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Introduction
Discriminative Correlation Filter (DCF) Trackers: A historical comparison
MOSSE CCOT
[CVPR 2010} [ECCV 2016]
Status Pioneering work, State-of-the-art,
but obsolete winner of VOT2016
Image Raw grayscale Conv layers from a
Features values CNN (and other)
Parameters ~103 ~106
Speed ~1000 FPS ~1 FPS

Problem: Improved tracking p

the cost of increased model size and complexity.
Consequences: (1) Slow tracking, (2) Overfitting

We address (1) computationa

(2) overfitting in state-of-the-art DCF trackers by
* Reducing the model size using factorized convolution
* Introducing a training set model that reduces its size and increases diversity
* Investigating the model update scheme, for better speed and robustness
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Continuous Convolution Operator Tracker (CCOT) [1]

Convolution operator:
Predicts the continuous
detection scores of the
target given a feature
map Xx.

Training loss:
* Least squares
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Our Approach
Factorized Convolution: RSNz . T BlEm-
* Previous Work: Large number of excessive | = A R R R
filters containing negligible energy (right). 2 B SN ) : _"‘
* Leads to slower optimization and overfitting. | > T ZENE
* Our Method: We learn a smaller set of filters |_-| T i | e
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* Factorized convolution operator: : NG i
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* We train f and P jointly by minimizing the regression loss in the first frame.
* The loss is optimized in the Fourier domain using Gauss-Newton and Conjugate Gradient.

e Gain: 6-fold reduction in number of filters. Conv-1 Conv-5 HOG CN
Feature dim., D 96 512 31 11
Filter dim., C 16 64 10 3

Generative Sample Space Model:

* Previous Work: employ a fix |
learning rate a; ~ (1 — )~
* Oldest sample is replaced.

* Costly learning and poor diversity
of training samples (see figure).
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* Updated using an efficient online
* We optimize an approximate expected regression loss by replacing a; and x; with 7; and ;.
* Gain: 8-fold reduction in the number of training samples.

Our Representation
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Model Update and Optimization Strategy

* Previous Work: Most DCF methods update the tracking model in each frame.

* In CCOT, a few (typically five) Conjugate Gradient (CG) iterations is performed each frame.
* Our Method: We only optimize every Ng frame for faster tracking.

* This also causes less overfitting to recent frames, leading to better tracking performance.
* We further propose to use the Polak-Ribiere formula in CG for faster convergence.

* Gain: 6-fold reduction in the number of Conjugate Gradient iterations.

* Requires a large sample limit M, .

Experiments
Baseline Comparison on VOT2016 dataset, deep feature version:
Baseline Factorized Sample Model
C-COT = Convolution = Space Model =— Update
EAO 0.331 0.342 0.352 0.374
FPS (CPU) 0.3 1.1 2.6 6.0
Compl. red. - 6 X 8 X 6 X
VOT2016

ECO:

* Deep features (VGG) + HOG

* 15 FPS on GPU

ECO-HC:

* Hand-crafted features: HOG and CN

* 60 FPS on CPU

e Optimal for UAV and other robotics applications
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CVPR 2017 Trackers OTB-100 AUC (%) Speed (FPS)
ECO (Ours) 70.0 15 (GPU) |Bestresultin
ECO-HC (Ours) 65.0 60 (CPU) | CVPR 2017!
ACFN (J. Choi et al.) 57.5 15 (GPU)
ADNet (S. Yun et al.) 64.6 3 (GPU)
CSR-DCF  (A. Lukezic et al.) 58.7 13 (CPU)
CFNet (J. Valmadre et al.) 58.6 43 (GPU)
LMCF (M. Wang et al.) 56.8 80 (CPU)
MCPF (T. Zhang et al.) 62.8 0.54 (GPU)
Obli-RaF (L. Zhang et al.) 56.5 2 (GPU)
SANet (H. Fan, H. Ling) 69.2 1 (GPU)
Staple.CA (M. Mueller et al.) 59.8 35 (CPU)
References

[1] M. Danelljan, A. Robinson, F. Shahbaz Khan, and M. Felsberg. Beyond correlation filters: Learning continuous

convolution operators for visual tracking. In ECCV, 2016.

[2] A. Declercq and J. H. Piater. Online learning of Gaussian mixture models - a two-level approach. In VISAPP, 2008.




