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Abstract

In recent years, sensors capable of measuring both color
and depth information have become increasingly popular.
Despite the abundance of colored point set data, state-
of-the-art probabilistic registration techniques ignore the
available color information. In this paper, we propose a
probabilistic point set registration framework that exploits
available color information associated with the points. Our
method is based on a model of the joint distribution of
3D-point observations and their color information. The
proposed model captures discriminative color information,
while being computationally efficient. We derive an EM al-
gorithm for jointly estimating the model parameters and the
relative transformations.

Comprehensive experiments are performed on the Stan-
ford Lounge dataset, captured by an RGB-D camera, and
two point sets captured by a Lidar sensor. Our results
demonstrate a significant gain in robustness and accuracy
when incorporating color information. On the Stanford
Lounge dataset, our approach achieves a relative reduction
of the failure rate by 78% compared to the baseline. Fur-
thermore, our proposed model outperforms standard strate-
gies for combining color and 3D-point information, leading
to state-of-the-art results.

1. Introduction
3D-point set registration is a classical computer vision

problem with important applications. Generally, the points
originate from measurements of sensors, such as time-of-
flight cameras and laser range scanners. The problem is to
register observed point sets from the same scene by finding
their relative geometric transformations. One class of ap-
proaches [2, 16], based on the Iterative Closest Point (ICP)
[1], iteratively assumes pairwise correspondences and then
finds the transformation by distance minimization. Alterna-
tively, probabilistic methods [5, 7, 9, 14] model the distribu-
tion of points using e.g. Gaussian Mixture Models (GMMs).

Recently, probabilistic approaches demonstrated promis-
ing results for point set registration [5, 7]. The im-

(a) First set.

(b) Second set.

(c) Baseline registration [5]. (d) Our color-based registration.

Figure 1. Registration of the two colored point sets (a) and (b),
of an indoor scene captured by a Lidar. The baseline GMM-based
method (c) fails to register the two point sets due to the large initial
rotation error of 90 degrees. Our method accurately registers the
two sets (d), by exploiting the available color information.

proved performance in probabilistic methods is achieved
by modeling the distribution of points as a density func-
tion. The probabilistic approaches can be further catego-
rized into correlation-based and Expectation Maximization
(EM) based methods. The correlation-based approaches
[9, 17] estimate the transformation parameters by maximiz-
ing a similarity measure between the density models of the
two point sets. Instead, the EM-based methods simultane-
ously estimate the density model and the transformation pa-
rameters [5, 7, 14]. In this paper, we explore probabilistic
models for EM-based colored point set registration.

State-of-the-art probabilistic techniques [5, 7, 14] rely on
the distribution of points in 3D-space, while ignoring addi-
tional information, such as color, for point set registration.
On the other hand, the increased availability of cheap RGB-
D cameras has triggered the use of colored 3D-point sets
in many computer vision applications, including 3D object
recognition [4], scene reconstruction [3] and robotics [6].
Besides RGB-D cameras, many laser range scanners also
capture RGB or intensity information. Additionally, col-



ored point sets are produced by stereo cameras and ordinary
cameras by using structure from motion. In this paper, we
investigate the problem of incorporating color information
for probabilistic point set registration, regardless of the sen-
sor used for capturing the data.

When incorporating color information in probabilistic
point set registration, the main objective is to find a suitable
probability density model of the joint observation space.
The joint space consists of the 3D-point observations and
their associated color information. Color information can
be incorporated into a probabilistic point set model in two
standard ways. (i) A first approach is to directly intro-
duce joint mixture components in the complete observation
space. This model requires large amounts of data due to
the high dimensionality of the joint space, leading to a high
computational cost. (ii) A second approach is to assume
stochastic independence between points and color, which
enables separable modeling of both spaces. However, this
assumption ignores the crucial information about the spatial
dependence of color. The aforementioned shortcomings of
both fusion approaches motivate us to investigate alternative
probabilistic models for incorporating color information.
Contributions: In this paper, we propose a color-based
probabilistic framework for point set registration. Our
model combines the advantages of (i) and (ii), by assuming
conditional independence between the location of a point
and its color value, given the spatial mixture component.
In our model, each spatial component also contains a non-
parametric density estimator of the local color distribution.
We derive an efficient EM algorithm for joint estimation
of the mixture and the transformation parameters. Our ap-
proach is generic and can be used to integrate other invariant
features, such as curvature and local shape.

Comprehensive experiments are performed on the Stan-
ford Lounge dataset [19] containing 3000 RGB-D frames
with ground-truth poses. We also perform experiments on
two colored point sets captured by a Lidar: one indoor scene
and one outdoor scene [18]. The results clearly demonstrate
that our color-based registration significantly improves the
baseline method. We further show that the proposed color-
based registration method outperforms standard color ex-
tensions, leading to state-of-the-art performance. Figure 1
shows registration results on the indoor Lidar dataset, using
the baseline [5] and our color-based registration model.

2. Related Work
Initially, most point set registration methods [2, 16] were

based on the classical ICP [1] algorithm. The ICP-based
approaches alternate between assuming point-to-point cor-
respondences between the two sets and finding the optimal
transformation parameters. The standard ICP [1] is known
to require a good initialization, since it is prone to get stuck
in local minima. Several methods [2, 15, 16] have been pro-

posed to tackle this robustness issue.
Probabilistic registration techniques employ, e.g., Gaus-

sian mixtures to model the distribution of points. In corre-
lation based probabilistic approaches [9, 17], the two point
sets are modeled separately in a first step. A similarity mea-
sure between the density models, e.g. the KL divergence, is
then maximized with respect to the transformation parame-
ters. However, these methods lead to nonlinear optimization
problems with non-convex constraints. To avoid complex
optimization problems, several recent methods [5, 7, 14] si-
multaneously estimate the density model and the registra-
tion parameters in an EM-based framework. Among these
methods, the recent Joint Registration of Multiple Point Sets
(JRMPS) [5] models all involved point sets as transformed
realizations of a single common GMM. Compared to previ-
ous EM-based methods [7, 14], JRMPS does not constrain
the GMM centroids to the points in a particular set. This
further enables a joint registration of multiple point sets.

The use of color information for point set registration has
been investigated in previous works [8, 11, 10, 12]. Huhle et
al. [8] propose a kernel-based extension to the normal dis-
tributions transform, for aligning colored point sets. Most
approaches [10, 11, 12] aim at augmenting ICP-based meth-
ods [1, 16] with color. In these approaches, a metric is intro-
duced in a joint point-color space, to find correspondences
in each iteration. A drawback of these ICP variants is that
the metric relies on a data dependent parameter that controls
the trade-off between spatial distance and color difference.
Different to these methods, we incorporate color informa-
tion in a probabilistic registration framework. The registra-
tion is performed using an EM-based maximum likelihood
estimation. Next, we describe the baseline probabilistic reg-
istration framework.

3. Joint Registration of Point Sets
We base our registration framework on the JRMPS

[5] method, since it has shown to provide improved per-
formance compared to previous GMM based approaches
[7, 14]. Contrary to these methods, JRMPS assumes both
sets to be transformed realizations of one reference GMM.
This avoids the underlying asymmetric assumption of us-
ing one of the sets as a reference model in the registration
[7, 14]. Further, the JRMPS has the advantage of naturally
generalizing to joint registration of multiple sets.

3.1. Point Set Observation Model

In the problem of joint registration of multiple point sets,
the observations consist of 3D-points in M different views
of the same scene. The aim is then to find the transforma-
tion of each set to a common reference coordinate system,
called the reference frame. All observations of 3D-points
are assumed to originate from the same spatial distribution
V ∼ pV, representing the entire scene. Here, V ∈ R3 is a



random variable (r.v.) of a point in the reference frame, and
pV is the probability density function (p.d.f.) of V.

Let Xij ∈ R3 be the r.v. of the j:th observed point in
view i ∈ {1, . . . ,M} and let xij be its observed value. Ob-
servations in view i are related to the reference frame by
the unknown rigid transformation φi(x) = Rix + ti, such
that φi(Xij) ∼ pV. The transformed observations φi(Xij)
thus have the distribution pV in the reference frame. Con-
sequently, the p.d.f. of the observation Xij is given by
pXij

(xij) = pV(φi(xij)). To simplify notation, we often
write pXij

(xij) = p(xij).
As described above, the observed points are assumed to

be transformed samples of the distribution pV. The point
distribution pV is modeled as a mixture of Gaussian distri-
butions. LetK be the number of Gaussian components. We
then introduce the discrete latent r.v. Z ∈ {0, . . . ,K} that
assigns the point V to the mixture component Z = k. The
extra 0th component is a uniform distribution that models
the occurrence of outlier points. The joint p.d.f. of V and
Z factorizes as p(v, z) = p(v|z)p(z). For discrete vari-
ables, we use the notation p(Z = k) = pZ(k). The mixture
component weights πk are defined as the prior probabilities
πk = p(Z = k) of the latent variable Z. The conditional
distribution of V given Z = k is then defined as,

p(v|Z = k) =

{
UU (v), k = 0

N (v;µk,Σk), k 6= 0.
(1)

Here, UU denotes a uniform distribution in the convex hull
U ⊂ R3 of the observations [7]. The multivariate normal
distribution with expectation µ and covariance Σ is denoted
by N (· ;µ,Σ). The point density function pV is obtained
by marginalizing over the latent variable Z,

pV(v) =

K∑
k=1

πkN (v;µk,Σk) + π0UU (v). (2)

Next, we describe how the above described observation
model is used for point set registration.

3.2. Point Set Registration

The registration is performed by jointly estimating the
transformation and the GMM parameters, in (2), using the
EM algorithm. We denote the set of all observations by
X = {xij}Ni,M

j=1,i=1 and the collection of corresponding la-
tent variables by Z = {Zij}Ni,M

j=1,i=1. Here, Ni denotes the
number of observations in point set i. All observations are
assumed to be independent. As in [5], a fix outlier weight
π0 is assumed. The model parameters are summarized as,

Θ =
(
{πk,µk,Σk}Kk=1, {Ri, ti}Mi=1

)
. (3)

The point registration is performed by jointly estimating the
parameters Θ from the observed dataX . In [5], a Maximum

Likelihood (ML) estimate of Θ is obtained using the Ex-
pectation Maximization (EM) framework. The E-step eval-
uates the conditional expectation of the complete data log-
likelihood log p(X ,Z|Θ). The expectation is taken with re-
spect to the latent variables Z given the observed data X
and the current estimate of the parameters Θ(n),

Q(Θ; Θ(n)) = EZ|X ,Θ(n) [log p(X ,Z|Θ)]

=
∑
Z
p(Z|X ,Θ(n)) log p(X ,Z|Θ) (4)

In the M-step, the aim is to find the optimizer of (4) as
Θ(n+1) = arg maxΘQ(Θ; Θ(n)). To obtain a closed form
solution, the M-step is divided into two conditional max-
imization (CM) steps [13], where the transformation and
GMM parameters are updated separately [7].

Using the definitions in section 3.1 and the independent
observations assumption, the complete data likelihood is ex-
pressed as p(X ,Z|Θ) =

∏
ij p(xij , zij |Θ), where

p(xij , Zij = k|Θ) = πkN (φi(xij);µk,Σk) , k 6= 0. (5)

The posterior density of the latent variables factorizes as
p(Z|X ,Θ(n)) =

∏
ij p(zij |xij ,Θ(n)). The E-step then re-

duces to computing the posterior probabilities of the latent
variables α(n)

ijk := p(Zij = k|xij ,Θ(n)) [5]. Eq. 4 now
simplifies to,

Q(Θ; Θ(n)) =
∑
ijk

α
(n)
ijk log p(xij , Zij = k|Θ). (6)

By applying (5) and ignoring constant terms, (6) can be
rewritten to the equivalent minimization problem,

f(Θ; Θ(n)) =
∑
ij

K∑
k=1

α
(n)
ijk

(
1

2
log |Σk|

+
1

2
‖Rixij + ti − µk‖2Σ−1

k

− log πk

)
. (7)

Here, |Σk| denotes the determinant of Σk and we have de-
fined ‖x‖2

Σ−1
k

= xTΣ−1
k x. For simplicity, isotropic covari-

ances are assumed Σk = σ2
kI , as in [5].

The parameters Θ are updated in the two CM-steps of the
algorithm. The first CM-step minimizes (7) with respect to
the transformation parameters {Ri, ti}Mi=1, given the cur-
rent GMM parameters {π(n−1)

k ,µ
(n−1)
k ,Σ

(n−1)
k }Kk=1. The

second CM-step minimizes (7) with respect to the GMM
parameters given the new {R(n)

i , t
(n)
i }Mi=1. We refer to [5]

for the closed form solutions of the two CM-steps. Next we
introduce our color based registration technique.

4. Feature Based Point Set Registration
We reformulate the registration problem from section 3

to incorporate feature information associated with each 3D-
point. In this work, we investigate the incorporation of color



Figure 2. An illustration of our mixture model of the joint point-
color space. The ellipses represent spatial mixture components
p(v|Z = k) in our model. Each spatial component k is associated
with a mixture model in the color space, given by the weights ρkl
(visualized as histograms). This mixture model encodes the color
distribution of points associated with the spatial component k.

information for point set registration. However, our frame-
work is not restricted to color features. It also enables the
use of, e.g., structural features that describe the local shape
or curvature of the point set.

4.1. Feature Based Observation Model

Our framework assumes the observations to consist of
a 3D-point and its associated feature value, e.g. color. Let
Y ∈ Ω denote the r.v. of the feature value associated with
the 3D-point V. Here, Ω is the set of all possible feature
values, called the feature space. For example, if Y is the
color of the 3D-point in normalized HSV coordinates, then
the feature space is the unit cube Ω = [0, 1]3. We assume
observations of points and features to originate from a com-
mon joint distribution (V, Y ) ∼ pV,Y . The aim of this pa-
per is to propose an efficient yet distinctive mixture model
of the joint point-feature density pV,Y . Next, we investigate
three different strategies to construct a mixture model of the
joint point-feature space.

4.1.1 The Direct Approach

A direct generalization of the GMM based registration tech-
nique (section 3), is to introduce joint mixture components
in the point-feature space R3×Ω. In general, let F (v, y; θk)
denote the density function of a mixture component in the
joint space (v, y) ∈ R3 × Ω. Here, θk denote the param-
eters of the k:th component. A mixture model in the joint
point-feature space is expressed as

pV,Y (v, y) =

K∑
k=1

πkF (v, y; θk). (8)

However, this strategy of directly introducing joint com-
ponents F (v, y; θk) requires a large amount of data, due to
the exponential growth of volume with the number of di-
mensions (i.e. the curse of dimensionality). This leads to a
higher computational cost.

4.1.2 The Independent Approach

To alleviate the problems induced by the direct strategy (8),
a simple approach is to assume stochastic independence be-
tween 3D-points and feature values. The joint distribution
pV,Y then factorizes as the product of the marginal distribu-
tions for the 3D-points pV and feature values pY , such that
pV,Y = pVpY . This assumption enables the spatial distri-
bution of points pV and the distribution of features pY to
be modeled separately. Let F̃ , θ̃l and π̃l denote the compo-
nents, parameters and weights respectively for the mixture
model of the feature density pY . We denote the number of
feature components by L. The joint distribution can then be
expressed as

pV,Y (v, y) =

K∑
k=1

L∑
l=1

πkπ̃lN (v;µk,Σk)F̃ (y; θ̃l). (9)

Here, we have used the GMM presented in section 3.1 for
the spatial distribution pV and ignore the uniform compo-
nent for simplicity. While the independence assumption al-
lows for a separation of the mixture models, it completely
removes information regarding the spatial dependence of
feature values. Such information is crucial for aiding the
registration process.

The aforementioned approaches have major limitations
when incorporating feature information for point set regis-
tration. Next, we describe an approach that combines the
discriminative power of the direct approach with the effi-
ciency of the independent approach.

4.1.3 Our Approach

We propose a mixture model of the joint point-feature space
R3 × Ω that tackles the drawbacks of the aforementioned
approaches. Contrary to the direct strategy (section 4.1.1),
our method does not require an increased amount of points
to infer the model parameters. We thereby avoid the prob-
lems induced by the higher dimensionality of the observa-
tion space. Additionally, our model accurately captures the
local characteristics in the distribution of features, e.g., how
colors are distributed in the scene. This enables our frame-
work to exploit the underlying discriminative feature infor-
mation associated with each 3D-point.

The proposed mixture model contains a separate feature
distribution for each spatial mixture component (illustrated
in figure 2). In addition to the spatial latent variable Z, we
introduce a second latent r.v. C ∈ {1, . . . , L}. This vari-
able assigns a point-feature pair (V, Y ) to one of the L
mixture components in the feature space Ω. Our model is
based on the conditional independence assumption between
the point V and the feature variables Y,C given the spatial
mixture component Z. This is symbolically expressed as



V ⊥ Y,C |Z. Our model assumption enables the follow-
ing factorization of the joint p.d.f. of (V, Y, C, Z),

p(v, y, c, z) = p(v, y, c|z)p(z) = p(v|z)p(y, c|z)p(z)
= p(v|z)p(y|c, z)p(c|z)p(z). (10)

The first and fourth factor of (10) do not depend on the fea-
ture information, and are defined in section 3.1 (see (1)).

Each spatial component is given a separate feature dis-
tribution that characterizes the occurrences of feature values
in the vicinity of the component. These distributions are de-
fined by the feature component weights, determined by the
conditional probability of a feature component C = l given
a spatial component Z = k,

p(C = l|Z = k) = ρkl , k 6= 0. (11)

This expression defines the third factor in (10). The feature
mixture weights must satisfy ρkl ≥ 0 and

∑
l ρkl = 1 for

each spatial component k. For the outlier component k = 0,
we assume uniform weights p(C = l|Z = 0) = 1/L.

The second factor p(y|c, z) in (10) is determined by the
mixture components in the feature space. Since the fea-
ture space Ω can be compact or discrete, we do not restrict
our choice to Gaussian distributions. Instead, we consider
arbitrary non-negative functions Bl : Ω → R satisfying∫

Ω
Bl = 1. We define,

p(y|C = l, Z = k) =

{
UΩ(y), k = 0

Bl(y), k 6= 0.
(12)

As for the spatial mixture components (1), we also use a
uniform component in the feature space for Z = 0 to model
outliers. The integration feature information into the regis-
tration process comes at an increased computational cost. In
order to minimize this cost, we use non-parametric feature
components Bl in our model. This allows the probabili-
ties Bl(yij) to be precomputed and avoids additional costly
maximizations of in the M-step.

The proposed mixture model of the joint space is com-
puted by marginalizing over the latent variablesZ,C in (10)
and using the definitions (1), (11) and (12),

pV,Y (v, y) =

K∑
k=1

L∑
l=1

πkρklBl(y)N (v;µk,Σk)

+ π0UU (v)UΩ(y). (13)

Our model (13) differs from the direct approach (8) in that
it enables a separation between the point and feature com-
ponents. It also differs from the independent approach (9)
in that the feature component weights ρkl depend on the
spatial component k. Our model thus shares distinctiveness
with the direct approach (8) and efficiency with the inde-
pendent approach (9).

4.2. Registration

Different from the standard GMM based registration
(section 3), our model includes the feature observations
yij and the corresponding latent feature variables Cij .
In our framework, the set of all observations is X =
{(xij , yij)}Ni,M

j=1,i=1 and the collection of corresponding la-
tent variables is Z = {(Zij , Cij)}Ni,M

j=1,i=1. The model pa-
rameters have been extended with the feature distribution
weights ρkl in (11), and are given as

Θ =
(
{πk,µk,Σk, ρk1, . . . , ρkL}Kk=1, {Ri, ti}Mi=1

)
. (14)

We apply an EM procedure, as described in section 3.2,
to estimate the parameters (14) of our model. The model
assumptions in section 4.1.3 imply the complete data like-
lihood p(X ,Z|Θ) =

∏
ij p(xij , yij , cij , zij |Θ), where the

joint probability of an observation and its latent variables is

p(xij , yij , Cij = l, Zij = k|Θ) =

= πkρklBl(yij)N (φi(xij);µk,Σk) , k 6= 0. (15)

The independence of observations imply the factorization
p(Z|X ,Θ(n)) =

∏
ij p(zij , cij |xij , yij ,Θ(n)). By apply-

ing (15), the latent posteriors are expressed as,1

α
(n)
ijkl := p(Zij = k,Cij = l|xij , yij ,Θ(n)) = (16)

π
(n)
k ρ

(n)
kl Bl(yij)N

(
φ

(n)
i (xij);µ

(n)
k ,Σ

(n)
k

)
K∑
q=1

L∑
r=1

π
(n)
q ρ

(n)
qr Br(yij)N

(
φ

(n)
i (xij);µ

(n)
q ,Σ

(n)
q

)
+ λ

.

Here, the constant in the denominator, originating from the
outlier component is given by λ = π0

m(U)m(Ω) , where m
denotes the reference measure of the space.

For our mixture model, the expected complete data log-
likelihood (4) reduces to,

Q(Θ; Θ(n))=
∑
ijkl

α
(n)
ijkl log p(xij , yij , Cij = l, Zij = k|Θ).

(17)
As in section 3.2, maximization of the expected complete
data log-likelihood (17) can be reformulated as an equiva-
lent minimization problem by applying (15),1

g(Θ; Θ(n)) =
∑
ij

K∑
k=1

L∑
l=1

α
(n)
ijkl

(
1

2
log |Σk|

+
1

2
‖Rixij + ti − µk‖2Σ−1

k

− log πk − log ρkl

)
. (18)

To simplify the expression (17), we first define the
marginal latent posteriors by summing over the latent fea-
ture variable α(n)

ijk =
∑
l α

(n)
ijkl. This enables our loss (18) to

be rewritten as,
1See the supplementary material for a detailed derivation.



Figure 3. Overview of our EM-based registration. The parameters
updated after each step are indicated on the arrow.

g(Θ; Θ(n))= f(Θ; Θ(n))−
∑
ij

K∑
k=1

L∑
l=1

α
(n)
ijkl log ρkl. (19)

Here, f(Θ; Θ(n)) is the corresponding loss (7) in the stan-
dard GMM-based registration. This implies that the trans-
formation parameters (Ri, ti) and the spatial mixture pa-
rameters (πk,µk,Σk) can be obtained as in section 3.2.
However, in our method, the latent posteriors given by
(16) are used in the M-step. Different from section 3, our
marginal latent posteriors α(n)

ijk thus also integrate feature in-
formation into the EM-procedure. Finally, the feature distri-
bution weights are obtained by minimizing the second term
in (19) using Lagrangian multipliers,1

ρ
(n)
kl =

∑
ij α

(n)
ijkl∑

ij α
(n)
ijk

, k = 1, . . . ,K. (20)

We incorporate the estimation of the feature distribution pa-
rameters (20) in the second CM-step (see section 3.2), along
with the estimation of the other mixture parameters. Fig-
ure 3 shows an overview of our approach.

4.3. Feature Description

Here, we provide a detailed description of how the dis-
tribution of features is modeled, by the selection of feature
mixture components Bl. We restrict our discussion to color
features. In our model, the feature observations are repre-
sented by an HSV triplet y = (yH , yS , yV ) ∈ Ω = [0, 1]3.
In this work, we use second order B-splines to construct the
feature componentsBl. However, other functions with sim-
ilar characteristics can also be used. Each component Bl
is a separable function Bl(y) = alB

1
l (yH)B2

l (yS)B3
l (yV ).

In each dimension, the component is given by a scaled and
shifted second order B-spline function Bil . The constant al
is a normalization factor given by the condition

∫
Ω
Bl = 1.

The components Bl are placed in a regular grid inside the
unit cube Ω = [0, 1]3. The spacing between the components
is set to 1/Ld along feature dimension d, where Ld denotes
the number of components in dimension d. The total num-
ber of components is hence L =

∏
d Ld.

Similar to GMMs, our method is able to model multi-
modal color distributions. However, our choice of nonpara-
metric mixture components Bl is computationally benefi-
cial. In contrast, employing a standard GMM in the color
space requires computation of the color means and covari-
ances in the EM-procedure. Our approach further allows
the probabilities Bl(yij) to be precomputed for all points.

Figure 4. An RGB-D frame from the Stanford Lounge dataset,
containing the RGB image (left) and the depth (right).

5. Experiments
We perform a comprehensive quantitative and qualitative

evaluations on one RGB-D and two Lidar datasets.

5.1. Details and Parameters

We use the same number of spatial components K =
500, the same outlier ratio π0 = 0.005 and 100 EM-
iterations for both the standard JRMPS and our color-based
versions. We also initialize all methods with the same pa-
rameters for the spatial GMM. The initial means µ

(0)
k are

uniformly sampled on a sphere with the radius equal to the
standard deviation of the point distribution. As in [5], we
fix the spatial component weights πk to uniform, since we
did not observe any improvement in updating them. The
feature component weights ρkl are initialized by uniformly
sampling the L − 1 simplex for each k. Our approach is
implemented in Matlab. Compared to the baseline JRMPS,
our approach marginally increases the computation time (25
to 27 sec. on a single core), for 2000 points per set.

For the direct approach, presented in section 4.1.1, the
joint components are constructed as products of a spa-
tial Gaussian and a feature component F (v, y; θk) =
N (v;µk,Σk)Blk(y). Here, Blk is constructed as in sec-
tion 4.3, and the index lk ∈ {1, . . . , L} is selected ran-
domly for each component k. For the independent approach
(section 4.1.2), we also set the feature components based
on the B-splines presented in section 4.3. That is, we set
F̃ (y; θ̃l) = Bl(y) in (9). For all methods, we use Ld = 4
feature components in each dimension of the HSV space,
which gives L = 64 feature components in total. For both
the direct and independent approaches, we also employ the
additional uniform outlier component (see section 3.1).
Evaluation Criteria: We compute the rotation errors com-
pared to the ground truth by measuring the Frobenius dis-
tance between rotation matrices [5]. The rotation error is
defined as ‖R̂ − R ‖F , where R̂ and R are the estimated
and ground-truth relative rotations between two point sets.

5.2. Stanford Lounge Dataset

We perform experiments on the Stanford Lounge Dataset
[19], consisting of 3000 RGB-D frames taken by a Kinect.
Figure 4 contains an example frame. We use the estimated
poses, provided by the authors, as ground truth.



Avg. error Std. dev. Failure rate (%)

ICP [1] 4.32 ·10−2 2.53 ·10−2 15.70
GMMReg [9] 6.09 ·10−2 2.31 ·10−2 59.04
Color GICP [11] 1.72 ·10−2 1.75 ·10−2 1.27
JRMPS [5] 1.68 ·10−2 1.24 ·10−2 3.41

Direct Approach 1.91 ·10−2 1.30 ·10−2 2.14
Independent Approach 1.68 ·10−2 1.24 ·10−2 3.41
Our Approach 1.47 ·10−2 1.01 ·10−2 0.74

Table 1. A comparison with other registration methods on the Stan-
ford Lounge dataset. We report the failure rate along with the aver-
age and standard deviation of the inlier rotation errors. Compared
to the baseline JRMPS [5], our approach achieves significantly
better robustness with a relative reduction in the failure rate by
78%. Further, our approach outperforms other color based meth-
ods, including Color GICP [11].

5.2.1 Pairwise Registration

We compare our approach with several state-of-the-art
methods with publicly available code, namely ICP2 [1],
GMMReg [9], Color GICP3 [11], and the baseline JRMPS
[5]. To ensure a significant initial transformation, we per-
form registration between frame number n and n + 5, for
all frames n in the dataset. We randomly downsample the
frames to 10000 points. As a measure of robustness, we
report the failure rate defined as the percentage of rotation
errors larger than 0.1 (approximately 4 degrees). We further
define a registration to be an inlier if the error is smaller than
0.1. We compute the average and standard deviation of the
inlier rotation errors, as measures of accuracy.

The results are reported in Table 1. The standard ICP
obtains inferior performance with a failure rate of 15.7%.
The baseline JRMPS achieves a failure rate of 3.41%. The
Color GICP provides competitive results with a failure rate
of 1.27%. The two standard color extensions, using the in-
dependent and direct approaches, provides the failure rates
3.41% and 2.14% respectively. Our approach achieves the
best results on this dataset, with a failure rate of 0.74%. Ad-
ditionally, our method obtains a significant reduction of the
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Figure 5. An analysis of the number of feature mixture com-
ponents L, on the Stanford Lounge dataset. We compare our
approach with the baseline JRMPS and the two standard color-
extensions. We show the average inlier rotation error (left) and
failure rate (right) for different numbers of components per feature
dimensionLd in the HSV space. Our approach provides consistent
improvements compared to the other probabilistic approaches.

Avg. error Std. dev. Failure rate (%)

JRMPS [5] 0.913 ·10−2 0.636 ·10−2 0.467
Ours 0.768 ·10−2 0.539 ·10−2 0.067

Table 2. A comparison of joint multi-view registration on the Stan-
ford Lounge dataset, in terms of average inlier error, standard de-
viation and failure rate. Our approach significantly reduces the
relative failure rate with 86% compared to JRMPS.
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Figure 6. A joint multi-view registration comparison of our
method with JRMPS [5] on the Stanford Lounge dataset. The re-
call plot (left) shows the fraction of correct registrations over a
range of rotation-error thresholds. The convergence plot (right)
shows the average frame-to-frame inlier rotation error after each
EM iteration. Our method demonstrates superior accuracy and ro-
bustness, while achieving faster convergence.

average rotation error by 12.5% compared to JRMPS.
In figure 5 we investigate the impact of varying the

number of feature components L on the Stanford Lounge
dataset, when using 2000 points per set.4 The left plot shows
the average frame-to-frame rotation error for inliers, when
increasing the number of components per HSV-dimension
from 2 to 7. As a reference, we also include the base-
line JRMPS. The independent approach (section 4.1.2) pro-
vides similar results to JRMPS. The direct approach (sec-
tion 4.1.1), requires a larger amount of data points when
increasing the number of feature components. The perfor-
mance therefore rapidly degrades as the number of feature
components is increased. Contrary to this, our model ben-
efits from increasing the number of feature components,
leading to improved results.

5.2.2 Joint Multi-view Registration

Here, we investigate the performance of our approach for
joint registration of multiple point sets. Alignment of mul-
tiple point sets is important in many applications. Most reg-
istration methods [1, 7, 11] are however limited to pairwise
registration. In these cases, multi-view registration must be
performed either by sequential pair-wise alignment or by
performing a one-versus-all strategy, leading to drift or bi-
ased solutions. Similar to JRMPS [5], our method is able to
jointly register an arbitrary number of point sets. We per-
form joint registration of every 10 consecutive frames, with

2We use the built-in MATLAB implementation of ICP.
3We use the Color GICP implemented in Point Cloud Library.
4Analysis of K and π0 is provided in the supplementary material.
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(a) Lidar Indoor dataset.
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(b) Lidar Outdoor dataset.
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Figure 7. Initialization robustness comparison on the Lidar Indoor
(a) and Outdoor (b) datasets. The left plots show the recall at a
threshold of 0.025. The recall is computed over 100 randomly
sampled rotation axes for each angle. The right plots contain the
total recall over all registrations, plotted with respect to the error
threshold. Compared to previous methods, our approach provides
superior robustness, while maintaining the accuracy.

an interval of 9 frames, on the Stanford Lounge dataset.
This implies that joint multi-view registration is performed
on frame 1-10, 10-19, etc. Table 2 contains the results,
by measuring the frame-to-frame rotation errors. Our color
based model reduces the relative failure rate by 86% com-
pared to the baseline JRMPS. In case of average rotation er-
ror, our approach provides a significant reduction of 15.9%.

Figure 6 shows the recall and convergence rate plots. Re-
call is computed as the fraction of frame-to-frame rotation
errors smaller than a threshold. In figure 6, the recall is plot-
ted over a range of error thresholds. To compare the conver-
gence rate of our method with the baseline JRMPS, we plot
the average frame-to-frame inlier rotation error after each
EM iteration. Our method converges in significantly fewer
iterations, enabling a more efficient registration.

5.3. Lidar Datasets

We experimented with two Lidar datasets, acquired by a
FARO Focus3D. Both consist of more than a million col-
ored 3D points in a single 360 degree view. The Indoor
dataset is visualized in figure 1 and the Outdoor dataset
is visualized in figure 8. We compare with state-of-the-art
methods by evaluating the robustness to initial rotation er-
rors. Registration is performed using initial rotation errors
between 0 and 180 degrees with an interval of 5 degrees.
For every angle, we uniformly sample 100 random rotation

(a) Color GICP. (b) Ours.
Figure 8. Registration of an outdoor scene captured by a Lidar.
Color GICP (a) fails to register the point sets due to a large initial
transformation. Our approach (b) accurately register the point sets.

axes. The point sets are constructed by randomly sampling
points from the single Lidar scan. For each transformation,
we sample two sets with 2000 points each. One of the sets
is then transformed with the rotation defined by its corre-
sponding axis and angle. We plot the recall at a rotation
error threshold of 0.025 (approximately 1 degree) with re-
spect to the initial angle. We also compare the total recall
over all registrations.
Lidar Indoor Dataset: Figure 7a shows the angle robust-
ness comparison in terms of angle recall and total recall.
ICP, GMMreg and Color GICP struggle for initial angles
larger than 60 degrees. The robustness of JRMSP starts to
degrade at an initial angle of 90 degrees. Our approach pro-
vides consistent registrations for angles up to 180 degrees.
Lidar Outdoor Dataset: Figure 7b shows the initial angle
robustness comparison on the Lidar Outdoor dataset. As
in the Indoor dataset, the ICP and Color GICP provides in-
ferior results due to large initial transformations. Our ap-
proach provides consistent improvements compared to the
JRMPS. Figure 8 shows a qualitative comparison between
Color GICP and our approach on this dataset.

6. Conclusions
In this work, we propose a novel probabilistic approach

to incorporate color information for point set registration.
Our method is based on constructing an efficient mixture
model for the joint point-color observation space. An EM
algorithm is then derived to estimate the parameters of the
mixture model and the relative transformations.

Experiments are performed on three challenging
datasets. Our results clearly demonstrate that color infor-
mation improves accuracy and robustness for point set reg-
istration. We show that a careful integration of spatial and
color information is crucial to obtain optimal performance.
Our approach exploits the discriminative color information
associated with each point, while preserving efficiency.
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