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Abstract

Visual object tracking is a challenging computer vision
problem with numerous real-world applications. This pa-
per investigates the impact of convolutional features for the
visual tracking problem. We propose to use activations
from the convolutional layer of a CNN in discriminative
correlation filter based tracking frameworks. These acti-
vations have several advantages compared to the standard
deep features (fully connected layers). Firstly, they mitigate
the need of task specific fine-tuning. Secondly, they con-
tain structural information crucial for the tracking problem.
Lastly, these activations have low dimensionality.

We perform comprehensive experiments on three bench-
mark datasets: OTB, ALOV300++ and the recently intro-
duced VOT2015. Surprisingly, different to image classifi-
cation, our results suggest that activations from the first
layer provide superior tracking performance compared to
the deeper layers. Our results further show that the con-
volutional features provide improved results compared to
standard hand-crafted features. Finally, results comparable
to state-of-the-art trackers are obtained on all three bench-
mark datasets.

1. Introduction
Visual tracking is the task of estimating the trajectory of

a target object in an image sequence. It has many impor-
tant real-world applications, such as robotics [11] and road
scene understanding [18]. In the generic tracking problem,
the target can be any object, and only its initial location is
known. This problem is challenging due to several factors,
such as appearance changes, scale variations, deformations
and occlusions. Most state-of-the-art approaches tackle the
tracking problem by learning a discriminative appearance
model of the target object. Such approaches [9, 12, 21] rely
on rich feature representations for describing of the target
and background appearance. This paper investigates robust
feature representations for visual tracking.

Among the discriminative tracking methods, correlation
filter based approaches have recently shown excellent per-
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Figure 1. A comparison of the proposed feature representation
with three commonly employed hand-crafted features, namely im-
age intensity, Color Names (CN) and Histogram of Oriented Gra-
dients (HOG). Tracking results from our DCF tracker on three ex-
ample sequences are shown. The convolutional features used in
our tracker provides a richer description of target apperance, lead-
ing to better performance.

formance on benchmark tracking datasets [24, 39]. These
approaches learn a discriminative correlation filter (DCF),
from example patches of the target appearance. Initially, the
DCF framework was restricted to a single feature channel
(e.g. a grayscale image) [4]. Later works have investigated
extending the single-channel DCF to using multi-channel
feature representations for tracking [12]. However, existing
DCF based approaches [12, 21, 4] suffer from the periodic
boundary effects induced by circular correlation. Only re-
cently, Danelljan et al. [10] proposed Spatially Regularized
Discriminative Correlation Filters (SRDCF) to mitigate the
negative effects of the inherent periodic assumption of the
standard DCF. In this work, we investigate convolutional
features within both the standard DCF framework and the
more recent SRDCF framework.

Initially, most tracking approaches relied on using only
image intensity information or simple color transformations
[4, 30, 32] for feature representation. In recent years, hand-



crafted histogram-based descriptors have shown improved
results for visual tracking. Feature representations such as
HOG [21], Color Names [12] and channel representations
[8] have successfully been employed in DCF based track-
ing frameworks. These descriptors aim at capturing the
shape, color or luminance information of the target appear-
ance. Combining multiple features have also been investi-
gated [28] within a DCF framework.

Recently, Convolutional Neural Networks (CNNs) have
significantly advanced the state-of-the-art in many vision
applications, including object recognition [25, 31] and ob-
ject detection [19]. These networks take a fixed sized RGB
image as input to a sequence of convolution, local normal-
ization and pooling operations (called layers). The final lay-
ers in the network are fully connected (FC), and are typi-
cally used to extract features for classification. CNNs re-
quire a large amount of training data, and are trained on the
large scale ImageNet dataset [13]. It has been shown that
the deep features extracted from the network (the FC layer)
are generic and can be used for a variety of vision applica-
tions [2].

As discussed above, the common strategy is to extract
deep features from the activations of the FC layer of the
pre-trained network. Other than the FC layer, activations
from convolutional layers of the network have recently been
shown to achieve superior results for image classification
[6]. These convolutional layers are discriminative, seman-
tically meaningful and contain structural information cru-
cial for the localization task. Additionally, the use of con-
volutional features mitigates the need of task-specific fine-
tuning employed with standard deep features. In such ap-
proaches, it has been shown that activations from the last
convolutional layer provides improved results compared to
other layers of the same network [6].

In this work, we investigate the impact of convolutional
features in two DCF based tracking frameworks: a standard
DCF framework and the SRDCF framework [10]. Contrary
to in image classification, we show that activations from
the first layer provides superior tracking performance com-
pared to the deeper layers of the network. Finally, we pro-
vide both qualitative and quantitative comparison of convo-
lutional features with standard hand-crafted histogram de-
scriptors, commonly used within the DCF based trackers.

Comprehensive experiments are performed on three
benchmark datasets: the Online Tracking Benchmark
(OTB) [39], the Amsterdam Library of Ordinary Videos for
tracking (ALOV300++) [35] and the Visual Object Track-
ing (VOT) challenge 2015 [1]. Our results demonstrate
that superior performance is obtained by using convolu-
tional features compared to standard hand-crafted feature
representations. Finally, we show that our proposed tracker
achieves state-of-the-art tracking performance on all three
benchmark datasets. Figure 1 provides a comparison of our

tracker employing convolutional features with commonly
used feature representations within the same DCF based
tracking framework.

The paper is organized as follows. Section 2 discusses
related work in tracking and convolutional neural networks.
Our tracking framework is described in section 3. The em-
ployed DCF and SRDCF frameworks are briefly presented
in section 3.1 and section 3.2 respectively, while the used
convolutional features are discussed in section 3.3. Sec-
tion 4 contains the experimental evaluations and results. Fi-
nally, conclusions are provided in section 5.

2. Related Work
The visual tracking problem can be approached using

generative [34, 22] or discriminative [20, 3, 40] appear-
ance models. The latter methods apply machine learning
techniques to discriminate the target appearance from the
background. Recently, the Discriminant Correlation Filter
(DCF) [4] based approaches have achieved state-of-the-art
results on benchmark tracking datasets [24, 39]. The suc-
cess of DCF based methods is evident from the outcome
of the Visual Object Tracking (VOT) 2014 challenge [24],
where the top three entries employ variants of the DCF
framework. Related methods [12, 21] have also shown ex-
cellent results on the Object Tracking Benchmark (OTB)
[39]. In this work, we employ the DCF framework to inves-
tigate the impact of convolutional features for tracking.

The DCF based tracking approaches learn a correla-
tion filter to discriminate between the target and back-
ground appearance. The training data is composed of ob-
served samples of the target appearance and the surround-
ing background. Bolme et al. [4] initially proposed the
MOSSE tracker, which is restricted to using a single fea-
ture channel, typically a grayscale image. Henriques et al.
[21] introduced a kernelized version of the tracker, to al-
low non-linear classification boundaries. More recent work
[12, 9, 21] have achieved significant increase in tracking
performance by investigating the use of multi-dimensional
features in the DCF tracking framework.

Despite their success, it is known that standard DCF
based trackers greatly suffers from the periodic assumption
induced by circular correlation. This leads to inaccurate and
insufficient training samples as well as a restricted search
area. Galoogahi et al. [16] propose to solve a constraint
problem using the Alternating Direction Method of Mul-
tipliers (ADMM) to preserve the correct filter size. This
method is however restricted to using a single feature chan-
nel and hence not applicable for our purpose. Recently,
Danelljan et al. [10] tackles these issues by introducing the
Spatially Regularized DCF (SRDCF). Their approach al-
lows the expansion of the training and search regions with-
out increasing the effective filter size. This increases the
discriminative power and robustness of the tracker, leading



to a significant performance gain. Moreover, the filter is op-
timized directly in the Fourier domain using Gauss-Seidel,
while every ADMM iteration in [16] requires a transition
between the spatial and Fourier domain.

In the last few years, convolutional neural networks
(CNN) have significantly advanced the state-of-the art in
object recognition and detection benchmarks [33]. The
CNNs learn invariant features by a series of convolution and
pooling operations. These layers of convolution and pool-
ing operations are followed by one or more fully connected
(FC) layers. The entire CNNs are trained using raw pixels
with a fixed input size. In order to train these networks, a
large amount of labeled training data [26] is required. The
activations of fully connected layers in a trained deep net-
work are known to contain general-purpose features appli-
cable to several visual recognition tasks such as attribute
recognition, action recognition and scene classification [2].

Interestingly, recent results [6, 29] suggest that improved
performance is obtained using convolutional layer activa-
tions instead of those extracted from the fully connected
layers of the same network. The convolutional layers in
deep networks are discriminative, semantically meaningful
and mitigate the need to apply task specific fine-tuning. The
work of [29] proposes a cross-convolutional layer pooling
approach. The method works by employing feature maps
of one convolutional layer as local features. The image rep-
resentation is obtained by pooling the extracted features us-
ing the feature maps of the successive convolutional lay-
ers. A multi-scale convolutional feature based approach is
proposed by [6] for texture classification and object recog-
nition. In their method, activations from the convolutional
layer of the pre-trained network are used as local features.
Further, it was shown that the activations of the last convo-
lutional layer of the network provide superior performance
compared to other layers [6] for visual recognition.

Despite the success of deep features in several computer
vision tasks, less attention has been dedicated to investi-
gate deep features in the context of visual tracking. A hu-
man tracking algorithm is proposed by Fan et al. [14] by
learning convolutional features from offline training data.
The authors of [38] propose a compact deep feature based
tracking framework that learns generic features by employ-
ing a stacked denoising auto-encoder. Zhou et al. [42] in-
vestigate boosting techniques to construct an ensemble of
deep networks for visual tracking. Li et al. [27] propose a
deep tracking framework using a candidate pool of multiple
CNNs. Different from the above mentioned work, we in-
vestigate the impact of deep features for DCF based track-
ing. We exploit the spatial structure of the convolutional
features for learning a DCF (or SRDCF), which acts as a
final classification layer in the network. In this paper, we
also investigate the performance of different convolutional
layers and compare with standard hand-crafted features.

3. Method

Our tracking approach is based on learning a DCF or
a SRDCF from samples of the target appearance. For
image description, we employ convolutional features ex-
tracted from these samples. In each new frame, the learned
DCF is applied on the convolutional features extracted from
the predicted target location. A location estimate is then
achieved by maximizing the detection scores.

3.1. Discriminative Correlation Filters

In this work, we use a standard DCF framework to in-
vestigate the impact of convolutional features for tracking.
The DCF framework utilizes the properties of circular cor-
relation to efficiently train and apply a classifier in a slid-
ing window fashion. The resulting classifier is a correlation
(or convolution) filter which is applied to the input feature
channels. Hence, the correlation operation within the DCF
acts similarly to a convolutional layer in a CNN. The cor-
responding learned filter can be viewed as a final convolu-
tional classification layer in the network. Unlike the costly
methods typically applied for training CNNs, the DCF is
trained efficiently by solving a linear least-squares problem
and exploiting the Fast Fourier Transform (FFT).

The discriminative correlation filer ft is learned from a
set of example patches xk which are sampled at each frame
k = 1, . . . , t. Here, t denotes the current frame number.
The patches are all of the same size and are typically cen-
tered at the estimated target location in each frame. We de-
note feature channel j of xk by superscript xjk. In our case,
xjk corresponds to the output of channel j at a convolutional
layer in the CNN. The objective is to learn a correlation fil-
ter f jt for each channel j, that minimizes the following loss,

ε =

t∑
k=1

αk‖ft ? xk − yk‖2 + λ‖ft‖2. (1)

Here ? denotes circular correlation generalized to multi-
channel signals in the conventional way by computing inner
products. That is, the correlation output for each channel is
summed over the channel dimension to produce a single-
channel output. The desired correlation output yk is set to a
Gaussian function with the peak placed at the target center
location [4]. A weight parameter λ controls the impact of
the regularization term, while the weights αk determine the
impact of each training sample.

To find an approximate solution of (1), we use the online
update rule of [9]. At frame t, the numerator ĝt and denom-
inator ĥt of the discrete Fourier transformed (DFT) filter f̂t



are updated as,

ĝjt = (1− γ)ĝjt−1 + γŷt · x̂jt (2a)

ĥt = (1− γ)ĥt−1 + γ

(
d∑

l=1

x̂lt · x̂lt + λ

)
. (2b)

Here, the hat denotes the 2-dimensional DFT, the bar de-
notes complex conjugation and · denotes pointwise mul-
tiplication. The scalar γ ∈ [0, 1] is a learning rate pa-
rameter and d is the number of feature channels. The
sought filter can then be constructed by a point-wise divi-
sion f̂ jt = ĝjt /ĥt.

To locate the target at frame t, a sample patch zt is first
extracted at the previous location. The filter is then applied
by computing the correlation scores in the Fourier domain

st = F−1


d∑

j=1

f̂ jt−1 · ẑlt

 . (3)

Here, F−1 denotes the inverse DFT. To obtain an estimate
of the target scale, we apply the learned filter at multiple
resolutions. The target location and scale in the image are
then updated by finding the maximum correlation score over
all evaluated locations and scales.

3.2. Spatially Regularized Discriminative Correla-
tion Filters

As discussed above, the conventional DCF tracking ap-
proaches have demonstrated impressive performance in re-
cent years. However, the standard DCF formulation is
severely hampered by the periodic assumption introduced
by the circular correlation. This leads to unwanted periodic
boundary effects at both the training and detection stages.
Such periodic boundary effects limit the performance of the
DCF in several aspects. First, the DCF trackers struggle
in cases of fast motion due to a restricted search region.
More importantly, the inaccurate and insufficient training
data limit the discriminative power of the learned model and
lead to over-fitting.

To mitigate the periodic boundary effects, Danelljan et
al. [10] recently proposed Spatially Regularized Correla-
tion Filters (SRDCF), leading to a significant performance
boost for correlation based trackers. The authors introduced
a spatial regularization function w that penalizes filter co-
efficients residing outside the target bounding box. This
allows an expansion of the training and detection regions
without increasing the effective filter size. Instead of (1),
the following cost is minimized,

ε =

t∑
k=1

αk‖ft ? xk − yk‖2 +
d∑

l=1

‖w · f lt‖2. (4)

The spatial regularization function w reflects the relia-
bility of visual features depending on their spatial location.
The function w is therefore set to smoothly increase with
distance from the target center, as suggested in [10]. Since
background coefficients in the filter ft are suppressed by
assigning larger weights in w, the emphasis on background
information at the detection stage is reduced. On the con-
trary, a naive expansion of the sample size (using a standard
regularization) would also result in a similar increase in the
effective filter size. However, this leads to a large empha-
sis on background features, thereby severely degrading the
discriminative power of the learned model.

The cost (4) can be efficiently minimized in the Fourier
domain by exploiting the sparsity of the DFT coefficients
ŵ. Instead of relying on approximate solutions, such as
(2), [10] propose an iterative minimization scheme based
on Gauss-Seidel, that converges to the global minimum of
(4). We refer to [10] for a detailed description of the SRDCF
training procedure.

3.3. Convolutional Features for DCF Tracking

Traditionally, DCF based approaches rely on hand-
crafted features for image description [12, 21, 28]. In
this work, we instead investigate the use of convolutional
layer activations for DCF based tracking. We employ the
imagenet-vgg-2048 network [5] using the implementation
in the MatConvNet library [37].1 The network is trained
on the ImageNet dataset, for the image classification task.
The employed network contains five convolutional layers
and uses a 224× 224 RGB image as an input. At each con-
volutional layer, we employ the activations produced after
the rectified linear (ReLu) non-linearity. The samples used
for training and detection in the DCF framework (xk and zk
respectively) are obtained by extracting the convolutional
features at the appropriate image location.

When computing the convolutional features, the image
patch is pre-processed by first resizing it to the input size
(224 × 224) and then subtracting the mean of the network
training data. For grayscale images, we simply set the R, G
and B-channels equal to the grayscale intensities. As dis-
cussed in [4], the extracted features are always multiplied
with a Hann window.

4. Experiments

We perform experimental evaluation on three pub-
lic benchmark datasets: the Online Tracking Benchmark
(OTB) [39], the Amsterdam Library of Ordinary Videos for
tracking (ALOV300++) [35] and the Visual Object Track-
ing (VOT) challenge 2015 [1].

1The network is available at http://www.vlfeat.org/
matconvnet/models/imagenet-vgg-m-2048.mat

http://www.vlfeat.org/matconvnet/models/imagenet-vgg-m-2048.mat
http://www.vlfeat.org/matconvnet/models/imagenet-vgg-m-2048.mat
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Figure 2. Comparison of tracking performance when using differ-
ent convolutional layers in the network. The mean overlap preci-
sion over all color videos in the OTB dataset is displayed. The in-
put RGB image (layer 0) provides inferior performance compared
to the convolutional layers. The best results are obtained using the
first convolutional layer. The performance then degrades for each
deeper layer in the network, until the final layer.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Spatial size 224×224 109×109 26×26 13×13 13×13 13×13
Dimensionality 3 96 256 512 512 512

Table 1. The spatial size and dimensionality of the convolutional
features extracted from the employed network. Layer 0 denotes
the input RGB image, after the necessary preprocessing steps.

4.1. Feature comparison

We start by evaluating the different convolutional lay-
ers of the imagenet-vgg-2048 network [5], as described in
section 3.3. For simplicity, we employ the standard DCF
framework described in section 3.1 but without any scale es-
timation, for this experiment. The evaluation is performed
on all 35 color videos in the OTB dataset [39]. The re-
sults are presented in terms of overlap precision (OP). It is
computed as the percentage of frames in a sequence where
the intersection-over-union overlap with the ground-truth
bounding box is larger than a threshold T ∈ [0, 1]. In ta-
bles and figures, we report the overlap precision at a thresh-
old of T = 0.5, which corresponds to the PASCAL crite-
rion. We also provide more detailed results in the success
plots, where OP is plotted over the range of thresholds. In
this case we use the area-under-the-curve (AUC) to rank
the different methods. The AUC is displayed in the legend
for each tracker. For more details regarding the evaluation
protocol, we refer to [39].

Figure 2 shows the mean overlap precision, at the thresh-
old T = 0.5, of the input layer (layer 0) and the five con-
volutional layers in the network. All convolutional layers
significantly outperform the input layer, consisting of a re-
sized and normalized RGB image. Unlike image classifica-
tion, the first convolutional layer achieves the best tracking
results. The performance then drops for each deeper layer
in the network, until the final layer. We partly attribute this
effect to the decreased spatial resolution in the deeper layers
(see table 1). Intuitively, better spatial resolution alleviates
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Figure 3. Comparison of the first layer convolutional features with
different handcrafted features: HOG, CN and I (image intensity).

the task of accurately locating the target, which is crucial for
the tracking problem. Interestingly, the final (fifth) convo-
lutional layer provides a significant performance gain com-
pared to the fourth layer. This is likely due to the high level
features encoded by the deepest layers in the network. The
final convolutional layer, which has recently been success-
fully applied in image classification [6], provides a large
amount of invariance while still discriminative. In sum-
mary, our results suggest that the initial convolutional layer
provides the best performance for visual tracking.

We employ the first layer layer for the remainder of our
experiments. Figure 3 shows a comparison of the first con-
volutional layer with hand-crafted features commonly em-
ployed in correlation-based trackers. We compare with us-
ing grayscale intensity (I), Histogram of Oriented Grandi-
ents (HOG) [7] and Color Names (CN) [36]. The success
plot displays the mean overlap precision over all 35 color
videos in the OTB dataset. Similar results are obtained
using HOG and CN. The combination HOG+CN achieves
slightly better performance, with an AUC of 50.2%. How-
ever, the convolutional features provides improved perfor-
mance, with an AUC of 52.1%. The activations of the vari-
ous convolutional features are shown in figure 4.

4.2. State-of-the-art Comparison on OTB

We evaluate the impact of using the convolutional fea-
tures in the DCF (section 3.1) and SRDCF (section 3.2)
approaches. We name our trackers DeepDCF and Deep-
SRDCF respectively. For the DeepSRDCF, we reduce the
feature dimensionality of the first layer to 40 using Prin-
cipal Component Analysis (PCA). The PCA basis is com-
puted in the first frame and then remains fix through out
the sequence. Our trackers are evaluated on the full OTB
dataset (containing 50 videos) and compared with 15 state-
of-the-art trackers: SRDCF [10], DSST [9], KCF [21],
SAMF [28], ACT [12], TGPR [17], MEEM [40], Struck



Figure 4. Visualization of the employed first-layer convolutional features with the highest energy. Activations are shown for two sample
patches (left), taken from the motorBike (top row) and soccer (bottom row) sequence respectively. The convolutional features capture
different colors and edges over image regions.

ASLA Struck KCF DSST SAMF TGPR MEEM SRDCF DeepDCF DeepSRDCF

OP 56.4 58.8 62.3 67 69.7 62.6 68.7 78.1 75.9 79.4
DP 59.2 68.7 74.0 74.0 77.7 70.6 79.8 83.8 81.8 84.9

Table 2. The mean Overlap Precision (OP) and Distance Precision
(DP) in percent on the OTB dataset containing all 50 videos. The
two best results are shown in red and blue respectively. We only
report the results of the top 10 performing trackers.

[20], CFLB [16], MIL [3], CT [41], TLD [23], DFT [34],
EDFT [15], ASLA [22].

Table 2 shows the mean Overlap Precision (OP) and Dis-
tance Precision (DP) on the OTB dataset. DP is computed
as the percentage of frames in a sequence with a center lo-
cation error smaller than 20 pixels. The DCF based trackers
DSST and SAMF, employing HOG and HOG+CN features,
provide a mean OP of 67.0% and 69.7% respectively. Our
DeepDCF achieves a mean OP of 75.9%, outperforming
DSST and SAMF by 8.9% and 6.2% respectively. By using
the SRDCF framework, our DeepSRDCF achieves a signif-
icant gain of 3.5% mean OP over the DeepDCF. We fur-
ther improve over the SRDCF by 1.3% in mean OP. Similar
conclusions are drawn using Distance Precision (DP). The
success plot on the full OTB dataset is shown in figure 5.

4.2.1 Attribute based comparison

We evaluate our tracker by providing an attribute-based
analysis on the OTB dataset. The sequences in the dataset
are annotated with 11 different attributes: Occlusion, out-
of-plane rotation, in-plane rotation, low resolution, scale
variation, illumination variation, motion blur, fast motion,
background clutter, out-of-view and deformation. Figure 6
shows success plots of four different attributes: scale varia-
tion, in-plane rotation, fast motion and occlusion. For clar-
ity, only the top ten trackers in each attribute plot are shown.
Both our DeepSRDCF and DeepDCF trackers achieves su-
perior performance compared to the existing methods. In
case of scale variation, the standard SRDCF method ob-
tains an AUC score of 59.3%. Our proposed deepSRDCF
provides a gain of 4.3% compared to the standard SRDCF
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Figure 5. Success plot showing a comparison of our trackers
with state-of-the-art methods on the OTB dataset contining all 50
videos. The area-under-the-curve (AUC) scores for the top 10
trackers are reported in the legend.

approach with hand-crafted features. In case of in-plane
rotation, the two DCF based trackers SRDCF and DSST
provides the best results among existing trackers. Our ap-
proach based on deep features and SRDCF achives the best
performance with an AUC score of 60.2%. Similarly, our
deepSRDCF approach obtains favorable results for fast mo-
tion and occlusion, compared to existing trackers.

4.3. State-of-the-art Comparison on VOT2015

The visual object tracking (VOT) challenge is a compe-
tition between short-term, model-free visual tracking algo-
rithms. For each sequence in the dataset, a tracker is eval-
uated by initializing it in the first frame and then restarting
the tracker whenever the target is lost (i.e. at a tracking fail-
ure). The tracker is then initialized a few frames after the
occurred failure. The trackers in VOT are evaluated in terms
of an accuracy score and a robustness score. These scores
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Figure 6. Attribute-based comparison of our trackers with some state of-the-art methods on the OTB-2013 dataset. We show success plots
for four attributes: scale variation, in-plane rotation, fast motion and occlusion. The number in each plot title indicates the amount of
sequences associated with a particular attribute. Our trackers provide consitent improvements compared to existing methods.
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Figure 7. Comparison of our proposed deepSRDCF tracker with the top three trackers of the VOT2014 challenge on example frames
from the VOT2015 dataset. The image sequences show challenging situations such as fast motion (top row), scale changes (middle row),
rotations and deformations (bottom row).

are computed based on the ground-truth overlap and failure
rate measures respectively. The trackers are then ranked in
terms of accuracy and robustness for each sequence individ-
ually. These ranks are finally averaged to produce the final
ranking scores. We refer to [24] for a detailed description
of the VOT evaluation methodology.

We provide a comparison of our trackers with 11 state-
of-the-art trackers on VOT2015 [1]. In the comparison,
we include the top three performing methods of VOT2014
(DSST, SAMF and KCF) and the top 5 existing methods in
our OTB comparison (SRDCF, SAMF, MEEM, DSST and
KCF). Table 3 shows the results reported by the VOT2015
toolkit [1]. The first two columns contain the mean over-
lap score and failure rate over the dataset. The remaining
columns report the accuracy, robustness and final rank for
each tracker. Our DeepSRDCF achives the best final rank
on this dataset. Figure 7 shows example frames from the
VOT 2015 dataset. Figure 8 shows a visualization of the
overall results on the VOT2015 dataset.

4.3.1 State-of-the-art Comparison on ALOV300++

The ALOV300++ dataset includes 314 sequences collected
from the internet. Results on this dataset are presented in
terms of survival curves, as suggested in [35]. The survival
curve of a tracker is constructed by plotting of the F-score
value for each video in a descending order. For each video,
the F-score is computed based on the percentage of suc-
cessfully tracked frames, using an intersection-over-union
overlap threshold of 0.5. A higher F-score indicates better
performance. For more details on the ALOV300 dataset we
refer to [35].

We compare our trackers with the 19 methods evalu-
ated in [35]. We additionally include the top 6 existing
trackers in our OTB evaluation, namely SRDCF, SAMF,
MEEM, DSST, KCF and TGPR. Figure 9 contains the sur-
vival curves of all trackers. We also report the average F-
score for the top 10 trackers in the legend. Our DeepSRDCF
performs favorably compared to the SRDCF with an aver-
age F-score of 0.796 compared to 0.787.
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Figure 8. A state-of-the-art comparison on the VOT2015 benchmark. In the ranking plot (left) the accuracy and robustness rank for each
tracker is displayed. The AR plot (right) shows the accuracy and robustness scores.

Overlap Failure rate Acc. Rank Rob. Rank Final Rank

DeepSRDCF 0.53 1.05 3.89 4.17 4.03
SRDCF 0.53 1.24 3.77 4.60 4.19
DeepDCF 0.48 1.75 5.87 5.61 5.74
SAMF 0.48 2.05 5.52 6.27 5.89
MEEM 0.46 2.05 6.11 6.23 6.17
DSST 0.48 2.56 6.20 7.63 6.92
ACT 0.41 2.05 7.81 6.48 7.14
KCF 0.43 2.51 7.60 7.28 7.44
MIL 0.39 3.32 8.67 7.92 8.29
DFT 0.39 4.32 8.50 8.79 8.64
Struck 0.40 3.59 8.70 8.60 8.65
EDFT 0.38 4.08 8.88 8.83 8.85
CT 0.34 4.08 9.91 8.57 9.24

Table 3. The results generated by the VOT2015 benchmark toolkit.
The first two columns contains the mean overlap score and failure
rate over the entire dataset. The accuracy and robustness ranks are
reported in the third and fourth column. The trackers are ordered
by their final rank (last column). Our approach provides the best
result on this dataset.

5. Conclusions

In this paper, we investigate the impact of convolu-
tional features for visual tracking. Standard DCF based ap-
proaches rely on hand-crafted features for robust image de-
scription. We propose to use convolutional features within
the DCF based framework for visual tracking. We show
the impact of convolutional features on two DCF based
frameworks: the standard DCF and the recently proposed
SRDCF. To validate our proposed tracker, we perform com-
prehensive experiments on three public benchmarks: OTB,
ALOV300++ and VOT 2015. We show that the first con-
volutional layer provides the best results for tracking, this
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Figure 9. Comparison with state-of-the-art trackers on the
ALOV300++ dataset in terms of survival curves. The mean F-
scores for the top 10 trackers are provided in the legend. On this
dataet, our DeepSRDCF obtains favorable results compared to the
standard SRDCF with hand-crafted features.

is suprising considering that the deeper layers are known to
be better for general object recognition. We compare our
proposed approach with some state of the art methods and
obtain state of the art results on three benchmark datasets.
Acknowledgments: This work has been supported by SSF
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