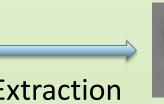
Introduction

Problem

• Color has been largely ignored in the tracking community.

rgb2gray()

Information loss


Motivation

• Recently color representations has been successfully applied to several related areas in computer vision, e.g. object detection.

Baseline

- We start from a baseline tracker, called CSK [1].
- Fastest among the top 10 in the recent evaluation [2].
- Learns a kernelized least squares classifier on the appearance.

Cyclic shifts $x_{m,n}$

Kernelized least squares Coefficients: $A = \frac{1}{U_x + \lambda}$ $u_{\kappa}(m,n) = \kappa(x_{m,n})$ λ is a regularization

Gaussian labels y

Input image

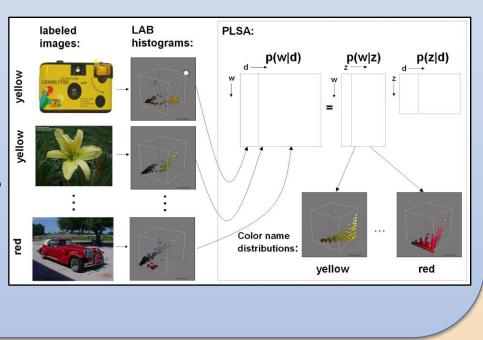
Contributions

- 1. Improved classifier model update scheme.
- 2. Incorporation of color information into the tracker.
- 3. Dynamical selection of color features for tracking.

Improved Update Scheme

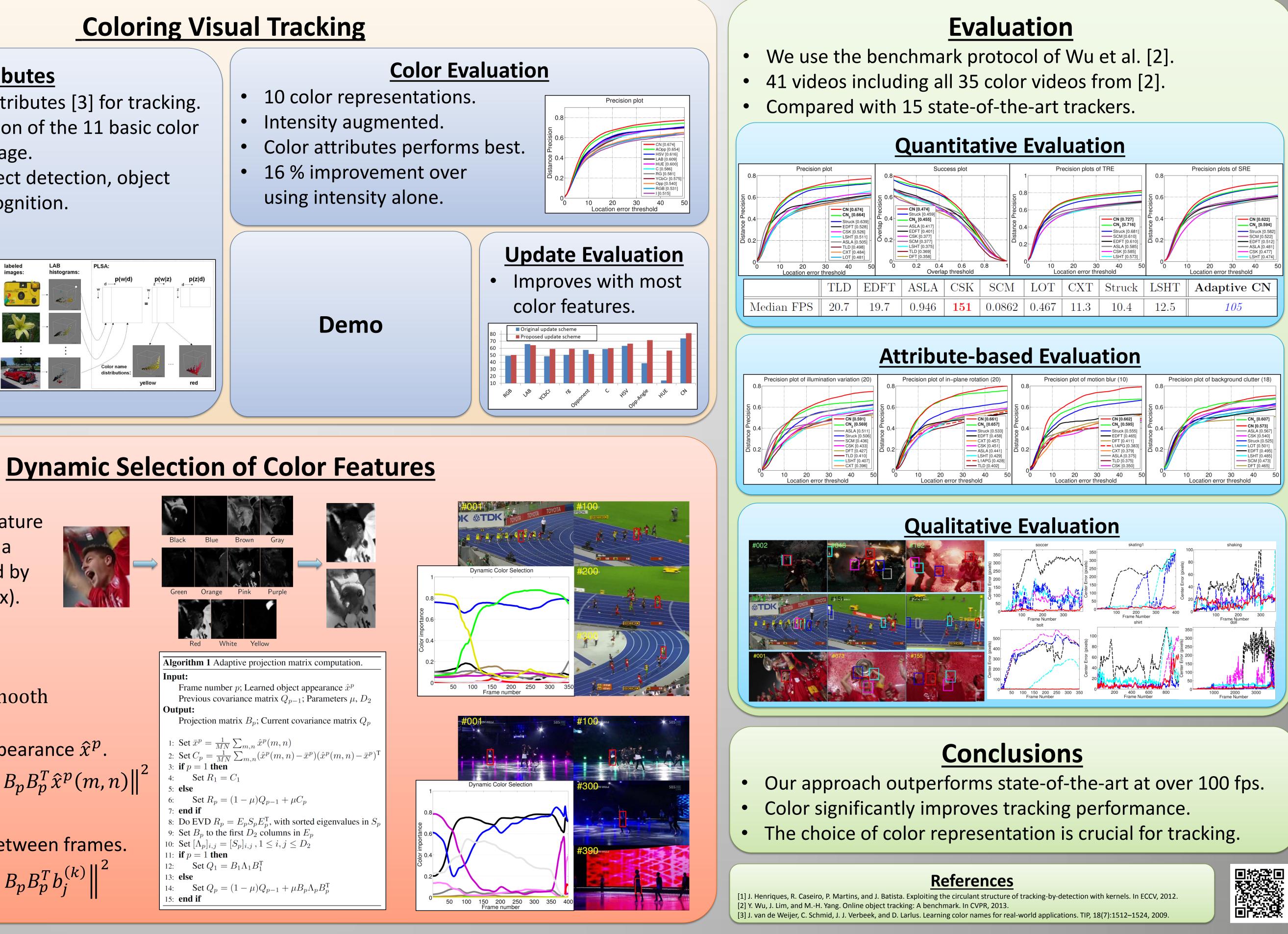
- The original CSK update scheme is: $A^p = (1 \gamma)A^{p-1} + \gamma A$.
- This lacks temporal consistency, and is unstable for high dimensional color representations.
- We consider all target samples simultaneously in one cost to derive a consistent update scheme.
- The constrained weighted sum of errors are minimized by choosing:
- Numerator:
- Denominator:
- > Template appearance: $\hat{x}^p = (1 \gamma)\hat{x}^{p-1} + \gamma\hat{x}$

 $A_N^p = (1 - \gamma)A_N^{p-1} + \gamma Y^p U_x^p$ $A_D^p = (1 - \gamma)A_D^{p-1} + \gamma U_x^p (U_x^p + \lambda)$


Adaptive Color Attributes for Real-Time Visual Tracking Martin Danelljan¹, Fahad Khan¹, Michael Felsberg¹, Joost van de Weijer² ¹Computer Vision Laboratory, Linköping University, Sweden • ²Computer Vision Center, CP Dept. Universitat Autonoma de Barcelona, Spain

Color Attributes

- We propose to use color attributes [3] for tracking.
- A probabilistic representation of the 11 basic color names in the English language.
- Successfully applied to object detection, object recognition and action recognition.


Properties

- Certain degree of photometric invariance.
- Discriminative power due to achromatic colors.
- <u>Compactness</u> due to only 11-D histogram.

Idea

Reduce the number of color feature dimensions by projecting onto a linear subspace, parameterized by an ON-basis B_p ($D_1 \times D_2$ matrix). Dynamically adaptive.

Total cost $\eta_{\text{tot}}^p = \alpha_p \eta_{\text{data}}^p + \sum_{j=1}^{p-1} \alpha_j \eta_{\text{smooth}}^j$ Data term

Reconstruction error of the appearance \hat{x}^p .

$$\eta_{\text{data}}^p = \frac{1}{MN} \sum_{m,n} \left\| \hat{x}^p(m,n) - B_p B_p^T \hat{x}^p(m,n) \right\|^2$$

Smoothness term Amount of subspace change between frames.

 $\eta_{\text{smooth}}^{j} = \sum_{k=1}^{D_2} \lambda_j^{(k)} \left\| b_j^{(k)} - B_p B_p^T b_j^{(k)} \right\|^2$

