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Abstract—Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art
methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive
and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale
estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate
discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target
appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change
induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach.
Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our
approach achieves a gain of 2.5% in average overlap precision on the OTB dataset. Additionally, our method is computationally
efficient, operating at a 50% higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in
performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.

Index Terms—Visual tracking, scale estimation, correlation filters.
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1 INTRODUCTION

ROBUST visual object tracking is an open research prob-
lem in computer vision with many applications in areas

such as robotics, surveillance and automation. In generic
visual tracking, only the initial location of a target is known.
The task is then to estimate the trajectory of the target
throughout the sequence. The problem is challenging due
several factors, such as occlusions, appearance variations,
motion blur, fast motion, and scale variations.

Existing tracking approaches learn an appearance model
of the target using either discriminative [1], [2], [3] or
generative [4], [5], [6] methods. The appearance model is
then employed for estimating the target state in a new
frame. In the standard case, the state includes the horizontal
and vertical location of the target in the image. In many
applications, such as robotics and surveillance, it is also
important to estimate the target size in the image. Variations
in the size of the target occur due to motion along the
camera axis or changes in the target appearance. Accurate
estimation of scale variations is a challenging problem and
further complicated by the presence of other factors such as
occlusions, fast motion, and illumination variations.

A straightforward approach for incorporating scale es-
timation in a tracking framework is to evaluate the ap-
pearance model at multiple resolutions by performing an
exhaustive scale search. However, this brute-force search
strategy is computationally demanding. In real-time appli-
cations, computational efficiency is a crucial factor. There-
fore, an ideal tracking approach should be robust with re-
spect to scale variations while operating at real-time. In this
work, we investigate the problem of accurate scale adaptive
visual tracking with an emphasis on real-time performance.

Recently, discriminative correlation filter (DCF) based
visual trackers [1], [2], [7] have shown to provide excellent
performance. Moreover, these trackers have the advantage
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of being computationally efficient, thereby making them
especially suitable for a variety of real-time applications.
The success of DCF-based trackers is evident from the
results of the Visual Object Tracking (VOT) 2014 Challenge
[8], where all the top three trackers are based on correlation
filters. Related DCF based methods [2], [9] have also shown
competitive performance on the OTB dataset [10], while
operating at over 100 frames per second. The DCF based
methods work by learning an optimal correlation filter used
to locate the target in the next frame. The significant gain in
speed is obtained by exploiting the fast Fourier transform
(FFT) at both learning and detection stages. Most methods
that employ DCFs for tracking mainly focus on the problem
of translation estimation. Instead, we investigate DCF based
methods for real-time scale adaptive visual tracking.

To incorporate scale estimation in a DCF based tracking
framework, two different exhaustive scale search strategies
are considered. A first approach, joint scale space filter, works
by constructing a 3-dimensional correlation filter for joint
estimation of translation and scale. A second strategy, multi-
resolution translation filter, applies a standard 2-dimensional
translation correlation filter at multiple resolutions. How-
ever, both these approaches are computationally demanding
and not suitable for real-world tracking applications. In this
work, we propose an alternative, discriminative approach
for scale adaptive visual tracking.

We propose the discriminative scale space tracker (DSST),
that learns separate correlation filters for explicit transla-
tion and scale estimation. The scale filter is learned using
samples of the target at a set of different scales. Given a
new frame, we first estimate the target translation using a
standard translation filter. Afterwards, we apply the learned
scale filter at the target location to obtain an accurate esti-
mate of the target size. Different from the aforementioned
exhaustive scale search strategies, our method explicitly
learns the appearance change induced by variations in the
target size while reducing the search space. We further
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Fig. 1. Comparison of our discriminative scale space tracker (in red) with the standard DCF based translation tracker (in green). Example frames
are shown from the liqour (top row), walking (middle row) and dog (bottom row) sequences. The standard DCF tracker is not able to handle the
scale changes in these sequences. In contrast, our approach accurately estimates the target size, thereby significantly increasing both the accuracy
and robustness of the tracker.

investigate strategies to reduce the computational cost of
our DSST approach without sacrificing its robustness and
accuracy. The reduced cost allows us to increase the target
search area of the tracker for improved robustness. The
resulting fast DSST tracker (fDSST) achieves significantly
improved tracking performance, while providing a twofold
gain in speed compared to the DSST method.

To validate the performance of our approach, a compre-
hensive evaluation is performed on the full Online Tracking
Benchmark (OTB) dataset [10], containing 50 videos. We also
evaluate the performance our method on the Visual Object
Tracking (VOT) 2014 challenge [8]. This dataset contains
25 representative videos, that were selected for the VOT
2014 challenge from an initial pool of 394 videos [8]. Both
quantitative and qualitative experiments are performed.
Our DSST approach improves the baseline DCF exhaustive
scale search methods both in terms of accuracy and speed.
We further show that our tracker outperforms 19 compared
state-of-the-art methods on the OTB dataset. Finally, our
approach is shown to obtain the top rank on the VOT 2014
dataset by outperforming 37 state-of-the-art trackers. It is
worth mentioning that our proposed approach is generic
and can be incorporated in any tracking method with no
scale estimation component. Fig. 1 shows a comparison
of our approach with the standard DCF based translation
tracker. The translation tracker struggles in the presence of
scale variations, while our approach accurately estimates the
target size and thereby significantly improves the robustness
and accuracy of the tracker.

The rest of this paper is organized as follows. Section 2
gives an overview of the prior work most relevant to this
work. In section 3 we introduce multi-channel discrimina-
tive correlation filters for visual tracking. Section 4 discusses
the DCF-based translation tracker and strategies for extend-
ing the DCF framework to include scale estimation. The
proposed discriminative scale space tracker (DSST) and the
fast DSST are described in section 5. In section 6 we pro-
vide description and results of the performed experiments.
Conclusions are finally given in section 7.

2 RELATED WORK

Visual object tracking is a fundamental computer vision
problem. The objective is to estimate the trajectory of a
target in an image sequence. In generic visual tracking,
the target can be any object and is defined solely by its
initial location. The initial target location is hence the only
information given to the tracker. Due to the general na-
ture of this problem, it is applicable in a large variety
of computer vision tasks. Popular applications of generic
tracking include robotics [11], surveillance [12] and road
scene understanding [13].

Typically, visual tracking methods work by constructing
a target appearance model from the observed image infor-
mation. This is achieved using either generative [6], [14],
[15], [16] or discriminative [1], [3], [17], [18] approaches.
Generative appearance models aim at describing the target
appearance using e.g. statistical models or templates. The
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discriminative approaches instead employ machine learn-
ing techniques to differentiate between the target appear-
ance and the surrounding background. Examples of em-
ployed learning approaches include Support Vector Ma-
chines (SVM) [3] and boosting techniques [18].

Recently, Discriminative Correlation Filters (DCF) have
successfully been applied to visual tracking [2], [7], [9], [19].
These methods have shown to provide excellent results on
benchmark tracking datasets [8], [10], while operating at
real-time. The correlation-based trackers learn a discrimi-
native correlation filter for locating the target in each new
frame. Bolme et al. [7] trained the filter by minimizing the
total squared error between the actual and the desired corre-
lation output on a set of sample grayscale patches. By using
circular correlation, the authors showed that the resulting
filter can be computed efficiently using only FFTs and point-
wise operations. Henriques et al. [1] further showed that
the DCF formulation equivalently can be cast as learning
a least squares regressor (ridge regression) on the set of
all cyclic shifts of the involved training sample patches.
This formulation was then used to introduce fast kernelized
correlation filters.

Several works have recently investigated generalizations
of the DCF approach [7] for multidimensional features
[20], [21], [22]. These approaches consider learning an ex-
act multi-channel filter given the set of training samples.
However, such methods are not directly applicable to the
online tracking problem due to a significant increase in
the computational cost. Alternatively, approximate formu-
lations for learning multi-channel filters have been inves-
tigated for visual tracking [2], [9]. These approaches have
shown to be robust while only scaling linearly with the
number of feature channels. Furthermore, Danelljan et al.
[2] introduced an adaptive feature dimensionality reduction
technique to reduce the computational cost while preserving
tracking performance.

The DCF based approaches have demonstrated the ca-
pability of accurate target localization in many different
challenging tracking scenarios. However, the standard DCF
trackers are restricted to translation estimation. This im-
plies poor performance when encountered with significant
variations in the target scale. Furthermore, the capability of
accurately retrieving the target scale is beneficial in many
tracking applications. Recently, a multi-resolution extension
of a kernelized correlation translation filter was proposed
by Li and Zhu [23]. However, this approach suffers from a
higher computational cost, since the translation filter has
to be applied at several resolutions to achieve sufficient
scale accuracy. Contrary to [23], we aim at directly learning
the appearance changes induced by scale variations. This
allows us to achieve accurate scale adaptive tracking at a
significantly higher frame-rate.

This paper extends our work [19], which is the winning
method in the Visual Object Tracking (VOT) 2014 challenge
[8]. In this paper, we additionally perform a comprehensive
analysis of DCF based approaches for scale adaptive visual
tracking. Furthermore, we extend our Discriminative Scale
Space Tracker (DSST) [19] by investigating strategies to
reduce its computational cost. This enhancement further
allows us to increase the robustness by extending the tar-
get search area, without sacrificing real-time performance.

The proposed improvements result in superior tracking
performance and a twofold speedup. The experiments are
extended by evaluating our approach on the full (50 videos)
OTB dataset and comparing with 19 state-of-the-art trackers.
Finally, we also present results on the VOT 2014 dataset.

3 MULTI-CHANNEL DISCRIMINATIVE CORRELA-
TION FILTERS

Our tracking approach is based on learning discriminative
correlation filters (DCF) [7]. The DCF based tracking ap-
proaches learn an optimal correlation filter for locating the
target in a new frame, given a set of sample patches of the
target appearance. This can equivalently be formulated as
learning a classifier based on all cyclic shifts of the sample
target patches [1]. The DCF approach has recently been
extended to multidimensional feature representations for a
number of applications, including visual tracking [2], [9],
object detection [20], [22] and object alignment [21]. In this
work, we utilize multi-channel DCFs for a variety of tasks
within visual tracking.

We first introduce learning a multi-channel correlation
filter from a single sample f of the target appearance. In
the standard case f corresponds to an image patch centered
around the target. This is used to learn a 2-dimensional cor-
relation filter for estimating the target translation. Generally,
the dimension of the domain of f is arbitrary. Therefore,
the same approach can be used to learn 1-dimensional scale
estimation filters, 2-dimensional translation estimation fil-
ters and 3-dimensional joint scale and translation estimation
filters. This is accomplished by only adapting the feature
extraction step for each case.

The target sample f consists of a d-dimensional feature
vector f(n) ∈ Rd, at each location n in a rectangular do-
main. In the translation case we may e.g. use the RGB-value
at each pixel location within the patch. In general however,
we can consider any grid-based feature representation. We
denote feature channel l ∈ {1, . . . , d} of f by f l. The objec-
tive is then to learn a correlation filter h consisting of one
filter hl per feature channel. This is achieved by minimizing
the L2 error of the correlation response compared to the
desired correlation output g,

ε =

∥∥∥∥∥g −
d∑

l=1

hl ? f l

∥∥∥∥∥
2

+ λ
d∑

l=1

∥∥hl∥∥2. (1)

Here, the star ? denotes circular correlation. The second
term in (1) is a regularization with a weight parameter λ.
The desired correlation output g is typically selected to be a
Gaussian function with a parametrized standard deviation
[7]. Note that the domains of f l, hl and g all have the same
dimension and size.

Eq. 1 is a linear least squares problem. It can be solved
efficiently by transforming (1) to the Fourier domain using
Parseval’s formula. The filter that minimizes (1) is given by

H l =
GF l∑d

k=1 F
kF k + λ

, l = 1, . . . , d. (2)

Here, the capital letters denote the discrete Fourier trans-
form (DFT) of the corresponding quantities. The bar G
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denotes complex conjugation. The multiplications and divi-
sions in (2) are performed pointwise. A detailed derivation
of (2) is provided in the appendix.

Eq. 2 provides the optimal filter h given a single training
sample f of the target appearance. In practice several sam-
ples {fj}t1 at different time instances, need to be considered
in order to learn a robust correlation filter h. This can
be achieved by averaging the correlation error in (1) over
all training samples f1, . . . , ft. As shown by Galoogahi et
al. [20], the resulting linear least squares problem can be
block diagonalized by the DFT. The resulting H can then
be found by solving N number of d × d linear systems,
where N is equal to the number of elements in the filter
hl. However, this results in a computational bottleneck for
our online learning task. Therefore, we compute a robust
approximation by utilizing the exact solution for the single
training sample case (2). Inspired by the update rule derived
for the single feature case (d = 1) [7], we update the
numerator Al

t and denominator Bt of the filter H l
t with a

new sample ft as

Al
t = (1− η)Al

t−1 + ηGF l
t , l = 1, . . . , d (3a)

Bt = (1− η)Bt−1 + η
d∑

k=1

F k
t F

k
t (3b)

Here, the scalar η is a learning rate parameter.
To apply the filter in a new frame t, a sample zt is ex-

tracted from a considered region of transformations. In the
standard translation filter case, zt corresponds to an image
patch centered around the predicted target location. The
test sample zt is extracted similarly to the training samples
ft, using the same feature representation. The DFT of the
correlation scores yt is computed in the Fourier domain

Yt =

∑d
l=1A

l
t−1Z

l
t

Bt−1 + λ
. (4)

Here, Al
t−1 and Bt−1 are the numerator and denominator

of the filter updated in the previous frame. The correlation
scores at the locations reflected in zt are then computed by
taking the inverse DFT yt = F−1{Yt}. The estimate of the
current target state is obtained by finding the maximum
correlation score.

4 CORRELATION FILTERS FOR TRANSLATION AND
SCALE ESTIMATION

In this section, we investigate different approaches for trans-
lation and scale estimation in a DCF based tracking frame-
work. We first describe the standard DCF based transla-
tion tracking approach. Afterwards, we investigate different
strategies for scale estimation.

4.1 Standard DCF Tracker
As a baseline approach, we learn a 2-dimensional multi-
channel DCF for translation-only tracking. The training and
detection steps are performed as described in section 3.
Given the target location in frame number t, we first extract
a training sample patch ft centered around the target (see
figure 3a). The translation filter is then updated using (3). To
estimate the target location in a new frame t, a sample patch
zt is first extracted at the previously estimated location. The
correlation scores are then obtained by (4).

Fig. 2. Visualization of the joint scale space filter approach. The training
sample (yellow box) is extracted from a scale pyramid constructed
around the target center.

4.2 Multi-resolution Translation Filter

In object detection, a standard approach for detecting an
object at different scales is to apply a classifier at multiple
resolutions [24]. This strategy has been employed for the
standard DCF-based tracker [23]. We learn a 2-dimensional
translation filter using the same procedure as for the stan-
dard DCF tracker (see section 4.1). In the detection step,
several patches at different resolutions are sampled centered
around the previous target location. The translation filter
is then applied to each patch independently using (4). The
translation and scale of the target is obtained by finding the
resolution (scale) and location with the highest correlation
score among all patches.

4.3 Joint Scale Space Filter

A straightforward strategy for incorporating scale estima-
tion is to construct a 3-dimensional scale space filter. This 3-
dimensional filter jointly estimates the translation and scale
of the target. It is achieved by computing the correlation
scores in a box-shaped region of a scale pyramid representa-
tion. Both translation and scale estimates are then achieved
by maximizing this score.

To update the joint scale space filter, we first construct
a feature pyramid in a rectangular area around the given
target location. The feature pyramid is constructed such that
the target size at the current scale corresponds to the spatial
filter dimensions M×N . The training sample ft is set to the
rectangular cuboid of size M ×N × S centered around the
target location and scale. Here, S corresponds to the filter
size in the scale dimension. The joint scale space filter is
updated with (3), using a 3-dimensional Gaussian function
as the desired correlation output g. The construction of the
training sample is visualized in figure 2.
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Fig. 3. Visualization of training samples used to update our DSST and fDSST approaches. The translation filter sample (a) is extracted from a
rectangular patch centered around the target. To update the scale filter (b), we first sample patches of the target appearance at a set of different
scales. Each such patch is then mapped to a feature vector. The training sample used for updating the scale filter is set to the collection of these
feature vectors.

In the detection step, a feature pyramid is first con-
structed around the previously estimated target location and
scale. The M × N × S rectangular cuboid centered around
this location is used as the test sample zt. The correlation
scores yt in this region of the scale space are then computed
using (4).

4.4 Iterative Joint Scale Space Filter
As mentioned above, the feature pyramid at the detection
step is constructed around the predicted target location. This
might result in an inclusion of a shearing component in the
transformation relating the test sample zt with the feature
pyramid constructed around the actual target center. The
shearing effect is caused by errors in the predicted target
location. This significantly affects the performance of the
joint scale space filter by introducing a bias in the translation
estimate.

The impact of the scale space shearing distortions can
be reduced by iterating the detection step of the tracker. We
therefore also evaluate an iterative joint scale space filter
strategy. Given a new frame, we first apply the filter at
the previous target location and scale. The target location
is then updated with the location and scale corresponding
to the maximum correlation score (as in section 4.3). The
detection step is then iterated by constructing the feature
pyramid around the current target estimate. This procedure
is performed for a maximum number of iterations or un-
til convergence is achieved. In most cases, the procedure
converges since the shearing distortion of the pyramid is re-
duced as the location estimate improves. However, a major
disadvantage of this approach is the added computational
time due to the iterative detection procedure.

5 OUR APPROACH

The scale extensions to the standard DCF tracker, described
in section 4, significantly increase the computational cost of
the tracker. Other than accuracy and robustness, the speed
of the visual tracker is a crucial factor in many real world
applications. Therefore, an ideal tracking approach should
be accurate and robust while operating at real-time. Moti-
vated by this observation, we propose a fast scale adaptive

tracking approach. Our scale estimation approach is generic
and can be used in any tracking framework with no scale
estimation component.

5.1 Discriminative Scale Space Tracking
We propose the Discriminative Scale Space Tracker (DSST),
which is based on learning a separate 1-dimensional scale
correlation filter. This scale filter can be applied at an image
location to compute correlation scores in the scale dimen-
sion. These scores are then used to estimate the target scale.
To construct the training sample ft,scale, we extract features
using variable patch sizes centered around the target. Let
P×R denote the target size in the current frame and S be the
size of the scale filter. For each n ∈

{⌊
−S−1

2

⌋
, . . . ,

⌊
S−1
2

⌋}
,

we extract an image patch In of size anP × anR centered
around the target. Here, a denotes the scale factor between
feature layers. The value ft,scale(n) of the training sample
ft,scale at scale level n, is set to the d-dimensional feature
descriptor of In. The procedure for constructing the scale
sample ft,scale is visualized in figure 3b. Finally, (3) is used
to update the scale filter ht,scale with the new sample ft,scale.
In this case we use a 1-dimensional Gaussian as the desired
correlation output g.

To estimate the translation of the target, we use the
standard translation filter described in section 4.1. Typically,
the target scale difference between two frames is small
compared to the difference in translation. We therefore first
apply the translation filter ht,trans given a new frame. The
scale filter ht,scale is then applied at the new target location
estimate. A scale estimation test sample zt,scale is extracted
from this location using the same procedure as for the
training sample ft,scale. By maximizing the scale correlation
scores (4), we obtain the relative change in scale compared
to the previous frame. Algorithm 1 gives a brief outline of
our DSST approach.

5.2 Fast Discriminative Scale Space Tracking
Here we investigate strategies for reducing the computa-
tional cost of the proposed DSST method. Two approaches
for reducing the computations required in the learning
and detection steps of the multi-channel DCF described in
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Algorithm 1. Our DSST approach: iteration at time step t.

Input:
Image It.
Previous target position pt−1 and scale st−1.
Translation model At−1,trans, Bt−1,trans.
Scale model At−1,scale, Bt−1,scale.

Output:
Estimated target position pt and scale st.
Updated translation model At,trans, Bt,trans.
Updated scale model At,scale, Bt,scale.

Translation estimation:
1: Extract sample zt,trans from It at pt−1 and st−1.
2: Compute correlation scores yt,trans using (4).
3: Set pt to the target position that maximizes yt,trans.

Scale estimation:
4: Extract sample zt,scale from It at pt and st−1.
5: Compute correlation scores yt,scale using (4).
6: Set st to the target scale that maximizes yt,scale.

Model update:
7: Extract samples ft,trans and ft,scale from It at pt and st.
8: Update the translation model At,trans, Bt,trans using (3).
9: Update the scale model At,scale, Bt,scale using (3).

section 3, are presented. These approaches are: sub-grid in-
terpolation of correlation scores and reduction of the feature
dimensionality using Principal Component Analysis (PCA),
also known as the discrete Karhunen-Loève transform.

5.2.1 Sub-grid Interpolation of Correlation Scores
Sub-grid interpolation allows us to use coarser feature grids
for the training and detection samples. This affects the com-
putational cost by reducing the size of the performed FFTs
required to evaluate (3) and (4) for training and detection
respectively. We employ interpolation with trigonometric
polynomials [25]. This is especially suitable since the DFT
coefficients of the correlation score, required to perform the
interpolation, are already computed in (4). The interpolated
scores ŷt are obtained by zero-padding the high frequencies
of Yt in (4) such that its size is equal to the size of the inter-
polation grid. The interpolated scores ŷt are then obtained
by performing the inverse DFT of the padded Yt.

5.2.2 Dimensionality Reduction
The computational cost of the DSST is dominated by the
FFT. In our approach, the number of FFT computations
scales linearly with the feature dimension d, since the train-
ing (3) and detection (4) steps require one FFT per feature
dimension. To reduce the required number of FFT com-
putations, we employ a dimensionality reduction strategy.
Similar to Danelljan et al. [2], we base our dimensionality
reduction scheme on the standard PCA. However, thanks to
the simplicity of the linear kernel applied in this work, the
smooth subspace update scheme [2] is not required.

To be able to reduce the number of FFT computations,
we instead update a target template ut = (1− η)ut−1 + ηft.

By the linearity of the Fourier transform, the numerator
(3a) of the learned filter can then equivalently be obtained
by Al

t = GF{ult}. The learned template ut is used to
construct a projection matrix Pt. This matrix defines the
low-dimensional subspace onto which the features are pro-
jected. The projection matrix Pt is d̃ × d, where d̃ is the
dimensionality of the compressed feature representation.
We obtain Pt by minimizing the reconstruction error of the
target template ut

ε =
∑
n

∥∥ut(n)− P T
t Ptut(n)

∥∥2 . (5)

Here, the index tuple n ranges over all elements in the
template ut. Eq. (5) is minimized under the orthonormality
constraint PtP

T
t = I . A solution is obtained by performing

an eigenvalue decomposition of the auto-correlation matrix

Ct =
∑
n

ut(n)ut(n)
T. (6)

The rows of Pt is set to the d̃ eigenvectors of Ct correspond-
ing to the largest eigenvalues.

The filter is updated using the compressed training
sample F̃t = F{Ptft} and compressed target template
Ũt = F{Ptut} as

Ãl
t = GŨ l

t , l = 1, . . . , d̃ (7a)

B̃t = (1− η)B̃t−1 + η
d̃∑

k=1

F̃ k
t F̃

k
t . (7b)

The linear operation of Pt is applied as an element-wise
matrix multiplication (Ptut)(n) = Ptut(n) that projects the
feature vector ut(n) ∈ Rd onto the rows of Pt. As discussed
above, the numerator (7a) can be obtained directly from
the compressed template Ũt, due to its linear relationship
with the training samples ft. However, the same strategy
is not applicable for the denominator (7b), since it depends
on the auto-correlation of the training samples. Therefore,
a different projection matrix Pt is used for each term in
B̃t. Note that the aim of our dimensionality reduction is
to approximate the denominator Bt in the original update
scheme (3b). The training samples only appear as sums∑d

k=1 F
k
t F

k
t in the denominator Bt. This corresponds to

an inner product in the feature space, which is approxi-
mated by the inner product

∑d̃
k=1 F̃

k
t F̃

k
t evaluated in the

subspace defined by Pt. Thus, a better approximation of Bt

is achieved by adapting the projection matrix for each frame
t and using different projections for each term

∑d̃
k=1 F̃

k
t F̃

k
t .

The correlation scores at the test sample zt are obtained
similarly to (4), by applying the filter on the compressed
sample Z̃t = F{Pt−1zt},

Yt =

∑d̃
l=1 Ã

l
t−1Z̃

l
t

B̃t−1 + λ
. (8)

5.2.3 Compressed Scale Filter
For the translation filter employed in our tracking approach,
the feature dimensionality is smaller than the number of
elements ut,trans(n) in the template. For the scale filter
however, the opposite is true. In this case the rank of the
auto-correlation matrix (6) is lesser than or equal to the
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number of scales, i.e. rank(Ct,scale) ≤ S. This is evident,
since the scale template ut,scale consists of a d-dimensional
feature vector ut,scale(n) ∈ Rd for each scale index n ∈{⌊
−S−1

2

⌋
, . . . ,

⌊
S−1
2

⌋}
. In the scale filter case, the feature

dimensionality d ≈ 1000 is far larger than the number of
PCA samples S = 17 (see section 6.1 for details concerning
features and parameters). The scale template ut,scale can thus
be compressed to d̃ = S feature dimensions without any
loss of information. The same holds true for the scale filter
training sample ft,scale.

The presented dimensionality reduction technique is
adapted to the scale filter by utilizing the aforementioned
properties. For efficiency, two projection matrices Pu

t,scale and
P f
t,scale are computed based on ut,scale and ft,scale respec-

tively. The template and sample can then be compressed
without loss of information using ũt,scale = Pu

t,scaleut,scale

and f̃t,scale = P f
t,scaleft,scale. These compressed versions are

then used to update the scale filter as in (7). The scale
filter (7) is not affected by the dimensionality reduction in
this case, since both the template and the training sample
can be exactly reconstructed as ut,scale = (Pu

t,scale)
Tũt,scale

and ft,scale = (P f
t,scale)

Tf̃t,scale respectively. The same holds
true for the Fourier coefficients Ut,scale and Ft,scale by lin-
earity. To compute the scale correlations scores at the de-
tection stage, we apply (8) using a compressed test sample
z̃t,scale = Pu

t−1,scalezt,scale.
For computational and memory efficiency purposes, we

do not explicitly construct the auto-correlation matrix (6),
but rather obtain the projection matrices Pu

t,scale and P f
t,scale

through a QR-factorization of ut,scale and ft,scale respectively.
This does not affect the tracking output since the multi-
channel DCF approach (as presented in section 3) is in-
variant to any change of orthonormal basis in the feature
representation.

5.2.4 Search Space Expansion for Robustness
The strategies presented above are employed in both the
translation and scale filter of our tracker, to give a signif-
icant reduction in computational cost. This enhancement
provides the flexibility to use a larger target translation
search space. The search space expansion is performed
by increasing the size of the translation filter. Note that
such an expansion significantly increases the computational
time of other DCF based trackers the increased size of
the performed FFTs. By employing the strategies proposed
strategies above, the size of the FFTs and number of FFTs
are reduced sufficiently in order to increase the filter size
without sacrificing real-time performance.

The expansion in the filter size provides increased con-
textual information in the filter. It also helps in alleviating
the problem of fast motion and occlusions, by using a larger
search space. In summary, by incorporating the strategies
proposed in this section, our fast DSST (fDSST) method
improves the robustness of the tracker, while operating at
twice the speed of the DSST.

6 EXPERIMENTS

We perform extensive evaluations on two benchmark
datasets to validate our approach. Section 6.1 presents the

details about features and parameters used in our exper-
iments. In section 6.2, we describe the used benchmark
datasets and evaluation protocols. The DCF based scale
estimation approaches, discussed earlier, are compared in
section 6.3. In section 6.4 the extended fast version (fDSST)
of our approach is compared to the standard DSST. A com-
parison with state-of-the-art methods on the OTB dataset is
given in section 6.5. Finally, we present results on the VOT
2014 dataset in section 6.6.

6.1 Implementation Details

We set the regularization parameter to λ = 0.01 and the
learning rate to η = 0.025. The standard deviation of the
desired correlation output g is set to 1/16 of the target size in
the translation dimensions. Note that this set of parameters
is used for all DCF-based trackers presented in section 4
and 5 to achieve a fair comparison. For all presented trackers
except our fDSST, we also use the same spatial sizeM×N of
the filter, which is set to twice the initial target size. Thanks
to the strategies presented in section 5.2 for improving
the tracking speed, we can use larger filter for our fDSST
without sacrificing real-time performance. For the fDSST we
therefore set the size of the translation filter to three times
the initial target size.

For the joint scale space filters (sections 4.3 and 4.4) and
our DSST (section 5.1) we use S = 33 number of scales. For
the fDSST (section 5.2) we interpolate the scale correlation
output from S = 17 to Ŝ = 33 scales using the described
approach. The joint and the discriminative approaches all
use a scale factor of a = 1.02, and the standard deviation
in the scale dimension of the desired correlation output g
is set to 1/16 times the number of scales S. For the multi-
resolution translation filter (section 4.2), we observed that
setting the number of scales S or the scale factor a similarly
to the other scale adaptive approaches (i.e. S = 33 and/or
a = 1.02) gave inferior performance in our experiments.
For this approach we therefore use S = 5 scales and a scale
factor of a = 1.005, which turned out to be the best setting
in our experiments.

We employ PCA-HOG [24] for image representation,
with the implementation provided by [26]. The same pixel-
dense feature representation is used for all trackers pre-
sented in section 4 and for the translation filter in our DSST.
This feature is obtained by augmenting HOG computed
with 1 × 1 pixel cells with the image intensity (grayscale)
value. To save computations, we use a coarser feature grid
for the translation filter in our fDSST. To achieve pixel-dense
correlation scores we then apply the interpolation technique
described in section 5.2. The feature vector is constructed
using HOG with 4× 4 cells. This HOG vector is augmented
with the average grayscale value in the corresponding cell.
The grayscale features are always normalized to the range
[− 1

2 ,
1
2 ].

For the scale filter in our DSST and fDSST, we compute
the feature descriptor of the image patch In by first re-sizing
the patch to a fixed size. HOG features are then extracted
using a cell size of 4 × 4. The fixed patch size is set to
the initial target size. However, for targets with an initial
area larger than 512 pixels, we calculate a fixed size with
a preserved aspect ratio and an area of 512 pixels. This
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TABLE 1
A comparison of our DSST approach with the baseline translation filter
and the DCF based scale adaptive trackers discussed in section 4. The
mean overlap precision (OP) (%) and distance precision (DP) (%) over
all the 50 videos in the OTB dataset are presented. We also report the
tracker speed in mean FPS. The two best results are shown in red and
blue fonts respectively. Our DSST approach significantly outperforms

all compared trackers, while being the fastest among the scale adaptive
methods.

Mean OP Mean DP Mean FPS

Translation DCF 57.7 70.8 57.3
Multi-Resolution DCF 65.2 74.8 16.9
Joint DCF 63.2 72.1 1.46
Iterative Joint DCF 64.1 74.2 1.01
DSST (ours) 67.7 75.7 25.4

ensures a maximum feature descriptor length of 992. For
all filters (translation, scale and joint), each feature channel
in the extracted sample is always multiplied by a Hann
window, as described in [7].

The fDSST applies PCA as described in section 5.2.2
to reduce the dimensionality of the translation filter. The
32-dimensional HOG and intensity combination is reduced
to 18 dimensions in our experiments. For the scale filter,
we apply the modified reduction scheme presented in sec-
tion 5.2.3. This approach reduces the dimensionality of the
scale features from d ≈ 1000 to only S = 17 dimensions.

6.2 Experimental Setup
Our approaches are implemented in Matlab. All experi-
ments are performed on an Intel Xeon 2 core 2.66 GHz CPU
with 16 GB RAM. For the tracking approaches presented in
section 4 and 5, the same parameter settings are used for
all experiments and videos. Our methods are quantitatively
evaluated on the Online Tracking Benchmark (OTB) dataset,
following the evaluation protocol described in [10]. This
dataset contains 50 challenging image sequences. We also
evaluate our method on the VOT 2014 dataset [8].

The tracking results on the OTB dataset are reported
using three standard evaluation metrics, namely overlap
precision (OP), distance precision (DP) and tracking speed
in frames per second (FPS). The OP score is computed as
the percentage of frames in a video where the intersection-
over-union overlap with the ground truth exceeds a certain
threshold. In the tables we report the OP at a threshold of
0.5, which corresponds to the PASCAL evaluation criterion.
The DP score is defined as the percentage of frames in a
video where the Euclidean distance between the tracking
output and ground truth centroids is smaller than a thresh-
old. A threshold of 20 pixels is used in this work [1], [10].

We also provide success plots of the results on the OTB
dataset. In the success plot, the mean OP over all videos is
plotted against the range of overlap thresholds [0, 1]. In the
legend we report the area-under-the-curve (AUC) score for
each tracker.

6.3 Experiment 1: DCF-based Scale Estimation
Table 1 shows a comparison of the DCF-based tracking
approaches presented in section 4 and 5, on the OTB
dataset. The standard translation based DCF tracker obtains
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DSST (ours) [56.1]
Multi−Resolution DCF [54.2]

Iterative Joint DCF [53.4]

Joint DCF [52.6]

Translation DCF [49.5]

Fig. 4. Success plot showing a comparison of the different DCF-based
tracking approaches over all the 50 videos in the OTB dataset. The
legend of the success plot contains the area-under-the-curve (AUC)
score for each method. The best results are obtained with our DSST
method, improving the baseline translation DCF tracker by 6.6% in AUC.

a mean OP of 57.7%. The joint scale space filter and its
iterative extension achieve a mean OP of 63.2% and 64.1%
respectively. The best results are obtained using our DSST
method, providing a significant gain of 10.0% compared to
the baseline translation tracker. Similarly, our approach also
provides improved performance in mean DP compared to
the other scale adaptive trackers. It worth mentioning that
our DSST provides significantly better performance while
being 17 times faster compared to the joint scale space
filter tracker. Similarly, the DSST method achieves higher
accuracy compared to the multi-resolution translation filter
while operating at a higher frame-rate.

Figure 4 show the success plot illustrating the mean
overlap precision over all the 50 videos in the OTB dataset.
The standard translation filter achieves an AUC score of
49.5%. The joint scale space filter improves the performance
with an AUC score of 52.6%. Our DSST approach further
improves the performance by providing a significant gain
of 6.6% compared to the baseline translation tracker.

We also perform a baseline comparison of the DCF
trackers presented in section 4 and 5, on the VOT 2014
dataset. In VOT 2014, the methods are compared both in
terms of accuracy and robustness. The accuracy is calculated
as the number of frames where the overlap is above a certain
threshold. The robustness score is based on the number
of times the tracker fails in a video. A tracker is always
restarted five frames after a tracking failure occurs. Contrary
to the OTB dataset, the ground truth bounding boxes in the
VOT 2014 dataset are not axis aligned. The final tracker
scores are based on how the trackers are ranked in terms
of accuracy and robustness in each video. We refer to [8] for
more details about the VOT evaluation protocol.

Table 2 shows the ranking scores on VOT 2014, along
with the average overlap and failures. The translation alone
tracker achieves a final rank of 3.31. Among scale adaptive
DCF approaches, our DSST provides the best results with
a final rank of 2.80. Further, our approach outperforms
the compared trackers by significantly reducing the average
failure rate to 1.16, while maintaining the accuracy.
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TABLE 2
A baseline comparison on VOT 2014 of our DSST approach with the

translation-only DCF and the scale adaptive DCF trackers discussed in
section 4. We report accuracy and robustness ranks, along with the

final averaged ranking score. The average overlap and failures over the
videos are also shown in the last two columns. Our DSST obtains the

best final rank and outperforms the compared trackers in terms of
robustness with an average failure rate of 1.16.

Acc. Rank Rob. Rank Final Rank Overlap Failures

DSST (ours) 2.88 2.72 2.80 0.62 1.16
Iterative Joint DCF 2.80 3.04 2.92 0.63 1.56
Joint DCF 2.80 3.14 2.97 0.62 1.60
Multi-Resolution DCF 3.00 2.96 2.98 0.62 1.40
Translation DCF 3.49 3.14 3.31 0.55 1.48

In summary, our approach significantly improves the
performance of the standard translation tracker. This shows
that accurate scale estimation is crucial for the robustness
of the tracker. Our approach also provides superior perfor-
mance and frame-rate compared to the other scale adaptive
DCF-based trackers.

6.4 Experiment 2: Fast Discriminative Scale Space
Tracker

Here we compare our standard discriminative scale space
tracker (DSST) presented in section 5.1 with the extended
fast version (fDSST) presented in section 5.2. In addition
to the proposed strategies for increasing the tracker speed,
the fDSST also employs a larger target search space to
improve robustness. Table 3 shows a comparison of the
two approaches on the OTB dataset. Our fDSST approach
improves the performance by providing a gain of 7.0% and
4.4% in mean OP and DP respectively. Furthermore, this
significant gain in performance is achieved while operating
at over twice the speed in mean FPS compared to the DSST
approach.

As described in section 5.2.2, we employ a dimensional-
ity reduction scheme in our fDSST framework. We analyze
the impact of varying the number of subspace dimensions
for the translation filter, on the OTB dataset. Figure 5 shows
the tracking performance, in AUC, for different choices of
this parameter. The performance of our fDSST largely re-
mains consistent when the number of dimensions is reduced
from 32 and then degrades rapidly at about 6. Our results
suggest that the feature dimensionality can be significantly
reduced with our framework, while preserving tracking per-
formance. To achieve consistent and stable results, we set the
number of PCA dimensions to 18 for all our experiments.

TABLE 3
A comparison of our discriminative scale space trackers (DSST and

fDSST). The mean overlap precision (OP) (%) and distance precision
(DP) (%) over all the 50 videos in the OTB dataset are presented. The

best results are displayed in red. Our fDSST achieves significantly
better results while operating at double mean FPS.

Mean OP Mean DP Mean FPS

DSST 67.7 75.7 25.4
fDSST 74.3 80.2 54.3
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Fig. 5. Impact of the number of subspace dimensions for the translation
filter in the fDSST. Tracking performance on the OTB dataset in terms of
area-under-the-curve (AUC) score is plotted for different choices of the
dimensionality d̃. We use 18 dimensions (red) in our experiments.

6.5 Experiment 3: State-of-the-Art Comparison

In this section, we provide a comprehensive comparison of
our fDSST with 19 state-of-the-art methods in the literature.
The trackers used for our comparison are: MIL [18], IVT [27],
CT [17], TLD [28], DFT [6], EDFT [29], ASLA [5], L1APG
[14], CSK [1], SCM [30], LOT [31], CPF [32], CXT [33], Frag
[34], Struck [3], LSHT [4], LSST [35], KCF [9] and SAMF [23].
For a fair comparison, we also compare with a version of
SAMF (termed SAMF HOG) that employs the same feature
set as fDSST. For all methods except LSST, LSHT, EDFT, KCF
and SAMF the code or binaries are provided with the OTB
dataset [10].

Table 4 provides a comparison using mean OP and DP
over all 50 videos in the OTB dataset. We also provide
a comparison of the speed of the trackers in mean FPS.
The best two results are reported in red and blue fonts
respectively. The scale adaptive SCM tracker, which is based
on sparse representations, provides a mean OP of 53.0%.
The structural SVM based Struck tracker achieves a mean
OP of 58.8%. The KCF tracker [9], which is based on a
kernelized correlation filter for translation estimation, ob-
tains a mean OP of 62.3%. The SAMF tracker extends the
KCF with multiple features and scale estimation using a
multi-resolution translation filter approach. It obtains the
best results among the existing methods, with a mean OP of
69.7%. Contrary to the SAMF tracker, our fDSST approach
only employs intensity information, while using an explicit
filter for scale estimation. Our tracker outperforms SAMF
by 4.6% in mean OP. Similarly, our approach also provides
superior results in terms of mean DP compared to the
existing trackers. Finally, it is worth mentioning that our
approach achieves superior performance while operating at
real-time (54.3 in mean FPS).

The success plot in figure 6a shows the overlap preci-
sion (OP) over a range of overlap thresholds. The OP is
calculated as the mean over all the 50 videos in the OTB
dataset. For clarity, we only show the top 10 trackers in
this comparison. Our approach significantly outperforms
existing trackers, by achieving an AUC score of 60.3%. It
is worth mentioning that our approach provides a gain of
8.5% and 2.6% in AUC compared to the KCF and SAMF
trackers respectively.
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TABLE 4
A comparison of our fDSST approach with 18 state-of-the-art trackers. The mean overlap precision (OP) (%) and distance precision (DP) (%) over
all the 50 videos in the OTB dataset are presented. The two best results are displayed in red and blue fonts respectively. Our approach achieves

superior performance compared to the existing trackers.

IVT MIL CT TLD DFT EDFT L1APG CSK LOT CPF CXT Frag LSST LSHT ASLA SCM KCF Struck SAMF HOG SAMF fDSST

Mean OP 42.7 36.5 24.8 48.9 44.4 49.8 44.0 44.2 43 38.9 47.7 39.7 41.8 47.0 56.4 53.0 62.3 58.8 66.6 69.7 74.3
Mean DP 50.6 45.5 32.4 55.3 49.6 56.7 48.5 54.4 52.7 48.8 55.5 46.1 50.2 56.9 59.2 56.3 74.0 68.7 73.7 77.7 80.2
Mean FPS 12.3 12.5 67.5 23.6 9.83 21.9 1.12 198 0.50 68.2 11.3 4.40 3.69 12.4 1.04 0.09 174 10.4 15.5 14.9 54.3
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(a) One pass evaluation (OPE).

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

10

20

30

40

50

60

70

80

90

O
v
e
rl
a

p
 P

re
c
is

io
n
 [

%
]

Success plot of TRE

fDSST [62.5]

SAMF [61.5]

SAMF HOG [57.8]

KCF [56.1]

Struck [51.6]

ASLA [49.2]

(b) Temporal robustness evaluation (SRE).
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(c) Spatial robustness evaluation (SRE).

Fig. 6. Success plot showing the performance of our fDSST compared to several state-of-the-art approaches on the OTB dataset. The area-under-
the-curve (AUC) score for each tracker is reported in the legend. For the OPE (a), only the top ten trackers are displayed in the legend for clarity.
Our method outperforms the second best tracker (SAMF) with 2.6% in AUC. We also compare the temporal (b) and spatial (c) robustness of our
approach with the top 5 trackers. In both cases, our approach provides promising performance compared to existing tracking approaches.

TABLE 5
Attribute-based comparison with state-of-the-art trackers on the OTB dataset. We report the AUC scores (%) for the top ten trackers. The number
of videos associated with the attribute is shown in parenthesis. Our approach provides improved performance on 7 out of 11 attributes. In scale
variation videos, our method significantly outperforms all trackers including SAMF, which employs a multi-resolution scale estimation strategy.

Scale Illumination Out-of-plane Occlusion Background Deformation Motion Fast In-plane Out of Low
variation (28) variation (25) rotation (39) (29) clutter (21) (19) blur (12) motion (17) rotation (31) view (6) resolution (4)

fDSST 57.1 59.8 57.2 56.0 62.4 56.9 59.8 55.9 58.3 56.3 39.9
SAMF 52.0 53.9 56.0 62.8 53.1 63.0 52.4 52.0 51.3 61.9 36.5
SAMF HOG 46.9 51.2 51.6 54.4 52.5 57.5 50.5 46.3 54.3 50.8 41.1
KCF 42.8 49.7 49.9 51.7 54.0 53.9 50.0 46.3 50.1 55.6 31.3
Struck 43.1 44.8 45.3 44.9 45.0 45.0 47.7 49.4 45.6 44.9 36.6
ASLA 49.7 49.8 46.9 44.7 50.5 47.6 31.9 29.8 45.2 40.8 16.8
SCM 48.1 40.3 42.4 42.1 42.9 37.0 26.8 30.3 41.3 35.6 30.2
EDFT 35.2 36.1 40.2 35.9 44.5 41.4 40.5 36.5 40.2 27.1 28.7
LSHT 35.5 40.1 42.1 38.9 41.4 41.0 27.8 29.2 40.5 38.0 11.8
CXT 38.5 34.6 40.3 36.2 31.8 31.7 34.2 36.3 42.5 40.2 27.7

6.5.1 Attribute-based Comparison

We also perform an attribute based analysis of our approach.
In the OTB dataset, all videos are annotated with 11 different
attributes, namely: in-plane rotation, scale variation, out
of view, background clutter, illumination variation, motion
blur, fast motion, deformation, out-of-plane rotation, occlu-
sion and low resolution.

Table 5 contains the AUC scores for the 11 different
attributes. For clarity, we report the results for the top
ten trackers on the OTB dataset. Our approach provides
favorable results on 7 out of 11 attributes: in-plane rotation,
scale variation, background clutter, illumination variation,
motion blur, fast motion and out-of-plane rotation. In se-
quences annotated with the scale variation attribute, our
approach outperforms the compared correlation filter based
translation-trackers (KCF and CSK). Moreover, our method
outperforms the scale adaptive correlation based SAMF

tracker by 5.1% in AUC. This shows that our tracker accu-
rately estimates the size of the target and achieves superior
performance in scenarios with scale variation.

6.5.2 Comparison of Robustness to Initialization

We also evaluate the robustness of our tracker with respect
to initialization. The evaluation is performed as proposed
in [10]. Two different criteria, namely temporal robustness
(TRE) and spatial robustness (SRE) are employed to evaluate
the robustness of our approach. The SRE is performed
by initializing the tracker at different locations near the
ground-truth bounding box in the first frame. The tracker
is evaluated on each video with 12 different initializations.
Four of the perturbations are computed by shifting the box
horizontally left and right, and vertically up and down.
Another four are obtained by shifting the box in all four
diagonal directions. The magnitude of these shifts are 10%
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(c) Illumination changes on skating.
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(d) Background clutter on soccer.

fDSST ASLA SCM LSHT Struck

Fig. 7. A qualitative comparison of our approach with four state-of-the-art trackers. Tracking results are shown on four example videos from the
OTB dataset. The videos show challenging situations, such as scale variations (a), out-of-plane rotation (b), illumination variations (c) and partial
occlusions (d). Our approach performs favorably compared to the existing tracker in these challenging situations.

of the target size in the corresponding direction. The re-
maining four perturbations are obtained by only rescaling
the ground-truth box with the factors 0.8, 0.9, 1.1 and 1.2.
The TRE is performed by initializing the tracker at different
frames with the ground-truth bounding box. In the TRE
case, each video is partitioned into 20 segments. We refer
to [10] for more details.

Figure 6b and 6c shows the success plots for the TRE
and SRE analysis. For clarity, we compare with five top
performing trackers. In both evaluations, our approach
performs favorably compared to existing methods. It is
worth mentioning that the standard SAMF employs multi-
cue image representation (HOG and Color names). For a
fair comparison, we also compare with SAMF HOG, that
employs the same feature representation as our fDSST. Our
approach provides a consistent gain in performance com-
pared to SAMF HOG for both TRE and SRE experiments.
We expect further improvement in the performance of our
tracker by incorporating the color information employed in
SAMF.

6.5.3 Qualitative Evaluation
Here we provide a qualitative comparison of our approach
with existing trackers from the literature. Figure 7 illustrates
frames from four sequences with illumination variation
(skating), out-of-plane rotations (trellis), background clut-
ter (soccer) and significant scale variations (doll). Among
existing trackers, both ASLA and SCM are capable of esti-
mating scale variations. In the doll sequence, both SCM and
ASLA suffer from a significant scale drift in the presence
of rotating motions and fast scale changes. Our approach
accurately estimates the target scale and translation despite
the mentioned factors. In the trellis sequence, the compared
trackers struggle due to difficult lighting conditions and out-
of-plane rotations, while our tracker robustly handles these
factors. In the skating sequence, the multi-illuminant indoor
lighting conditions together with the target deformations,
cause most approaches to drift or fail. Again, our approach
demonstrates robustness in these scenarios and is able to

TABLE 6
A comparison of our fDSST with participating methods in the VOT 2014

challenge. The first four columns report the accuracy and robustness
ranking scores in the baseline experiment and the region noise

experiment. The final averaged ranking score is reported in the fifth
column. Raw values for the average overlap and average number of
failures are shown in the last two columns. Our method achieves the

best final score.

Baseline Experiment Noise Experiment Final Raw Values
Acc. Rank Rob. Rank Acc. Rank Rob. Rank Rank Overlap Failures

fDSST 6.44 9.06 6.48 11.54 8.38 0.61 1.04
SAMF 5.22 12.56 5.24 12.54 8.89 0.61 1.28
PLT14 13.71 5.33 13.11 4.50 9.16 0.56 0.16
KCF 4.96 15.17 5.17 12.75 9.51 0.62 1.32
DGT 10.78 11.00 8.24 11.50 10.38 0.58 1.00
PLT13 17.54 3.75 16.49 4.75 10.63 0.55 0.08
eASMS 13.23 14.50 10.88 14.62 13.31 0.55 1.12
MCT 15.88 10.54 16.75 10.17 13.33 0.53 0.99
HMMTxD 9.43 19.08 9.12 16.39 13.51 0.59 1.52
ACAT 12.99 13.23 16.90 14.99 14.53 0.55 1.56
MatFlow 21.25 7.17 18.33 11.42 14.54 0.49 0.76
ABS 19.72 14.25 14.69 12.42 15.27 0.52 1.24
LGTv1 28.12 8.17 25.25 7.01 17.14 0.46 0.66
VTDMG 20.77 15.25 19.72 13.42 17.29 0.52 1.32
qwsEDFT 16.57 16.33 17.90 18.98 17.45 0.54 1.36
BDF 22.42 13.08 20.99 13.54 17.51 0.49 1.20
ACT 20.08 16.83 21.36 16.68 18.74 0.53 1.48
Struck 20.11 19.72 20.60 18.62 19.76 0.51 2.16
DynMS 21.54 19.31 20.42 17.92 19.80 0.51 1.54
tStruck 21.63 20.21 21.26 17.26 20.09 0.50 2.22
EDFT 19.51 20.56 21.39 21.42 20.72 0.52 1.84
SIR-PF 23.54 19.92 21.49 19.83 21.20 0.49 1.94
aStruck 21.41 21.58 19.98 23.00 21.49 0.50 2.44
FoT 18.48 23.58 20.97 26.42 22.36 0.51 2.28
CMT 18.93 25.58 21.37 24.58 22.61 0.48 2.64
OGT 13.76 31.50 15.91 30.78 22.99 0.54 3.34
LT-FLO 15.98 29.58 19.50 29.25 23.58 0.54 2.56
Matrioska 21.15 25.14 21.19 27.00 23.62 0.49 2.48
PTp 32.05 18.92 29.26 16.44 24.17 0.44 1.40
IPRT 26.68 22.25 25.62 22.77 24.33 0.47 1.86
IIVTv2 24.79 26.92 24.58 27.72 26.00 0.47 3.19
FSDT 23.55 32.75 23.58 28.66 27.14 0.46 3.08
IVT 27.31 28.67 26.60 28.00 27.65 0.47 2.76
NCC 17.65 34.42 22.43 36.50 27.75 0.47 7.64
IMPNCC 25.56 29.42 28.29 30.58 28.46 0.47 3.64
FRT 23.38 31.88 26.21 32.42 28.47 0.48 3.32
MIL 33.95 23.58 34.61 24.60 29.19 0.39 2.27
CT 31.51 29.92 29.66 30.33 30.36 0.43 3.12

keep track of the target throughout the sequence. Finally, the
compared trackers fail to handle the significant clutter and
occlusions in the soccer sequence. In addition to robustly
tracking the target, our approach accurately estimates the
scale variations in this sequence.
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Fig. 8. Ranking plots for the baseline and region noise experiments in the VOT 2014 dataset. The accuracy and robustness rank are plotted along
the vertical and horizontal axis respectively. Our fDSST approach (denoted by the red circle) achieves superior results in both experiments.

TABLE 7
Attribute analysis on the VOT 2014 dataset. For each of the five attributes, we report the average overlap and the number of tracking failures. We

also report the results for frames with no annotated attribute. For clarity, we only show the results for the top ten trackers in the VOT 2014
challenge. The best and second best entries for each attribute are shown in red and blue font respectively.

Camera motion Illumination change Occlusion Size change Motion change No attribute label
Failures Overlap Failures Overlap Failures Overlap Failures Overlap Failures Overlap Failures Overlap

fDSST 19.0 0.65 0.0 0.72 4.0 0.61 12.0 0.53 23.0 0.64 0.0 0.57
SAMF 24.0 0.66 1.0 0.67 4.0 0.61 18.0 0.56 25.0 0.67 0.0 0.57
PLT-14 4.0 0.56 1.0 0.5 2.0 0.59 4.0 0.51 4.0 0.57 0.0 0.53
KCF 24.0 0.67 1.0 0.74 5.0 0.64 20.0 0.58 26.0 0.67 0.0 0.54
DGT 19.0 0.56 14.0 0.47 1.0 0.48 6.0 0.58 14.0 0.58 0.0 0.68
PLT-13 2.0 0.55 0.0 0.52 1.0 0.58 2.0 0.48 2.0 0.55 0.0 0.49
eASMS 25.0 0.55 14.0 0.46 5.0 0.56 6.0 0.50 10.0 0.55 0.0 0.59
MCT 15.47 0.55 1.2 0.57 2.27 0.5 12.4 0.48 20.07 0.54 0.27 0.55
HMMTxD 32.0 0.6 10.0 0.58 7.0 0.59 18.0 0.54 20.0 0.61 0.0 0.55
ACAT 28.0 0.55 1.0 0.62 4.0 0.49 16.0 0.49 29.0 0.57 0.0 0.62

6.6 Experiment 4: VOT Challenge 2014

Here we present the results on the VOT 2014 dataset [8]. We
compare our fDSST approach with 37 participating trackers
in the challenge. In addition to the baseline experiment,
we evaluate the robustness by performing the region noise
experiment in the VOT protocol. This is performed by intro-
ducing noise in the initial bounding boxes and evaluating
the tracker multiple times for each video. For more details
about this experiment, we refer to [8].

Table 6 presents the final ranking score over all the 25
videos in the VOT 2014 dataset. In addition to the final
average rank, the partial results for the baseline and region
noise experiments are shown. We also report the average
overlap and failure rate over all videos in the baseline
experiment. Our fDSST approach achieves the top average
rank among all the 38 trackers. Figure 8 shows the ranking
plots for the baseline and region noise experiments. Our
approach performs favorably both in terms of accuracy
and robustness compared to the other trackers. Contrary
to the OTB dataset, Struck provides inferior performance

on this dataset. The second best method, SAMF [23], is
based on a kernelized translation filter and applies a multi-
resolution strategy for estimating the target scale. While
our fDSST only uses HOG and grayscale features, SAMF
employs multiple features for tracking. In particular, it uses
color information by combining HOG and intensity with the
Color Names representation [36].

In the VOT 2014 dataset, the videos are annotated by five
different attributes: Camera motion, illumination change,
occlusion, size change and motion change. Different from
the OTB dataset, the attributes in VOT are annotated per-
frame in a video. Table 7 shows the average overlap and
failures for all attributes on VOT 2014. Only results for the
top ten trackers in the VOT challenge are reported for clarity.

Compared to the second best approach (SAMF), our
method obtains a reduced failure rate for four attributes.
On the other hand, the PLT-13 and PLT-14 achieves better
robustness on all attributes compared to the correlation
based trackers (fDSST, SAMF and KCF). Similar to Struck
[3], the PLT methods are also based on an online structural
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SVM detector. In addition, the PLT approaches employ a
feature selection strategy, leading to superior robustness.
Note that our fDSST does not employ any feature selection.
Unlike PLT, correlation based trackers compute a dense set
of classification scores in a limited search region. This likely
explains the superior accuracy of correlation trackers, such
as fDSST, compared to PLT.

The success of our approach on both datasets clearly sug-
gests the importance of accurate scale estimation for visual
tracking. It is worth mentioning that our approach employs
exactly the same parameter settings for both datasets.

7 CONCLUSION

In this paper, we investigate the problem of accurate and
robust scale estimation for real-time visual tracking. We pro-
pose a novel scale-adaptive approach for accurately estimat-
ing the size of the target. Our approach is based on learning
separate discriminative correlation filters for translation and
scale estimation. The explicit scale filter is directly learned
from samples of the appearance change induced by scale
variations. Furthermore, we propose strategies to reduce the
computational cost of our tracking approach. This allows us
to use a larger target search space without sacrificing real-
time performance. We show that this results in a significant
increase in tracking performance and a twofold gain in
speed.

We conduct extensive experiments on the Online Track-
ing Benchmark (OTB) and the Visual Object Tracking (VOT)
2014 challenge datasets. The results clearly demonstrate that
our approach provides significant improvement over the
baseline translation-tracker. We also compare our approach
with several state-of-the-art trackers. Our method outper-
forms 19 state-of-the-art trackers in the literature on the OTB
dataset. On the VOT 2014 dataset, our tracking approach is
shown to outperform 37 state-of-the-art trackers, obtaining
the top combined ranking score.

In this work, we only employ intensity based image
representation. Future work includes investigating efficient
feature fusion strategies to combine intensity and color
information. Incorporating color information is expected to
improve the performance of our tracker, especially in sce-
narios with target deformations. Another research direction
is to investigate the applicability of our tracker in visual
surveillance scenarios.

APPENDIX

Here, we derive of the solution (2) of the filter that mini-
mizes the loss (1). Applying Parseval’s formula to (1) and
exploiting the correlation property of the DFT gives,

ε̃ =

∥∥∥∥∥G−
d∑

l=1

H lF l

∥∥∥∥∥
2

+ λ
d∑

l=1

∥∥∥H l
∥∥∥2 (9)

=
∑
n

∣∣∣∣∣G(n)−
d∑

l=1

H l(n)F l(n)

∣∣∣∣∣
2

+ λ
d∑

l=1

∣∣∣H l(n)
∣∣∣2


=
∑
n

(∣∣∣G(n)− F (n)∗H(n)
∣∣∣2 + λ ‖H(n)‖2

)
.

Here, the sum over n ranges over all discrete frequencies
in the DFT. Note that F (n), H(n) ∈ Cd are d-dimensional
complex vectors and F (n)∗H(n) is their inner product. We
use ∗ to denote the conjugate transpose of a matrix.

Each term n in (9) can be minimized independently since
it only depends on the DFT coefficients H(n) at frequency
n. We thus get a separate quadratic minimization problem
for each frequency n. The solution is given by solving the
resulting normal equations derived from each term in (9),

(F (n)F (n)∗ + λId)H(n) = F (n)G(n). (10)

Here, Id denotes the d × d identity matrix. The normal
equations (10) can be solved analytically using the formula
for the inverse of a rank-1 adjustment [37]: (xy∗ + A)−1 =
A−1−(y∗A−1x+1)−1A−1xy∗A−1. Here, A is a nonsingular
m × m matrix, while x and y are m-dimensional vectors.
Using A = λId and x = y = F (n) we obtain,

H(n) = (F (n)F (n)∗ + λId)
−1
F (n)G(n)

=

(
1

λ
Id −

1

λ

F (n)F (n)∗

F (n)∗F (n) + λ

)
F (n)G(n)

=

(
F (n)− F (n)F (n)∗F (n)

F (n)∗F (n) + λ

)
G(n)

λ

= F (n)

(
1− F (n)∗F (n)

F (n)∗F (n) + λ

)
G(n)

λ

=
G(n)

F (n)∗F (n) + λ
F (n). (11)

This expression is equivalent to (2).
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sity, Sweden. He received the M.Sc. degree in
Intelligent Systems Design from Chalmers Uni-
versity of Technology, Sweden and a Ph.D. de-
gree in Computer Vision from Autonomous Uni-
versity of Barcelona, Spain. From 2012 to 2014,
he was post doctoral fellow at Computer Vision
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