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Robust scale estimation is a challenging problem in visual object track-
ing. Most existing methods fail to handle large scale variations in complex
image sequences. This paper presents a novel approach for robust scale
estimation in a tracking-by-detection framework. The proposed approach
works by learning discriminative correlation filters based on a scale pyra-
mid representation. We learn separate filters for translation and scale es-
timation, and show that this improves the performance compared to an
exhaustive scale search while operating at real-time. Our scale estimation
approach is generic as it can be incorporated into any tracking method
with no inherent scale estimation.
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Discriminative Correlation Filters. Our tracking approach is based on
the discriminative correlation filters employed in the MOSSE tracker [1].
Similarly to [2], these filters are extended to multi-dimensional features
for visual tracking. We use HOG features for the translation filter and
concatenate it with image intensity features. In general, we consider a
d-dimensional feature map representation of an image. Let f be a rect-
angular patch of the target, extracted from this feature map. We denote
feature dimension number l ∈ {1, . . . ,d} of f by f l . The objective is to
find an optimal correlation filter h, consisting of one filter hl per feature
dimension. This is achieved by minimizing the cost function:
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Here, g is the desired correlation output associated with the training ex-
ample f and λ ≥ 0 is a regularization parameter. The solution to (1) is:
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Capital letters denote the discrete Fourier transforms (DFTs) of the corre-
sponding functions. We update the numerator Al

t and denominator Bt of
the correlation filter H l

t in (2) separately using a learning rate η :
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The correlation scores y at a patch z in the next frame are computed using
(4). The new target state is found by maximizing the score y.
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Our Scale Estimation Approach. Ideally, an accurate scale estimation
approach should be robust while computationally efficient. To achieve
this, we propose a fast scale estimation approach by learning separate
filters for translation and scale. This helps by restricting the search area
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Figure 1: Precision and success plots illustrating the average distance and
overlap precision respectively over all the 28 sequences. The average
distance precision at 20 pixels for each method is reported in the legend
of the precision plot. The legend of the success plot contains the area-
under-the-curve (AUC) score for each tracker.

Method median OP median DP median CLE median FPS

Baseline (no scale) 37.8 74.5 15.9 44.1
Exhaustive Scale Search (this paper) 52.2 87.6 11.8 0.96
Fast Scale Search (this paper) 75.5 93.3 10.9 24.0

Table 1: Comparison of our fast scale estimation method with the baseline
tracker and our exhaustive scale-space tracker.

to smaller parts of the scale space. In addition, we gain the freedom of
selecting the feature representation for each filter independently.

We augment the baseline method by learning a separate 1-dimensional
correlation filter to estimate the target scale in an image. The training ex-
ample f for updating the scale filter is computed by extracting features
using variable patch sizes centred around the target. Let P×R denote the
target size in the current frame and S be the size of the scale filter. For
each n ∈
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, . . . ,
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2

⌋}
, we extract an image patch Jn of size

anP×anR centred around the target. Here, a denotes the scale factor be-
tween feature layers. The value f (n) of the training example f at scale
level n is set to a HOG-based d-dimensional feature descriptor of Jn. Eq. 3
is then used to update the scale filter hscale with the new sample f .

In visual tracking scenarios, the scale difference between two frames
is typically smaller compared to the translation. Therefore, we first apply
the translation filter htrans given a new frame. Afterwards, the scale filter
hscale is applied at the new target location. An example z is extracted
from this location using the same procedure as for f . By maximizing the
correlation output (4) between hscale and z, we obtain the scale difference.

Evaluation. We employ all the 28 sequences annotated with the scale
variation attribute in the recent evaluation of tracking methods [3]. The
sequences also pose challenging problems such as illumination variation,
motion blur, background clutter and occlusion. The baseline HOG based
tracker with no scale estimation capability is compared with our exhaus-
tive scale space tracker and the fast scale estimation method in table 1.

We additionally compare our approach with 11 state-of-the-art track-
ers. Figure 1 contains the precision and success plots illustrating the mean
distance and overlap precision over all the 28 sequences. In both precision
and success plots, our approach significantly outperforms the compared
methods. In summary, the precision plot demonstrates that our approach
is superior in robustness compared to existing trackers. Similarly, the suc-
cess plot shows that our method estimates the target scale more accurately
on the benchmark sequences.
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