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Abstract

Robust scale estimation is a challenging problem in visual object tracking. Most
existing methods fail to handle large scale variations in complex image sequences. This
paper presents a novel approach for robust scale estimation in a tracking-by-detection
framework. The proposed approach works by learning discriminative correlation filters
based on a scale pyramid representation. We learn separate filters for translation and
scale estimation, and show that this improves the performance compared to an exhaustive
scale search. Our scale estimation approach is generic as it can be incorporated into any
tracking method with no inherent scale estimation.

Experiments are performed on 28 benchmark sequences with significant scale vari-
ations. Our results show that the proposed approach significantly improves the perfor-
mance by 18.8% in median distance precision compared to our baseline. Finally, we
provide both quantitative and qualitative comparison of our approach with state-of-the-
art trackers in literature. The proposed method is shown to outperform the best existing
tracker by 16.6% in median distance precision, while operating at real-time.

1 Introduction
Visual object tracking is a popular problem in computer vision. The problem involves esti-
mating the location of a visual target in each frame of an image sequence. Despite significant
progress in recent years, the problem is still difficult due to factors such as partial occlusion,
deformation, motion blur, fast motion, illumination variation, background clutter and scale
variations. Most existing approaches provide inferior performance when encountered with
large scale variations in complex image sequences. In this paper, we tackle the challenging
problem of scale estimation for visual tracking.

In recent years, tracking-by-detection methods [3, 9, 11, 19] have shown to provide ex-
cellent tracking performance. These approaches work by posing the task of target localiza-
tion as a classification problem. The decision boundary is obtained by learning a discrimina-
tive classifier online using image patches from both the target and the background. Recently,
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Figure 1: A comparison of our method with the state-of-the-art trackers ASLA [14],
SCM [20], Struck [9] and LSHT [10] in challenging situations, namely partial occlu-
sions, out-of-plane rotations and illumination variations. The example frames are from the
carScale, David and Skating1 sequences respectively. Our approach efficiently handles sig-
nificant scale variations compared to existing approaches.

Wu et al. [18] performed a comprehensive evaluation of online visual tracking approaches.
In their evaluation, the CSK tracker [11] is shown to provide competitive performance while
possessing the highest speed. Given an image patch, the CSK tracker works by learning a
kernelized least-squares classifier of the target appearance. A closely related approach, pro-
posed by Bolme et al. [3], is based on finding an adaptive correlation filter by minimizing
the output sum of squared error (MOSSE).

Most tracking-by-detection methods, such as the CSK and MOSSE, are limited to only
estimating the target translation. This implies poor performance in sequences with signif-
icant scale variations. On the other hand, several existing approaches [14, 20] estimating
scale variations operate at low frame-rates, thereby making them infeasible for real-time
applications. An ideal scale estimation approach should be robust to scale changes while
being computationally efficient. In this paper, we propose an efficient approach for robust
scale estimation. It is based on the discriminative correlation filters employed in the MOSSE
tracker [3]. The proposed scale estimation approach is generic and can be incorporated into
any tracking framework.
Contributions: We propose an efficient method for estimating the target scale by training a
classifier on a scale pyramid. This allows us to independently estimate the target scale after
the optimal translation is found. We further show that our approach improves the accuracy
over an exhaustive scale space search method, while running at 25 times faster frame-rate.
To validate our approach, we perform extensive experiments on all the 28 image sequences
annotated with “Scale Variation (SV)” in the recent benchmark evaluation [18]. We compare
our approach with state-of-the-art trackers in literature. Despite its simplicity, our tracker
achieves state-of-the-art performance, while operating at real-time. Figure 1 shows a com-
parison to state-of-the-art trackers on three benchmark sequences.
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2 Learning Discriminative Correlation Filters
Our baseline is closely related to the MOSSE tracker [3]. The tracker learns a discriminative
correlation filter used to localize the target in a new frame. The method uses a number
of grayscale image patches f1, . . . , ft of the target appearance as training samples. These are
labelled with the desired correlation outputs g1, . . . ,gt from the filter. The optimal correlation
filter ht at time step t is obtained by minimizing the sum of squared errors:

ε =
t

∑
j=1

∥∥ht ? f j−g j
∥∥2

=
1

MN

t

∑
j=1

∥∥HtFj−G j
∥∥2

. (1)

The functions f j, g j and ht are all of size M×N. The star ? denotes circular correlation.
The second equality follows from Parseval’s identity. Here, capital letters denote the discrete
Fourier transforms (DFTs) of the corresponding functions. The bar Ht represents complex
conjugation and the product HtFj is point-wise. Eq. 1 is minimized by choosing:

Ht =
∑

t
j=1 G jFj

∑
t
j=1 F jFj

. (2)

The desired correlation output g j is constructed as a Gaussian function with its peak located
at the target centre in f j. In practice, the numerator At and denominator Bt of Ht in (2) are
updated separately with the new observation ft of the target by taking a weighted average.

Given an image patch z of size M×N in a new frame, the correlation scores y are com-
puted as y = F−1{HtZ}. Here F−1 denotes the inverse DFT operator. The new target
location is estimated to be at the maximum correlation score of y. The training and detection
steps are performed efficiently using the fast Fourier transform (FFT). It is shown in [3] that
the tracker can achieve speeds at hundreds of FPS. We refer to [3] for details and derivations.

3 Our Approach
Here we describe our approach. Section 3.1 presents how we extend the standard discrimi-
native correlation filters to multidimensional features. In section 3.2 and 3.3 we describe our
proposed scale estimation approaches.

3.1 Discriminative Correlation Filters for Multidimensional Features
The discriminative correlation filters described in section 2 have recently been extended to
multi-dimensional features for a variety of applications, including visual tracking [4, 13],
object detection [8, 12] and object alignment [2]. Similar to [13], we use HOG features for
the translation filter and concatenate it with the usual image intensity features. However, any
dense feature representation can be incorporated. The method presented here is also general
in the number of dimensions of the search space. In this work, we utilize 1-dimensional filters
for estimating the scale only, 2-dimensional filters for translation only and 3-dimensional
filters for exhaustive scale-space localization of the target.

We consider a d-dimensional feature map representation of a signal (e.g. an image). Let
f be a rectangular patch of the target, extracted from this feature map. We denote feature
dimension number l ∈ {1, . . . ,d} of f by f l . The objective is to find an optimal correlation
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filter h, consisting of one filter hl per feature dimension. This is achieved by minimizing the
cost function:

ε =

∥∥∥∥∥ d

∑
l=1

hl ? f l−g

∥∥∥∥∥
2

+λ

d

∑
l=1

∥∥hl∥∥2
. (3)

Here, g is the desired correlation output associated with the training example f . The param-
eter λ ≥ 0 controls the impact of the regularization term. Note that (3) only considers one
training sample and hence generalizes (1) in the case of t = 1. The solution to (3) is:

H l =
GF l

∑
d
k=1 FkFk +λ

. (4)

As mentioned in [3], the regularization parameter alleviates the problem of zero-frequency
components in the spectrum of f , which would lead to division by zero. An optimal filter
can be obtained by minimizing the output error over all training patches [2, 8]. However,
this requires solving a d×d linear system of equations per pixel, which is costly for online
learning applications. To obtain a robust approximation, here we update the numerator Al

t
and denominator Bt of the correlation filter H l

t in (4) separately as:

Al
t = (1−η)Al

t−1 +ηGtF l
t (5a)

Bt = (1−η)Bt−1 +η

d

∑
k=1

Fk
t Fk

t (5b)

Here, η is a learning rate parameter. The correlation scores y at a rectangular region z of a
feature map are computed using (6). The new target state is then found by maximizing the
score y.

y = F−1

{
∑

d
l=1 AlZl

B+λ

}
(6)

As a baseline, we learn a filter using HOG features for only translation estimation. To
train the filter, we extract the feature map f of the target patch. The filter htrans is then
updated using (5). We estimate the location in a new frame by extracting the feature map z
at the predicted target location. The correlation scores y are then computed using (6). The
following subsections describe how these filters are used for scale estimation in tracking.

3.2 Exhaustive Scale Space Tracking
We propose a method for joint translation-scale tracking based on learning a 3-dimensional
scale space correlation filter. The filter size is fixed to M×N × S, where M and N are
the height and width of the filter and S is the number of scales. To update the filter, we
first compute a feature pyramid in a rectangular area around the target. The pyramid is
constructed such that the size of the target is M×N at its estimated scale. The training
sample f is then set to a rectangular cuboid of the feature pyramid. The cuboid is of size
M×N×S and is centred at the target’s estimated location and scale. We use a 3-dimensional
Gaussian function as the corresponding desired correlation output g. Finally, the scale space
tracking filter is updated using (5).

To locate the target in a new frame, we extract a M×N×S rectangular cuboid z from the
feature pyramid as above. The cuboid is centred at the predicted target location and scale.
The correlation scores y are then computed using (6). The new target location and scale are
obtained by finding the maximum score in y.
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Algorithm 1 Proposed tracking approach: iteration at time step t.

Input:
Image It .
Previous target position pppt−1 and scale st−1.
Translation model Atrans

t−1 , Btrans
t−1 and scale model Ascale

t−1 , Bscale
t−1 .

Output:
Estimated target position pppt and scale st .
Updated translation model Atrans

t , Btrans
t and scale model Ascale

t , Bscale
t .

Translation estimation:
1: Extract a translation sample ztrans from It at pppt−1 and st−1.
2: Compute the translation correlation ytrans using ztrans, Atrans

t−1 and Btrans
t−1 in (6).

3: Set pppt to the target position that maximizes ytrans.

Scale estimation:
4: Extract a scale sample zscale from It at pppt and st−1.
5: Compute the scale correlation yscale using zscale, Ascale

t−1 and Bscale
t−1 in (6).

6: Set st to the target scale that maximizes yscale.

Model update:
7: Extract samples ftrans and fscale from It at pppt and st .
8: Update the translation model Atrans

t , Btrans
t using (5).

9: Update the scale model Ascale
t , Bscale

t using (5).

3.3 Fast Scale Space Tracking
Incorporating scale estimation into a tracker comes at a higher computational cost. Ideally,
an accurate scale estimation approach should be robust while computationally efficient. To
achieve this, we propose a fast scale estimation approach by learning separate filters for
translation and scale. This helps by restricting the search area to smaller parts of the scale
space. In addition, we gain the freedom of selecting the feature representation for each filter
independently.

We augment the baseline by learning a separate 1-dimensional correlation filter to es-
timate the target scale in an image. The training example f for updating the scale filter is
computed by extracting features using variable patch sizes centred around the target. Let
P×R denote the target size in the current frame and S be the size of the scale filter. For
each n ∈

{⌊
− S−1

2

⌋
, . . . ,

⌊ S−1
2

⌋}
, we extract an image patch Jn of size anP× anR centred

around the target. Here, a denotes the scale factor between feature layers. The value f (n)
of the training example f at scale level n is set to the d-dimensional feature descriptor of Jn.
Finally, (5) is used to update the scale filter hscale with the new sample f .

In visual tracking scenarios, the scale difference between two frames is typically smaller
compared to the translation. Therefore, we first apply the translation filter htrans given a new
frame. Afterwards, the scale filter hscale is applied at the new target location. An example
z is extracted from this location using the same procedure as for f . By maximizing the
correlation output (6) between hscale and z, we obtain the scale difference. Algorithm 1
provides a brief outline of our tracker. Our approach accurately estimates both translation
and scale while being computationally efficient.
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Method median OP median DP median CLE median FPS

Baseline (no scale) 37.8 74.5 15.9 44.1
Exhaustive Scale Search (this paper) 52.2 87.6 11.8 0.96
Fast Scale Search (this paper) 75.5 93.3 10.9 24.0

Table 1: Comparison of our fast scale estimation method with the baseline and exhaustive
search trackers. Our approach significantly improves the performance, while being compu-
tationally efficient.

4 Experiments
We first show that replacing the conventional intensity values with HOG features signifi-
cantly improves the performance. We then compare our fast scale estimation approach with
the exhaustive method. Finally, we provide both quantitative and qualitative comparisons
with state-of-the-art trackers.

4.1 Features and Parameters
The regularization parameter is set to λ = 0.01. We set the standard deviations for the desired
correlation output to 1/16 of the target size for the translation filter and 1.5 in the scale filter.
The filter size M×N is set to twice the initial target size. We use S = 33 number of scales
with a scale factor of a = 1.02. The learning rate is set to η = 0.025 for our methods. We
use the same parameter values for all the sequences.

We use PCA-HOG [7] for image representation. The implementation provided by [5] is
employed in this work. To achieve a pixel-dense feature representation for the translation
filter, the cell size is set to 1×1. We further augment the HOG feature vector with the image
intensity (grayscale) value. This feature representation is also employed in the exhaustive
scale-space filter described in section 3.2. For the scale filter introduced in section 3.3 we
compute a feature descriptor of the image patch Jn by first resizing the patch to a fixed
size. PCA HOG features are then extracted using a cell size of 4× 4. The fixed patch
size is set to the initial target size. However, for targets with an initial area larger than 512
pixels, we calculate a fixed size with a preserved aspect ratio and an area of 512 pixels.
This ensures a maximum feature descriptor length of 992. Finally, the extracted features are
always multiplied by a Hann window, as described in [3].

4.2 Experimental Setup
The approach proposed in this paper is implemented in Matlab. We perform the experiments
on an Intel Xenon 2 core 2.66 GHz CPU with 16 GB RAM.

Datasets: We employ all the 28 sequences1 annotated with the scale variation attribute in the
recent evaluation of tracking methods [18]. The sequences also pose challenging problems
such as illumination variation, motion blur, background clutter and occlusion.

Evaluation Methodology: The performance of our approach is quantitatively validated by
following the protocol1 used in [18]. We present the results using distance precision (DP),
centre location error (CLE) and overlap precision (OP). The first metric, CLE, is computed

1The sequences together with the ground-truth and matlab code is available at:
https://sites.google.com/site/trackerbenchmark/benchmarks/v10
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Ours ASLA [14] SCM [20] Struck [9] TLD [15] EDFT [6] L1APG [1] DFT [17] LOT [16] CSK [11] LSHT [10] CT [19]

Median OP 75.5 69.9 56.6 43.1 37.9 33.6 31.1 30.3 28.9 28.2 27.9 17.9
Median DP 93.3 70.8 64.3 76.8 45.4 48.2 38.1 41.4 48 55.5 55.9 25.7
Median CLE 10.9 30.2 23.5 14.3 48.1 78.6 62.3 58.5 60.9 35.1 31.2 71.5
Median FPS 24 0.959 0.0828 8.96 21 20.6 1.01 10.5 0.517 152 12.5 69.1

Table 2: Comparison with state-of-the-art trackers on the 28 benchmark sequences. Our
approach significantly outperforms existing methods in overlap precision (OP) (%), distance
precision (DP) (%) and centre location error (CLE) (in pixels). Additionally our method is
faster compared to the best performing existing trackers: Struck, ASLA and SCM.

boy car4 carScale couple crossing david dog1 doll dudek fleetface freeman1 freeman3 freeman4 girl

Ours 100 100 84.5 10.7 100 100 100 99.6 98.1 66.5 36.8 31.3 41.7 24.2
ASLA 43.5 100 71 22.1 100 94.9 89.9 92.2 90.5 64.5 32.8 91.7 17 86.8
SCM 43.9 37.5 66.7 47.1 100 28 85.3 99.3 80.3 86.6 32.2 99.8 57.6 35.6
Struck 97.5 39.9 43.3 60.7 95.8 23.6 65.2 68.9 98.1 78.1 20.2 17.6 18.7 97
LSHT 50.7 27.6 44.8 9.29 40 28.2 54.3 23 89.9 65.5 18.4 15.7 20.1 14.4
TLD 82.9 24 68.7 22.9 45.8 61.1 75.6 69.3 67 44.1 23.3 64.6 21.6 72.6

ironman lemming liquor matrix mRolling shaking singer1 skating1 skiing soccer trellis walking walking2 woman

Ours 13.3 26.9 40.9 18 6.71 100 100 54.8 4.94 52.8 96.8 99.8 100 93.3
ASLA 15.1 16.7 68.8 7 9.76 23.3 100 73.3 12.3 10.5 85.8 99.8 39.8 88.6
SCM 9.04 16.6 37 17 9.15 55.6 100 64.8 9.88 18.1 87.2 95.1 100 78.2
Struck 4.82 63.8 40.5 11 15.2 52.9 29.9 31.3 4.94 18.1 54 52.4 43 93.5
LSHT 2.41 40.7 60.1 2 9.15 69.9 27.6 18.3 3.7 9.18 44.3 54.4 38.4 83.9
TLD 8.43 63.4 75.5 7 17.7 3.29 98.6 9 7.41 11.2 40.6 35.2 20.8 32.8

Table 3: Per-video overlap precision (OP) in percent on the 28 sequences. The best results
are reported in bold. Our approach performs favourably compared to existing trackers.

as the average Euclidean distance between the ground-truth and the estimated centre location
of the target. The second metric, DP, is computed as the relative number of frames in the
sequence where the centre location error is smaller than a certain threshold. The DP values
at a threshold of 20 pixels [11, 18] are reported. The third metric, OP, is defined as the
percentage of frames where the bounding box overlap surpasses a threshold t ∈ [0,1]. We
report the results at a threshold of 0.5, which correspond to the PASCAL evaluation criteria.
We provide results using median DP, CLE and OP over all 28 sequences. We also report the
speed of the trackers in median frames per second (FPS) over all the 28 sequences.

In addition, the results are presented using precision and success plots [18]. The average
distance precision is plotted over a range of thresholds in the precision plot. In the legend,
we report the average DP score at 20 pixels for each method. The average overlap precision
(OP) is plotted in the success plot. The area under the curve (AUC) is included in the legend.
The precision and success plots provide the mean results over all the 28 sequences. Finally,
we provide the qualitative analysis of our approach with existing tracking methods.

4.3 Experiment 1: Image Representation using HOG

The intensity based baseline roughly corresponds to the MOSSE tracker proposed in [3],
but without any explicit failure detection component. The HOG based image representation
significantly improves the tracking performance by 11.6% and 6.9% in median distance
precision (DP) and overlap precision (OP) respectively. Similarly, the HOG based tracker
reduces the median CLE from 31.2 to 15.9 pixels. In summary, our results clearly suggest
that the HOG based image representation, popular in object detection, also improves the
performance for visual tracking. Due to its performance, we also employ the HOG features
for image representation in our scale estimation approach.
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Figure 2: Precision and success plots over all the 28 sequences. The average DP score at
20 pixels for each method is reported in the legend of the precision plot. The legend of the
success plot contains the area-under-the-curve (AUC) score for each tracker.

4.4 Experiment 2: Robust Scale Estimation
Table 1 shows the results of our scale estimation methods discussed in section 3. We use the
HOG based tracker with no scale estimation capability as a baseline. Augmenting the base-
line with the simple exhaustive scale estimation method (section 3.2) improves the tracking
performance. The method improves the baseline by 14.4% in median OP. Similarly, the ex-
haustive scale search method provides a median DP 87.6% compared to 74.5% obtained us-
ing the baseline approach. However, this performance gain is achieved at the cost of a higher
computational load. Our fast scale approach (section 3.3) further improves the tracking per-
formance by 23.3% in median OP, while being 24 times faster compared to the exhaustive
scale search method.

In summary, a significant gain of 37.7% median OP is obtained using our robust scale
estimation approach compared to the baseline with no scale estimation. This clearly demon-
strates the effectiveness of incorporating a robust scale estimation into a visual tracker. It is
worthy to mention that our robust scale estimation approach is generic and can be incorpo-
rated into any tracking framework.

4.5 Comparison with State-of-the-Art
We compare our approach with 11 state-of-the-art trackers: CT [19], TLD [15], DFT [17],
EDFT [6], ASLA [14], L1APG [1], CSK [11], SCM [20], LOT [16], Struck [9] and LSHT
[10], which have shown to provide excellent performance in literature. The comparison on
the 28 benchmark sequences is shown in table 2. We present the results using median OP, DP
and CLE over all sequences. Moreover, a speed comparison in median FPS is also provided.

Among the existing trackers, Struck provides the best results with a median CLE of 14.3
pixels. Our approach improves the performance with a reduction in median CLE by 3.4
pixels. Similarly, Struck and SCM provide a median DP of 76.8% and 64.3% respectively.
Our approach significantly improves the tracking performance by achieving a median DP of
93.3%. Finally in overlap precision (OP), ASLA provides the best results among the existing
methods with a median OP of 69.9%. Our approach, despite its simplicity, outperforms
ASLA by 5.6% in median OP. It is worthy to mention that our approach is significantly
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(b) Partial occlusion (soccer and walking).
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(c) Out-of-plane rotation (trellis and fleetface).
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Figure 3: A visualization of the tracking results of our approach and the state-of-the-art vi-
sual trackers ASLA [14], SCM [20], Struck [9] and LSHT [10] on six benchmark sequences.
The image sequences pose challenging situations such as scale variations (a), partial occlu-
sions (b) and out-of-plane rotations (c).

faster than the best performing compared trackers. Our method is more than 2.5 times faster
than Struck, 25 times faster than ASLA and 250 times faster than SCM in median FPS.

Table 3 provides a per-video comparison with the top 5 existing trackers in our eval-
uation. The per-video results are presented using overlap precision (OP). Our approach
provides better or similar performance on 16 out of the 28 sequences.

Finally, figure 2 contains the precision and success plots illustrating the mean distance
and overlap precision over all the 28 sequences. In both precision and success plots, our
approach significantly outperforms the best existing method (Struck and ASLA). In sum-
mary, the precision plot demonstrates that our approach is superior in robustness compared
to existing trackers. Similarly, the success plot shows that our method tracks scale more
accurately on the benchmark sequences.

4.6 Qualitative evaluation

Here we provide a qualitative comparison of our approach with existing trackers. Figure 3a
illustrates two sequences with significant scale variations, namely doll and dog. Both ASLA
and SCM are capable of tracking scale changes, but suffer from significant scale drift in the
presence of rotating motions and fast scale variations. Despite these challenges, our tracker
accurately estimates both the scale and position of the target.

Figure 3b illustrates the results on two sequences with partial occlusions. The compared
trackers fail to handle the significant clutter and occlusions in the soccer sequence. However,
our tracker accurately estimates the scale and position, as shown in frame 242 in figure 3b
and in figure 4. Similarly, our method manages to track the target in the walking sequence
despite the partial occlusion by a similar object at frame 202, where ASLA and LSHT fail.

Figure 3c shows the results on two sequences, trellis and fleetface, with significant illu-
mination variation and out-of-plane rotation. Both SCM and LSHT fail due to the varying
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Figure 4: A frame-by-frame comparison of the centre location error (in pixels) on the five
challenging sequences skating1, trellis, soccer, car4 and fleetFace. Our approach provides
promising results compared to existing trackers on these sequences.

lighting conditions encountered in the trellis sequence. Our approach provides better robust-
ness to these conditions (figure 4). On the fleetface sequence, our approach drifts on frame
550 in figure 3c due to out-of-plane rotation, but manages to accurately reacquire the target
at frame 706 (figure 4).

The proposed tracker struggles in the freeman3 and freeman4 sequences, where the target
is initially very small (around 15×15 pixels) and then slowly increases in size. Our method
does not manage to identify the increasing scale in these conditions. This is most likely due
to the HOG-based feature representation, that performs poorly at low resolutions.

5 Conclusions

In this paper, we propose an accurate scale estimation approach for visual tracking. Our
method learns discriminative correlation filters for estimating translation and scale indepen-
dently. Compared to an exhaustive scale space search scheme, our tracker provides improved
performance while being computationally efficient. Since our scale estimation approach is
independent, it can be incorporated in any tracking method lacking this component.

Experiments are performed on 28 challenging benchmark sequences with significant
scale variation. Both quantitative and qualitative evaluations are performed to validate our
approach. The results clearly demonstrate that our approach outperforms state-of-the-art
methods, while operating at real-time.
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CUAS, VR through a grants for the project ETT, through the Strategic Area for ICT research
ELLIIT and the Linnaeus research environment CADICS.
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