

Introduction

#160

Problem

Accurate scale estimation for visual tracking.

Discriminative Scale Space Tracker

- First apply a translation filter.
- Use a separate 1D filter for scale estimation.

The Translation Filter

Translation sample f

Motivation

- Most trackers do not estimate scale.
- Those that do are usually slow.

Contribution

- Fast and accurate scale-adaptive tracker.
- A generic scale estimation component.

Multi-channel DCF:s

We use discriminative correlation filters (DCF:s).

- Local target patch of feature dimension $l: f^{l}$
- Desired correlation output: g
- Sought correlation filter for dimension $l: h^l$

Findh^l that minimizes:

$$\epsilon = \left\|\sum_{l=1}^{d} h^{l} \star f^{l} - g\right\|^{2} + \lambda \sum_{l=1}^{d} \left\|h^{l}\right\|$$

Solved by:
$$H^{l} = \frac{A^{l}}{B} = \frac{\bar{G}F^{l}}{\sum_{k=1}^{d} \bar{F}^{k}F^{k} + \lambda}$$

Capital letters denote DFT:s, e.g. $H^{l} = \mathcal{F}\{h^{l}\}$.

Evaluation

- We use the tracking benchmark protocol [2].
- All the 28 "scale variation" sequences in [2].
- We compare with 11 state-of-the-art trackers.

Scale Estimation

Method	median OP	median DP	median CLE	median FPS
Baseline (no scale)	37.8	74.5	15.9	44.1
Exhaustive Scale Search (this paper)	52.2	87.6	11.8	0.96
Fast Scale Search (this paper)	75.5	93.3	10.9	24.0

State-of-the-Art Comparison

The model is updated similarly to [1]:

Numerator:
$$A_t^l = (1 - \eta)A_{t-1}^l + \eta \overline{G}F^l$$

Denominator: $B_t = (1 - \eta)B_{t-1} + \eta \sum_{k=1}^d \overline{F^k}F^k$

Exhaustive Method

First approach: 3D scale space DCF.

- + Joint translation-scale tracking.
- High computational complexity.
- Scale space shearing distortions.

	LOT [0. DFT [0. CT [0.3					LOT [0.339] DFT [0.329] CT [0.239]			
0 10 L	20 ocation e	30 rror thre	40 shold	50	0	0.2 Ov	0.4 0 erlap thres	.6 0 shold).8 1
	Ours	CSK	LOT	ASLA	SCM	Struck	LSHT	TLD	EDFT
Median FPS	24	152	0.517	0.959	0.0828	8.96	12.5	21	20.6

Visual Object Tracking Challenge 2014

- Winner of VOT challenge at ECCV 2014.
- 25 videos, independent verification of results.
- The same parameter settings as in the paper!

References

[1] Danelljan et al. Adaptive Color Attributes for Real-Time Visual Tracking. In CVPR, 2014. [2] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.

