
Abstract
Traffic sign recognition is important for the development of driver assistance 
systems and fully autonomous vehicles. We propose to use locally segmented 
contours combined with an implicit star-shaped object model as prototypes for 
the different sign classes. The contours are matched efficiently by using a 
correlation based matching scheme for Fourier descriptors. We demonstrated on 
a publicly available database state of the art performance.

Contributions:
The main contributions of this paper are:
1) Extending the work in [1] with an implicit star-shaped object model, leading to 
improved performance.
2) Removing the need for a region-of-interests detector used in [1] leading to a fully 
automatic system.
3) Releasing a database with more than 4000 hand labeled frames containing a 
total of 3488 traffic signs.
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Fig. 3. Extracted local features (green contours) and corresponding
vectors (red arrows) pointing towards the center of the traffic sign.

vk is simply the vector from the center of the local feature
to the center of the object, see Fig. 3. This can be seen
as a simple implicit star-shaped object model [14] where
each local feature is connected to the center of the object.
The combination of FDs and corresponding spatial vectors
gives the final traffic sign prototype as

P = {(Ck,vk)} k = 1..K (11)

where K is the total number of contours for the prototype.

D. Matching Sign Prototypes

From a query image J contours qj are extracted, see
Fig. 1 left, and represented by their FDs Qj . For each
sign prototype, all prototype contours Ck are compared
to all extracted contours Qj using (8):

ejk = 2− 2max
l

Re{F−1{Q̄j ·Ck}(l)} . (12)

This results in the binary matrix M = (m)jk of matched
contours, see Fig. 1 left, with

mjk =

�
1 ejk ≤ θk
0 ejk > θk

(13)

where θk is a manually selected threshold for each pro-
totype contour k.

The next step is to verify which combinations of
matched contours Qj fit to the spatial configuration of
the sign prototype. This is done by a cascaded matching
scheme. For each individual match mjk, we obtain by
means of (10) parameters sk and tk and compute an
estimate v�

jk = sjkvk + tjk.
The vector v�

j1 defines a hypothesized prototype center.
We then go through all prototype contours k = 2 . . .K
and verify for all mik �= 0, i �= j, that sik/sj1 is
sufficiently close to 1 and that v�

ik is sufficiently close
to the hypothesized prototype center. These contours are
consistent with respect to scale and location and if only
if sufficiently many contours are consistent, a detection
of the corresponding sign is flagged, see Fig. 1 right.

E. Dataset

A dataset has been created by recording sequences from
over 350 km of Swedish highways and city roads. A 1.3
mega-pixel color camera, a Point-Grey Chameleon, was
placed inside a car on the dashboard looking out of the
front window. The camera was pointing slightly to the
right, in order to cover as many relevant signs as possible.

(a) (b) (c) (d) (e) (f) (g)

(A) (B) (C) (D) (E) (F) (G)
Fig. 4. First row: Synthetic signs used to create models. Second row:
Corresponding real world examples.

The lens had a focal length of 6.5mm, resulting in approx-
imately 41 degrees field of view. Typical speed signs on
motorways are about 90 cm wide, which corresponds to
a size of about 50 pixel if they are to be detected at a
distance of about 30 m.

A human operator started the recording whenever a
traffic sign was visible and stopped the recording when
no more signs were visible. In total, in over 20 000
frames have been recorded of which every fifth frame has
been manually labeled. The label for each sign contains
sign type (pedestrian crossing, designated lane right, no
standing or parking, priority road, give way, 50 kph, or 30
kph), visibility status (occluded, blurred, or visible) and
road status (whether the signs is on the road being traveled
or on a side road). The entire database including ground
truth is available on https://www.cvl.isy.liu.se/research/
traffic-signs-dataset.

III. EXPERIMENTS

Synthetic images of Swedish road signs, see bottom
row of Fig. 4, were used for creating models according
to the methodology described in Sec. II-C. The sign
models were then matched against real images from two
datasets. The first dataset, denoted Manually ROIs dataset,
is the one used in [5] which is using patches from
bounding boxes of 200x200 pixels, see Fig. 4. The second
evaluation was done on the the newly collected dataset,
denoted Summer dataset, see Sec. II-E. All processing is
done frame wise not using temporal clues.

Note that the evaluation was done using grey scale
images and do not use the distinct colors of the signs as a
descriptor. The images used correspond to the red channel
of a normal color camera. This is easily achieved by
placing a red-pass filter in front of an ordinary monochro-
matic camera. Using normal grey-scale conversion would
be problematic since some of the signs are isoluminant,
e.g. sign (c) in Fig. 4. The reason for not using colors is
that color cameras have lower frame rates given a fixed
bandwidth and resolution. High frame rates are crucial
for cameras to be used within the automotive industry.
Higher frame rates mean for example higher accuracy
when estimating the velocity of approaching cars.

A. Results Manually ROIs dataset

The first dataset is used in order to compare to
the reported results in [5] and contains 316 regions-of-
interests (ROIs) of 200x200 pixels, see Fig. 4. The ROIs
were manually extracted around 216 signs and 100 non-
signs. The result is summarized in table I. This dataset
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Prototypes:
Prototypes are created from synthetic icons of the different sign types. 
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Abstract—Traffic sign recognition is important for the de-
velopment of driver assistance systems and fully autonomous
vehicles. Even though GPS navigator systems works well
for most of the time, there will always be situations when
they fail. In these cases, robust vision based systems are
required. Traffic signs are designed to have distinct colored
fields separated by sharp boundaries. We propose to use
locally segmented contours combined with an implicit star-
shaped object model as prototypes for the different sign
classes. The contours are described by Fourier descriptors.
Matching of a query image to the sign prototype database is
done by exhaustive search. This is done efficiently by using
the correlation based matching scheme for Fourier descrip-
tors and a fast cascaded matching scheme for enforcing
the spatial requirements. We demonstrated on a publicly
available database state of the art performance.

I. INTRODUCTION

Traffic sign recognition is important for the develop-
ment of driver assistance systems and fully autonomous
vehicles. Even though GPS navigator systems work well
for most of the time, there will always be situations
when no GPS-signal is available or when the map is
invalid, temporary sign installations near road works just
to mention one example. In these cases, robust vision
based systems are required, preferably making use of
monochromatic images.

A. Related Work
Many different approaches to traffic sign recognition

have been proposed and there are commercial vision
based systems available, for example in Volkswagen
Phaeton, Saab 9-5 and in the BMW 5 and 7 series.

One common approach is to threshold in a carefully
chosen color space, e.g. HSV [1], HSI [2] or CBH [3],
in order to obtain a (set of) binary image(s). This is
then followed by detection and classification using the
authors favorite choice of classifier, e.g. support vector
machines [4] or Neural networks [1], [2]. Another com-
mon approach is to consider an edge map using e.g.
Fourier descriptors [5], Hough transform [6] or distance
transforms [7]. For an excellent overview of existing
approaches see [2].

One thing that most published methods have in com-
mon is that they report excellent results on their own data
sets. Typically they achieve more than 95% recognition
rate with very few false positives. However, there are
unfortunately no publicly available database for compar-
ing different road sign recognition systems. Meaning that
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Fig. 1. Left: Contours that matched any of the contours in the pedestrian
crossing prototype are shown in a non-yellow color. Right: The final
results after matching against all sign prototypes.

most authors report results on their own dataset and do
not provide any means of comparing against their method.
One of the main contributions of this paper is to provide a
labeled database of more than 4000 frames captured while
driving 350 km on highways and in city environment.

B. Main Contribution
The main contributions of this paper are:
1) Extending the work [5] with an implicit star-shaped

object model, leading to improved performance.
2) Removing the need for a region-of-interests detector

used in [5], leading to a fully automatic system.
3) Releasing a database with more than 4000 hand

labeled frames (more than 3488 traffic signs).

II. METHODS

The proposed method consists of three steps: extrac-
tion of Fourier descriptors (FDs), matching of FDs, and
matching of previously acquired prototypes with spatial
models.

A. Fourier Descriptors
Fourier descriptors (FDs) [8] is a classic and still

popular method for contour matching. The key idea is to
apply the Fourier transform to a periodic representation
of the boundary, which results in a shape descriptor in the
frequency domain.

In line with Granlund [8], the closed contour c with
coordinates x and y is parameterized as a complex valued
periodic function

c(l) = c(l + L) = x(l) + iy(l), (1)

where L is the contour length, usually given by the
number of contour samples.1 By taking the 1D Fourier

1We treat contours as continuous functions here, where the contour
samples can be thought as of impulses with appropriate weights.

transform of c, the Fourier coefficients C are obtained as

C(n) =
1

L

� L

l=0
c(l) exp(− i2πnl

L
) dl n = 0, ..., N, (2)

where N ≤ L is the descriptor length.
One reason for the popularity of FDs is that they are

easy to interpret. Each coefficient has a clear physical
meaning and using only a few of the low frequency
coefficients is equivalent to smoothing the contour. See
Fig. 2 where we reconstruct a pedestrian outline starting
with two low frequency coefficients and gradually add
more and more high frequency components.

2 3 4 5 6 8 10
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Fig. 2. Reconstruction of a detail from a Swedish pedestrian crossing
sign using increasing number (shown above respective contour) of
Fourier coefficients.

Another strength and reason for popularity of FDs
is their behavior under geometric transformations. The
DC component C(0) is the only one that is affected
by translations c0 of the curve c(l) �→ c(l) + c0. By
disregarding this coefficient, the remaining N − 1 co-
efficients are invariant under translation. Scaling of the
contour, i.e. c(l) �→ ac(l), affects the magnitude of the
coefficients and the coefficients can thus be made scale
invariant by normalizing with the energy (after C(0) has
been removed). Without loss of generality, we assume
that �C�2 = 1 (� · �2 denotes the quadratic norm) and
C(0) = 0 in what follows.

Rotating the contour c with φ radians counter clock-
wise corresponds to multiplication of (1) with exp(iφ),
which adds a constant offset to the phase of the Fourier
coefficients

c(l) �→ exp(iφ)c(l) ⇒ C(n) �→ exp(iφ)C(n) . (3)

Furthermore, if the index l of the contour is shifted by
∆l, a linear offset is added to the Fourier phase, i.e. the
spectrum is modulated

c(l) �→ c(l −∆l) ⇒ C(n) �→ C(n) exp(− i2πn∆l

L
) .

(4)
When we use the term shift we always refer to a shift
in the starting point for sampling, this should not be
confused with translation which we use to denote spatial
translation of the entire contour.

B. Matching of FDs
Since rotation and index-shift result in modulations of

the FD, it has been suggested to neglect phase infor-
mation in order to be invariant to these transformations.

However, as pointed out by Oppenheim and Lim [9],
most information is contained in the phase and simply
neglecting it means to throw away information. Matching
of magnitudes ignores a major part of the signal structure
such that the matching is less specific. According to (3)
and (4), the phase of each FD component is modified
by a rotation of the corresponding trigonometric basis
function, either by a constant offset or by a linear offset.
Considering magnitudes only can be seen as finding the
optimal rotation of all different components of the FD
independently. That is, given a FD of length N −1, mag-
nitude matching corresponds to finding N − 1 different
rotations instead of estimating two degrees of freedom
(constant and slope). Due to the removal of N−3 degrees
of freedom, two contours can be very different even
though the magnitude in each FD component is the same.

Recently, a new efficient correlation based matching
method for FDs was proposed by Larsson et al. [5]. This
approach is partly similar to established methods such
as [10], [11], but differs in some respects: Complex FDs
are directly correlated to find the relative rotation between
two FDs without numerically solving equation systems:
Let T denote a transformation corresponding to rotation
and index-shift. Let c1 and c2 denote two normalized
contours, then

min
T

�c1 − T c2�2 = 2− 2max
l

|r12(l)| (5)

where |·| denotes the complex modulus and the cross cor-
relation r12 is computed between the Fourier descriptors
C1 and C2 according to [12], p. 244–245,

r12(k) = (c1 � c2)(k)
.
=

� L

0
c̄1(l)c2(k + l) dl (6)

= F−1{C̄1 · C2}(k) . (7)

In particular, if c�1 and c�2 denote two contours so that
c�2 = T �c�1, where T � denotes a transformation covering
scaling, translation, rotation and index-shift, then

min
T

�c�1 − T c�2�2 = 2− 2max
l

|r12(l)| = 0 . (8)

The parameters of the transformation T that minimizes
(8) are given as

∆l = argmax
l

|r12(l)| φ = arg r12(∆l) (9)

s =
(
�∞

n=1 |C �
1(n)|2)

1
2

(
�∞

n=1 |C �
2(n)|2)

1
2

t = C �
1(0)− C �

2(0)(10)

C. Sign Prototypes
A traffic sign prototype is created from a synthetic

image of the traffic sign, see first row in Fig. 4. The
synthetic image is low-pass filtered before local contours
are extracted using Maximally Stable Extremal Regions
(MSER)[13]. Each extracted contour ck is described by
its Fourier descriptor Ck.

In order to describe the spatial relationships between
the local features an extra component vk is added, cre-
ating a pair (Ck,vk) where the first component captures
the local geometry (contour) and the second component
the global geometry of the sign. This second component

Fig. 3. Extracted local features (green contours) and corresponding
vectors (red arrows) pointing towards the center of the traffic sign.

vk is simply the vector from the center of the local feature
to the center of the object, see Fig. 3. This can be seen
as a simple implicit star-shaped object model [14] where
each local feature is connected to the center of the object.
The combination of FDs and corresponding spatial vectors
gives the final traffic sign prototype as

P = {(Ck,vk)} k = 1..K (11)

where K is the total number of contours for the prototype.

D. Matching Sign Prototypes

From a query image J contours qj are extracted, see
Fig. 1 left, and represented by their FDs Qj . For each
sign prototype, all prototype contours Ck are compared
to all extracted contours Qj using (8):

ejk = 2− 2max
l

Re{F−1{Q̄j ·Ck}(l)} . (12)

This results in the binary matrix M = (m)jk of matched
contours, see Fig. 1 left, with

mjk =

�
1 ejk ≤ θk
0 ejk > θk

(13)

where θk is a manually selected threshold for each pro-
totype contour k.

The next step is to verify which combinations of
matched contours Qj fit to the spatial configuration of
the sign prototype. This is done by a cascaded matching
scheme. For each individual match mjk, we obtain by
means of (10) parameters sk and tk and compute an
estimate v�

jk = sjkvk + tjk.
The vector v�

j1 defines a hypothesized prototype center.
We then go through all prototype contours k = 2 . . .K
and verify for all mik �= 0, i �= j, that sik/sj1 is
sufficiently close to 1 and that v�

ik is sufficiently close
to the hypothesized prototype center. These contours are
consistent with respect to scale and location and if only
if sufficiently many contours are consistent, a detection
of the corresponding sign is flagged, see Fig. 1 right.

E. Dataset

A dataset has been created by recording sequences from
over 350 km of Swedish highways and city roads. A 1.3
mega-pixel color camera, a Point-Grey Chameleon, was
placed inside a car on the dashboard looking out of the
front window. The camera was pointing slightly to the
right, in order to cover as many relevant signs as possible.
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Fig. 4. First row: Synthetic signs used to create models. Second row:
Corresponding real world examples.

The lens had a focal length of 6.5mm, resulting in approx-
imately 41 degrees field of view. Typical speed signs on
motorways are about 90 cm wide, which corresponds to
a size of about 50 pixel if they are to be detected at a
distance of about 30 m.

A human operator started the recording whenever a
traffic sign was visible and stopped the recording when
no more signs were visible. In total, in over 20 000
frames have been recorded of which every fifth frame has
been manually labeled. The label for each sign contains
sign type (pedestrian crossing, designated lane right, no
standing or parking, priority road, give way, 50 kph, or 30
kph), visibility status (occluded, blurred, or visible) and
road status (whether the signs is on the road being traveled
or on a side road). The entire database including ground
truth is available on https://www.cvl.isy.liu.se/research/
traffic-signs-dataset.

III. EXPERIMENTS

Synthetic images of Swedish road signs, see bottom
row of Fig. 4, were used for creating models according
to the methodology described in Sec. II-C. The sign
models were then matched against real images from two
datasets. The first dataset, denoted Manually ROIs dataset,
is the one used in [5] which is using patches from
bounding boxes of 200x200 pixels, see Fig. 4. The second
evaluation was done on the the newly collected dataset,
denoted Summer dataset, see Sec. II-E. All processing is
done frame wise not using temporal clues.

Note that the evaluation was done using grey scale
images and do not use the distinct colors of the signs as a
descriptor. The images used correspond to the red channel
of a normal color camera. This is easily achieved by
placing a red-pass filter in front of an ordinary monochro-
matic camera. Using normal grey-scale conversion would
be problematic since some of the signs are isoluminant,
e.g. sign (c) in Fig. 4. The reason for not using colors is
that color cameras have lower frame rates given a fixed
bandwidth and resolution. High frame rates are crucial
for cameras to be used within the automotive industry.
Higher frame rates mean for example higher accuracy
when estimating the velocity of approaching cars.

A. Results Manually ROIs dataset

The first dataset is used in order to compare to
the reported results in [5] and contains 316 regions-of-
interests (ROIs) of 200x200 pixels, see Fig. 4. The ROIs
were manually extracted around 216 signs and 100 non-
signs. The result is summarized in table I. This dataset

Method:
1. Extract all contours c(l) from the query image

2. Represent each contour as a Fourier descriptor (FD)

3. Match all query FDs (Qj) against the individual FDs (Ck) for each prototype

4. Report a match for FDs that matches the individual contours of a prototype    
and also adheres to the spatial requirements.  

Contours Fourier Descriptors
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ROIs were manually extracted around 216 signs and 100 non-signs. The result

is summarized in table 1. This dataset is fairly simple and the proposed method

increases the already good performance of [10]. Using constraints on the spatial

arrangement of contours removes some of the false positives (FPs) while keeping

the same recall level or increasing it by allowing for less strict thresholds on the

individual contours. The classes Priority road and Give way are unaffected since

they consist of a single contour each, thus not benefiting from the added spatial

constraints.

Proposed method [1]

Sign type Recall #FP Recall #FP

Pedestrian crossing 98.0 0 98.0 1

Designated lane right 95.8 0 95.8 2

No standing or parking 100.0 0 96.6 1

50 kph 91.7 2 91.7 2

30 kph 95.8 1 95.8 1

Priority road 95.7 0 95.7 1

Give way 94.7 0 94.7 2

Table 1. Performance on the Manually ROIs dataset for the method presented in [10]

and the proposed algorithm.

3.2 Results Summer dataset

The second evaluation is done on the new Summer dataset, see Sec. 2.5 for details

regarding the dataset. The evaluation was limited to include signs for the road

being traveled on with a bounding box of at least 50x50 pixels, corresponding to

a sign more than 30 m from the camera. Table 2 contains the results for the same

sign classes that was used in the Manually ROIs dataset, with one exception.

The class 30kph was removed since only 11 instances of the sign was seen, not

giving sufficient statistics. The entire image was giving as query without any

ROIs.

The recall rate for the classes Pedestrian crossing and Designated lane right
are above 90% while the 50 kph, Priority road and No standing or parking classes

Sign type Total Signs Precision Recall

Pedestrian crossing 158 96.03 91.77

Designated lane right 107 100.00 95.33

No standing or parking 44 97.14 77.27

50 kph 67 100.0 76.12

Priority road 198 98.66 74.24

Give way 67 59.26 47.76

Table 2. Results on the Summer dataset for the proposed method.
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arrangement of contours removes some of the false positives (FPs) while keeping

the same recall level or increasing it by allowing for less strict thresholds on the

individual contours. The classes Priority road and Give way are unaffected since

they consist of a single contour each, thus not benefiting from the added spatial
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and the proposed algorithm.
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The second evaluation is done on the new Summer dataset, see Sec. 2.5 for details

regarding the dataset. The evaluation was limited to include signs for the road

being traveled on with a bounding box of at least 50x50 pixels, corresponding to

a sign more than 30 m from the camera. Table 2 contains the results for the same

sign classes that was used in the Manually ROIs dataset, with one exception.

The class 30kph was removed since only 11 instances of the sign was seen, not

giving sufficient statistics. The entire image was giving as query without any

ROIs.

The recall rate for the classes Pedestrian crossing and Designated lane right
are above 90% while the 50 kph, Priority road and No standing or parking classes

Sign type Precision Recall

Pedestrian crossing 96.03 91.77

Designated lane right 100.00 95.33

No standing or parking 97.14 77.27

50 kph 100.0 76.12

Priority road 98.66 74.24

Give way 59.26 47.76

Table 2. Results on the Summer dataset for the proposed method.

It is also shown in [10] that considering the maximum of the real part instead
of the absolute value in (7), corresponds to not compensating for the rotation,
i.e. rotation variant matching is given according to

min
∆l

�c�1 − c�2(∆l)�2 = 2− 2max
l

Re{r12(l)} . (10)

2.3 Sign Prototypes

A traffic sign prototype is created from a synthetic image of the traffic sign,
see first row in Fig. 5. The synthetic image is low-pass filtered before local
contours are extracted using Maximally Stable Extremal Regions (MSER)[13].
Each extracted contour ck is described by its Fourier descriptor Ck.

In order to describe the spatial relationships between the local features an
extra component vk is added, creating a pair (Ck,vk) where the first component
captures the local geometry (contour) and the second component the global
geometry of the sign. This second component vk is simply the vector from the
center of the local feature to the center of the object, see Fig. 2. This can be
seen as a simple implicit star-shaped object model [11] where each local feature is
connected to the center of the object. The combination of FDs and corresponding
spatial vectors gives the final traffic sign prototype as

P = {(Ck,vk)} k = 1..K (11)

where K is the total number of contours for the sign prototype.
These spatial components effectively removes the need for a region-of-interests

detector as a first step. Even though each Ck might give matches not corre-
sponding to the actual sign, it is seldom that multiple matches vote for the same
position if they not belong to the actual traffic sign.

Fig. 2. Extracted local features (green contours) and corresponding vectors (red ar-
rows) pointing towards the center of the traffic sign
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