter β=0.1, set exper-

imentally. In all the experiments M ≤ 200 - meaning

after 200 frames, the oldest template is removed from
the model - and L=80. These parameters are also set

experimentally.

This error function and update strategy are used to

continually evaluate predictor performance over time.

This provides a means for appearance dependent weight-
ing of each predictors contribution to overall tracker

output, δx̄, as defined in Eq. (21) and Eq. (22).

wl = 1−

∑

∀m∃Tm∗

Alm

max
∑

∀m∃Tm∗

Alm

(21)

δx̄ =

∑L

l=1 (w
l · δxl)

∑L
l=1 w

l
(22)

The continuous evaluation of predictor performance

also allows poorly performing predictors to be replaced
by predictors learnt online. The worst predictor, l∗, is

identified as in Eq. (23). The LP whose minimum error

(over all exemplars) is greatest of all minimum errors

(over all LPs) is selected.

l∗ = argmax
{l=1,...,L}

( min
{m=1,...,M}

Alm) (23)

The entries in A relating to the replaced predictor

are updated as in Eq. (24).

Al∗m =

∑L

l=1 Alm

L
,m = 1...M (24)

The entries in A relating to the replaced LP are av-
eraged across all LPs for each exemplar. The complete

tracking algorithm is summarised in Algorithm 3.

7 Experiments

This section details a set of experiments used to char-

acterise, compare and evaluate the various tracking ap-

proaches. First a convergence test is introduced and

used to characterise and compare registration and re-
gression approaches to displacement estimation as well

as to investigate the effects of some of the parameters

for these methods. This is followed by an experiment

Fig. 11 Convergence error (in pixels) for three tracking ap-
proaches over a range of test displacements. The error bars repre-
sent the log of the variance of the pixel error over the 3000 tests
at each range.

illustrating the benefits of the flock weighting strategy.

Finally each of the tracking approaches is run on a num-

ber of challenging video sequences and the performance

of each tracker is evaluated and compared.

7.1 Convergence testing

Fig. 12 Success rate of the Lucas-Kanade, LP and LP flock
tracker. A test is treated as successful if the tracker converges
to within 5 pixels of the true point. The error bars represent the
the variance of success score over the 3000 tests at each range.

A convergence test is used to test and compare var-

ious configurations of the regression and registration

tracking approaches. For registration, the test involves

extracting a template at a given point, Ptrue = {xpos, ypos},
then starting the registration process at various dis-

placements Ptrue + d1, Ptrue + d2, ..., Ptrue + dn, where

d = ∆P and n is the number of tests carried out. The

displacements can be thought of as simulated inter-
frame displacements in the tracking scenario. For the

regression tracking approach the test is similar - the

model is learnt at Ptrue and predictions are made given
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observations at displacements. The convergence test eval-

uates the accuracy (how close to Ptrue does the tracker

get), success rate (how many tests fall within a given

accuracy) and range (maximum magnitude of displace-

ments for which tracker performs well) of the approaches.

The results represented in figures 11 and 12 are

obtained by performing convergence tests using three
tracking algorithms (a single LP, a flock of 60 LPs and

the Lucas-Kanade registration algorithm) on a dataset

of three hundred image patches (fifteen points selected

on a grid from twenty images of different content, quali-

ties and from different sources). The displacements (the
horizontal axis) range from zero to forty with twenty

equal steps. At each of the three hundred points, and

for each of the twenty range steps, the convergence test

is performed ten times giving a total of sixty thousand
tests.

For the results presented in figures 11 and 12 the

LP parameters are: k = 100 (number of support pix-
els), N = 150 (number of training examples), rsp = 20

(support pixel range) and rtr = 20 (training range).

The LP flock is made up of 60 unweighted LPs with

the same parameters. The Lucas-Kanade tracker uses

the L2 norm distance metric with a template of 20-
by-20 pixels, zero order nearest neighbour interpola-

tion and employs the Levenberg-Marquardt optimisa-

tion method.

It can be seen in figure 11 that, up to a certain

range of displacements - that used in training the LP

- the accuracy of both the regression methods remains

fairly constant after which it degrades rapidly and lin-
early. The accuracy gained by the LP flock of sixty LPs

is around four pixels and can be seen in figure 12 to in-

crease the success rate by ten percent. The success rate

is the proportion of tests at a given range that con-

verge to within five pixels of the target. It is shown by
the error bars in 11 and 12 that, along with accuracy,

the stability of the predictions made by the LP flock is

increased over the single linear prediction.

Figure 12 shows that the registration method has a

greater success rate up to displacements of around five

pixels, after which it degrades rapidly. This suggests

the registration method has greater alignment accuracy
within a certain range, the range of the basin of conver-

gence of the alignment cost surface, than the LP flock

regression approach.

It is evident in figures 11 and 12 that the regression

approaches have a greater range than the registration

approach. There are methods for increasing the range

of registration approaches such as image blurring and
multiscale image registration (Hansen and Morse, 1999;

Paquin et al, 2006). These methods essentially work by

smoothing the registration cost surface thus increasing

the range over which alignment can be achieved but at

the cost of alignment accuracy. Performing these oper-

ations hierarchically, from course to fine, can achieve

greater range and increased accuracy but with an obvi-

ous increase in computational cost. An equivalent course
to fine approach has been developed for regressionmeth-

ods by Zimmermann et al (2009) and also Ong and

Bowden (2009). The Sequential Linear Predictor (SLP)

first predicts displacement using a linear regression func-
tion trained on a larger range of displacements (and

hence with lower accuracy) and then with another func-

tion trained on a smaller range and so on until the re-

quired level of accuracy is obtained. The real advantage

of regression techniques over registration techniques is
that the range is defined by the training process as op-

posed to being dependent purely on the shape of the

alignment cost surface i.e. it is possible to specify a

priori the desired operating range as is explored in the
following section.

7.2 Parameter effects

In order to evaluate the effect of various parameters on
the accuracy, stability and computational cost of LP

trackers, convergence tests are performed with a range

of parameter configurations. The parameters explored

are rsp (range from reference point within which sup-

port pixels are selected), rtr (range of synthetic dis-
placements used in training), k (complexity of LP i.e.

number of support pixels) and N (learning cost i.e.

number of synthetic displacements used in training the

LP). Rather than performing a global optimisation of
these parameters (over the image dataset) these tests

illustrate how the convergence characteristics of the

trackers changes with varying parameters.

Figure 13(a) and 13(b) show how varying rsp (the

range from the reference point within which support
pixels are selected) effects the LP’s convergence test

performance. As the support range increases, the accu-

racy increases. There is little or no effect on the range

of displacements for which the prediction accuracy re-
mains constant (the same as rtr). Given the nature of

the convergence tests (the image is static so there is

no discrepancy between foreground and background) it

should be noted that, in a real tracking scenario, if rsp
is too large it may result in the use of background pixels
which would result in poor displacement predictions.

Figures 13(c) and 13(d) show how varying rtr (range

of synthetic displacements used in training) effects the

convergence test performance. As the training range in-
creases, the range of displacements for which the pre-

diction accuracy remains constant also increases. This

is as expected - an LP trained for displacements of up to
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(a) Convergence error (vertical axis) with varying test ranges (hor-
izontal axis) with different support pixel ranges, rsp.

(b) Success (converges to within 5 pixels) rate (vertical axis) with
varying test ranges (horizontal axis) with different support pixel
range, rsp.

(c) Convergence error (vertical axis) with varying test ranges (hor-
izontal axis) with different training range, rtr.

(d) Success (converges to within 5 pixels) rate (vertical axis) with
varying test ranges (horizontal axis) with different training range,
rtr .

Fig. 13 The effect of varying the support pixel range, rsp, and training range, rtr, on pixel errors and success rates. Larger (redder
in colour online version) lines indicate greater rsp/rtr . Values for rsp and rtr start at 5 pixels, increasing to 50 pixels in steps of 5.

20 pixels will perform consistently for test ranges of 20
pixels or less and poorly for displacements greater than

20. The trade-off for this increase in operating range is

lower prediction accuracy (this result is also illustrated

in figure 6).

7.3 Prediction evaluation and flock weighting

The LP flock weighting strategy introduced in section

5.4 provides a mechanism for controlling each individ-

ual LP’s contribution to the overall flock output. The
level of contribution an LP makes can be influenced

by two factors. Firstly, due to the random selection

of reference point and support pixels and the inher-

ent weakness of the LSQ method, an LP may be con-
sistently poor at predicting displacements. This would

imply the LP should make a small contribution and that

it should have a low weight. Secondly an LP’s ability

to predict may also be affected by changes to pixel in-

tensities on the target. Such intensity changes may be
brought about by changes to the appearance of the tar-

get, occlusions and, in the case of 2D translation LPs,

out of plane displacements, rotation or affine deforma-

tion. If, for example, part of the target being tracked
by an LP flock should become occluded, then those LPs

whose reference point and support pixels are occluded -

or indeed close to the occlusion boundary - will be con-
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Fig. 14 Average result of sixty thousand convergence tests on
weighted flocks of LPs using images with synthetic occlusions.
The weighted flock is more accurate than the unweighted flock
across all displacement ranges. The stability of the flock also im-
proves slightly as can be seen by the shorter error bars.

siderably less reliable during the occlusion and hence

would benefit from receiving a low weight.

In section 4, appearance models that can handle

pixel intensity changes on the target, such as those
brought about by occlusion, were developed and sec-

tion 6 details adaptive weighting mechanisms to control

the contribution of LPs given the current state of the

target. To demonstrate the principle and effectiveness

of the weighting mechanism presented, an experiment
comparing both the weighted and unweighted LP flock

is presented. Figure 14 shows the results of running the

two methods on a convergence test involving deforma-

tion to the target. Sixty thousand randomly selected
displacements from the 300 image patches are made

and the prediction/convergence error is recorded. How-

ever, after the LP flock is learnt and for each of the 20

test ranges, a 5-by-5 pixel area randomly located within

20 pixels of the target reference point is masked i.e. the
25 pixels are set to white thus synthesising an occlusion

on the target.

The flock agreement error, ‖δx̄ − xp
n‖, computed

on the current flock output is used to re-weight con-

tributions and hence compute the ultimate flock dis-

placement prediction. As can be seen in figure 14, the

weighted flock is consistently more accurate than the
unweighted flock. The stability of the flock also im-

proves slightly as can be seen by the shorter error bars

in figure 14.

It should be noted that the results shown in fig-

ure 14 only demonstrate that the flock agreement er-

Table 2 Parameters settings for all methods.

Parameter Meaning Value

rsp Range around LP reference
point within which support
pixels are sampled.

20

rtr Maximum magnitude of
displacements used for
training LP

30

k LP complexity: number of
support pixels.

150

N Training complexity: num-
ber of training examples.

100

L Max. number of predictors
across all modes.

160(SMAT)
80(LP-MED)

M SMAT: Max. number of
modes in model.

4

M LP-MED: Max. number of
appearance templates.

200

α SMAT model learning rate 0.2
β LP-SMAT and LP-MED

rate of forgetting for asso-
ciation updates

0.1

ror can be used to weight poorly performing or oc-
cluded LPs. In this experiment no LPs are replaced

and no multi-modal appearance models are used. The

usefulness of the weighting approach is more thoroughly

demonstrated in the comparison between the LP-FLOCK

and LP-SMAT/LP-MED trackers in section 7.4. For the
LP-SMAT and LP-MED trackers the weighting is used

to evaluate, remove and replace LPs as well as form

aspect specific sets of LPs.

7.4 System Evaluation

This section presents experiments evaluating the track-

ing performance in terms of accuracy and efficiency and
provides comparison to other state of the art simulta-

neous modelling and tracking approaches. First each of

the investigated trackers is reviewed, then the datasets

used are detailed and tracking performance is evalu-

ated. Videos demonstrating each of the trackers on the
sequences are available here3.

Trackers4 : The trackers under investigation in this

section are:

1. LK - the inverse compositional LK tracker using L2

norm and Levenberg-Marquardt optimisation,

2. LK-SMAT - as described in section 6.1 and (Dow-

son and Bowden, 2006),

3. LP-FLOCK - as in section 5.4 with 60 LPs.
4. LP-SMAT - as in section 6.2,

3 www.cvl.isy.liu.se/research/adaptive-regression-tracking
4 Links to implementations for trackers (1) and (2) available at

www.cvl.isy.liu.se/research/adaptive-regression-tracking and for
(6) and (7) at www.vision.ee.ethz.ch/boostingTrackers
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5. LP-MED - as in section 6.3,

6. Online-Boost - The tracker introduced by Grabner

et al (2006) that tracks by online boosting discrim-

inative foreground/background classifiers, and

7. Semi-Online-Boost - the online boosting tracker
with a semi-supervised classifier update (Grabner

et al, 2008).

Results for tracker (7) are only presented if and

when tracker (6) is shown to fail where other techniques

succeed. All parameters for trackers (6) and (7) are de-

fault and for all other trackers are as detailed in table

2 and no parameter tuning is performed.

Datasets5: The datasets used for evaluation are de-
tailed in table 3. The Car-Surveillance is a bench-

mark sequence in the IEEE International Workshops on

Performance Evaluation of Tracking and Surveillance

(PETS’2000) featuring a car from a surveillance cam-

era. The Dudek-Face sequence was presented in (Jep-
son et al, 2001) to demonstrate the trackers handling

of appearance changes and un-modeled pose deforma-

tions. The Runner sequence is a typical track athletics

sequence. The Head-Motion is a sequence of a mov-
ing head and torso, and the Camera-Shake sequence

is taken from a moving webcam pointing at a phone

and undergoing vigorous shaking causing motion blur

and large inter-frame displacements.

Table 3 Summary of datasets

Name Image #frames Introduced

Car-Surveillance 282 PETS’2000

Dudek-Face 1144 Jepson et al
(2001)

Runner 400 Dowson et al
(2006)

Head-Motion 2350 New

Camera-Shake 989 New

For the Car-Surveillance sequence, the target was

successfully tracked by the LP-SMAT, LP-MED and

Online-Boost in all 282 frames (as the Online-Boost

tracker is successful the Semi-Online-Boost tracker is

5 All datasets and ground-truth (where present) available at
www.cvl.isy.liu.se/research/adaptive-regression-tracking

Fig. 15 Tracking results for LP-MED (solid rectangle) and
Online-Boost (dashed rectangle) are shown for first, last and mid-
dle frame of sequence along with the median templates identified
by the SMAT appearance model during frame 141.

not tested). All other trackers fail to track the tar-

get through the appearance changes within the first 50
frames. Figure 15 shows tracking results for the first last

and middle frames of the sequence. Only the LP-MED

and Online-Boost trackers are marked for clarity - the

LP-SMAT result is very similar to the LP-MED result
in this case. Also shown in figure 15 are the four SMAT

model median templates at frame 141. The current as-

pect median is marked with a bullseye. The LP-SMAT

tracker operated at an average of 24 frames per sec-

ond (fps), the LP-MED at an average 20 fps and the
Online-Boost at 16 fps.

The Dudek-Face sequence was not tracked entirely

by any of the tracking approaches under investigation.

Figure 16 highlights frames from the sequence with each
trackers estimated pose marked. At around frame 155

both the LK and the LK-SMAT trackers begin to drift.

Between frames 203 and 223 the hand is passed over the

face causing the LP-FLOCK tracker to leave the tar-
get. The LP-SMAT, LP-MED and Online-Boost track-

ers are able to track through the hand occlusion. At

around frame 364 the glasses are removed from the face,

this causes a momentary appearance change as well as

a longer term change. All the remaining three track-
ers cope with this appearance change. At around frame

650 the LP-SMAT tracker begins to drift, tracking only

the lower part of the face, this is followed around 100

frames later by the LP-MED tracker loosing the tar-
get. Around 50 frames after the LP-SMAT tracker has

lost track the Online-Boost tracker also looses track and

begins to adapt to the background. By chance the face

moves back into the area being tracked and the Online-

Boost tracker is able to recover for a short while before
losing track again for the last 10 frames. The Semi-

Online-Boost tracker was also tested on this sequence,

but produced poorer results than the LP-SMAT, LP-

MED and Online-Boost trackers. During much of the
sequence, the Semi-Online-Boost tracker produces no

output and a number of false positive detections. It

should be noted that (Grabner et al, 2006) report re-
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Fig. 17 The floating average frames per second is shown for LP-
SMAT and LP-MED trackers is shown. The average speed of the
Online-Boost tracker on this sequence is shown for reference.

sults showing another version of the Online-Boost boost

tracker successfully tracking the Dudek-Face sequence,

however these results are not achievable with the sim-

pler implementation that is made publicly available.

The tracked region in the Dudek-Face sequence is
130x130 pixels. The Online-Boost tracker runs at a fairly

constant 4 fps and the LP-SMAT and LP-MED track-

ers run at an average 8 fps and 10 fps respectively.

Figure 17 compares the computational cost of these
three methods. As the frame by frame processing time

is not available for the Online-Boost tracker just the av-

erage frames per second is plotted. The Online-Boost

algorithm has a very consistent computation time per

frame. From this figure it can be seen that the LP-MED
tracker also operates at a stable speed after an initial

period. This initial high frame rate is due to having

few examples in memory and hence a small distance

matrix and association matrix. Interestingly, the occa-
sional peaks in the LP-SMAT frame rate (seen in figure

17) coincide with significant events in the sequence e.g.

the first and second peaks (at around 200 frames and

350 frames) coincide with the hand passing over the

face and with the glasses being removed respectively.
This is due to the creation of new modes during these

transient appearance changes. As a new mode will be

represented by very few templates the cost of maintain-

ing the distance matrix between each template is low.
As the component becomes populated with new tem-

plates the cost of maintaining the distance matrix rises

again as is shown by the falling frame rate after each

event.

Figure 18 shows the SMAT model medians for four
key frames. The medians are sorted with decreasing

weight left to right. The four key frames are: during

and after the hand occlusion, and during and after the

Fig. 18 SMAT model medians for four key frames. The medi-
ans are sorted with decreasing weight left to right. The four key
frames are: during and after the hand occlusion, and during and
after the removal of the glasses.

removal of the glasses. It can be seen that the SMAT

model quickly builds a new mode to represent each of

the transient changes of appearance. After the hand

passes away from the face the appearance returns to

an earlier aspect and so the previously learnt predictor
weightings are re-employed. After the glasses have been

removed a new mode is created to represent the new ap-

pearance and this mode soon has the highest weight i.e.

most resembles the estimated target appearance.

The Runner sequence features athletes running through

the bend of a race track and then down the straight to-

wards the camera. The trackers are initialised in the
first frame on the only athlete to remain in the scene

for the whole sequence. As can be seen in figure 19, the

Online-Boost tracker (yellow dashed rectangle) jumps

up to start tracking the head and upper torso of the

athlete at frame 10 whereas all the other trackers stay
tracking the central torso area. This is reflected in the

positional accuracy graph in figure 20. As the ground-

truth position (obtained by hand labeling) is centered

on the athlete the Online-Boost tracker accumulates
greater area once it starts to track the head of the

athlete. Result for the Semi-Online-Boost tracker are

not shown here as the tracker fails early on and, due

to the significant appearance changes early in the se-

quence, does not produce any output for most of the
sequence. The LK tracker (blue rectangle) begins to

drift and loses track completely by frame 150 (refer

to figures 19 and 20). The LP-FLOCK tracker begins

to lose track at around frame 100. The Online-Boost,
LK-SMAT, LP-SMAT and LP-MED continue to track

through significant appearance changes (even though

the Online-Boost is tracking a different part of the ath-
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Fig. 16 Highlighted frames from the Dudek-Face sequence. Tracker key: Dark blue - LK, black - LP-FLOCK, green - LK-SMAT,
light blue - LP-SMAT, red - LP-MED, yellow - Online-Boost. Colour online.

Table 4 Average frame rate per second. Template sizes for each
sequence are: CAR - 40x20, DUDEK - 130x130, RUNNER -
38x126, HEAD - 90x100, CAM-SHAKE - 25x25. Parameters for
all methods are unchanged for each sequence and set as detailed
in the relevant part of section 6.

Tracker CAR DUDEK RUNNER HEAD SHAKE

LK-SMAT 12 2 6 6 12
LP-FLOCK 65 16 24 25 65
LP-SMAT 24 10 15 16 35
LP-MED 20 8 12 12 20
Online-Boost 16 4 7 7 16

Fig. 20 The positional error for each tracker is shown. Ground-
truth was obtained by hand labeling the sequence.

lete it does not loose track until around frame 410). The

LP-MED tracker stays on the target longer than all the

other trackers and gives a more stable track of the tar-

get. All trackers fail by frame 420. The frame rates for

each tracker on this and all other sequences are given
in table 4.

The head tracking sequence consists of 2500 frames

with the head undergoing large pose variations and at

one point becoming occluded by a cup for over 100

frames. The LK-SMAT, LP-SMAT, LP-MED, Online-

Boost and Semi-Online-Boost trackers each track the

head throughout the whole sequence but the meth-
ods with no online appearance learning (LK and LP-

FLOCK) both fail to track the target. Figure 21 shows

the head being tracked by the LP-MED tracker (top

row). On the bottom row of figure 21, the position of
the LPs are indicated (black spot) as well as the support

pixel range, rsp, (white dashed circles). Also marked on

the bottom row are the positions of the worst predictor

from the current frame (red mark) and the predictor

learnt in the current frame (green mark). As can be
seen the worst predictors often lie with most or all the

support pixels on the background or, in the case of the

cup, on the occluding object. These predictors are not

necessarily removed, they may be re-employed later in
the sequence when a previous aspect is presented.

The Camera-Shake sequence is captured from a low

cost web cam and is of a static scene and a moving cam-
era. The camera undergoes considerable shaking caus-

ing large inter frame displacements as well as trans-

lation, rotation and tilting. Figure 22 shows results on

this sequence for the LP-MED (red), Online-Boost (yel-
low solid) and Semi-Online-Boost (yellow dashed) track-

ers (results for the LP-SMAT tracker are similar to

the LP-MED tracker on this sequence, though a lit-

tle less accurate). All trackers except LP-SMAT and

LP-MED fail on this sequence by frame 280 (the onset
of some camera shake). The Semi-Online-Boost algo-

rithm is able to re-initialise a number of times during

the sequence but is never able to track while the camera

is being shaken due to high inter-frame displacements
and image blur. The displacement predicted from frame

374 to 375 is 37 pixels (16 vertical and 33 horizontal)

and despite the significant blurring in frame 375, the
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Fig. 19 Highlighted frames from the track running sequence. Tracker key: Dark blue - LK, black - LP-FLOCK, green - LK-SMAT,
light blue - LP-SMAT, red - LP-MED, yellow - Online-Boost. Colour online.

Fig. 21 The medoidshift algorithm tracks the head sequence
(top row). LP positions (small black dots) and support pixel
ranges (white dashed circles) are shown as well as the worst pre-
dictor from the current frame (large black circle) and the predic-
tor learnt from this frame (large white circle). It is this process
that generates view-specific displacement predictors within the
model.

tracker still succeeds in making a low error prediction.

Due to online learning of predictors, some are learnt

from blurred images allowing for prediction during this
blur. Figure 23 shows the positional accuracy plots gen-

erated by the six trackers on this sequence. Due to the

limited basin of convergence both the alignment based

Fig. 23 The positional error for each tracker is shown. Where
the Online-Boost tracker fails and is re-initialised is indicated by
the vertical yellow lines.

trackers fail to deal with the large inter frame displace-

ments and SMAT loses track as soon as the camera

starts to shake. On this sequence the LP-Medoidshift
approach achieves more accurate results than the other

two LP trackers.

For all sequences the target patch is identified by

hand only in the first frame, all algorithm parameters

are unchanged between sequences. Ground truth for ev-
ery frame of the athletics and camera motion sequences

was achieved by hand labeling and was used to generate

the error plots in figures 23 and 20.
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Fig. 22 Highlighted frames from the shaking camera sequence. Tracker key: Solid dark grey (red) - LP-MED, solid white (yellow) -
Online-Boost, dashed white (yellow) Semi-Online-Boost.

8 Conclusion

An online Linear Predictor tracker has been introduced

and has been shown to be applicable to a number of
tracking scenarios. The online LP allows for the explicit

trade-off between predictor range, accuracy and compu-

tational cost as shown by the convergence tests in sec-

tion 7.1. Essential to the use of the online-LP are mech-
anisms to evaluate, weight, remove and relearn LPs on-

line during tracking. A general tracking framework that

combines online-LP flocks with methods for online ap-

pearance model learning has been developed and vari-

ous configurations investigated. Within this framework
the tracking process provides a mechanism for self su-

pervision of the appearance model learning process and,

in return, the appearance model provides information

about the structure of the target appearance space that
enables the tracker to cope with a high degree of varia-

tion in appearance. The only supervision required is to

identify the location of the target in the first frame.

Two methods for appearance model learning are in-

troduced. The SMAT model partitions the appearance

space into a predefined number modes that represent

aspects of the target. While this does limit the flexi-

bility of the model and may lead to potential misrepre-
sentation of the underlying appearance distribution, the

SMAT tracker has demonstrated the ability to adapt to

large appearance changes very quickly. The ability to

introduce new modes on-the-fly to represent transient
target appearance changes (e.g. occlusion of face by

hand, see figure 18), whilst maintaining unchanged the

representation of other parts of the appearance space,

proves highly beneficial for tracking many objects.

The medoidshift algorithm on the other hand bene-

fits from the increased flexibility and hence greater like-

lihood to build more representative models of the object

appearance space, regardless of the temporal evolution

of the target appearance. This flexibility also extends
into the general tracking framework by allowing a more

flexible association strategy between aspects of the tar-

get and the online-LPs.

The tracking approaches investigated in this work

model 2D target transformations (translation). Any higher
order transformations of the target (e.g. scale or rota-

tion) are considered as appearance changes, and treated

as new aspects within the adaptive appearance mod-

els. Whilst the introduction of higher order transfor-

mations is possible, and may considerably improve re-
sults in some cases (e.g. the Dudek-Face and Runner

sequence, in which the target undergoes considerable

scale changes), it has been found that the introduction

of more parameters into the warping function can in-
crease the risk of drift and the number of local minima

(Dowson and Bowden, 2006).

An objective of this work is to delineate the class of

problems for which the proposed methods are prefer-

ential by including examples of partial failure (Dudek-
Face) and examples where this method outperforms the

other approaches (Camera-Shake). The success of the

LP based techniques on the Camera-Shake sequence

highlight the ability of regression techniques to cope

with large inter-frame displacements in the presence
of local minima. On the other hand, registration tech-

niques tend to achieve higher accuracy provided the

displacement is within the basin of convergence.

Other tracking approaches ((Ross et al, 2008; Jep-

son et al, 2001)) have been shown to track the Dudek-
Face sequence. Compared to the proposed approach,

these methods are slower, but handle the significant ap-

pearance changes in this sequence more robustly. Given
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that these are affine trackers and the trackers compared

here only model translation, direct comparison is not

included as this would raise issues regarding the DoF

used in tracking that are not addressed here.

Both the appearance models developed have demon-

strated the ability to adapt to large variations in ap-

pearance in order to manage flocks of online-LPs and
to facilitate accurate and efficient tracking. When com-

pared to the online boosting methods, there are clearly

cases where the discriminative classifiers will be better

able to represent the target, but for a class of track-

ing problems the LP-MED/LP-SMAT model provides
comparable accuracy with an increase in computational

efficiency.

Due to the computational efficiency of the online-

LP, the tracker is able to track targets in real time

(35/20 frames per second for LP-SMAT/LP-MED), even

whilst building and maintaining the appearance model.

It is shown that the approach can handle large inter
frame displacements and adapt to significant changes

in the target appearance with low computational cost.

The online-LP tracker has been shown to be particu-

larly effective at tracking through considerable camera
shake.

The advantages of such a simultaneous modelling
and tracking approach are clear when considering how

much hand crafting, offline learning, hand labeling and

parameter tuning must be done in order to employ

many existing object tracking approaches. By devel-

oping the online-LP and mechanisms to manage LP-
flocks, the class of applicable tracking problems has

been extended to included, amongst others, automatic

seeding of the tracker. For example, a computer vision

application may seed a target tracker - such as LP-
SMAT or LP-MED - on a region of detected motion,

without any prior on target appearance.

Many applications require tracking that operates at
high frame rates and can handle high object velocities

as well as be robust to significant appearance changes

and occlusion. This is achieved here by utilising the

computationally efficient technique of least squares pre-
diction and online target appearance modelling.
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