
 

 

 
 
 
 
 
 
 

 

 
 

IVSS Intersection accidents:   
Analysis and Prevention 

 
Final Report  –  Volume 2 (appendices) 



 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

IVSS Intersection accidents: 
Analysis and Prevention 

 
Final Report  –  Volume 2 (appendices) 

 
 

Leif Franzén 
Gösta Granlund 
Björn Johansson 
Björn Johansson 
Fredrik Moeschlin 

Linda Renner 
András Várhelyi 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Title of the report: IVSS Intersection Accidents: Analysis and Prevention, Final 
Report – Volume 1 (appendices) 
Reference number (IVSS):  AL80 A 2008:73343 
ISBN: 978-91-633-5031-3 
Authors: Leif Franzén, Gösta Granlund, Björn Johansson, Björn Johansson, 
Fredrik Moeschlin, Linda Renner, András Várhelyi 
Publication date: June 30, 2009 
Project manager and contact person: Jonas Bärgman, Autoliv Development AB, 
Vårgårda, Sweden 
IVSS contact: Torbjörn Biding, Vägverket, Sweden 
Printed: Chalmers Reproservice, Göteborg, Sweden, 2009 



 
Introduction 

Driving in intersections is a task that most people are familiar with and perform on a 
daily basis.  This project was initiated to advance the understanding of driver actions and 
behavior in intersections as a basis for developing in-vehicle active safety systems.  We 
used several different approaches and were able to extract useful and corroborating 
results that industry and academia can use to enhance traffic safety by developing active 
safety systems for cars.  The results range from new methods and taxonomies for further 
research and development to data that can be used in the design of strategies for warnings 
and interventions in in-vehicle active safety systems.  This report contains a set of results 
I hope will be a welcome contribution to the research community in better understanding 
driving in intersections. This is the appendices part of the report, covering some of the 
basic research and intermediate reports and studies produced in the project. 

The project was funded partially by the Swedish government (via IVSS – see next page) 
and partly by the Swedish automotive industry.  As the project manager I would like to 
thank all participating partners for their valuable contributions, with special thanks to the 
principle investigator, professor Kip Smith, for his devotion to the project and large 
contribution to this report. I would also like to thank IVSS for their funding and support.  
I know the knowledge gained by the partners due to this project are being and will be 
used in many direct and indirect ways.     

Jonas Bärgman 
Project manager, Autoliv Development AB 



 
The IVSS Program 
 
The IVSS program was set up to stimulate research and development for the road safety 
of the future. The end result will probably be new, smart technologies and new IT 
systems that will help reduce the number of traffic-related fatalities and serious injuries.  

IVSS projects shall meet the following three criteria: road safety, economic growth and 
commercially marketable technical systems. 

 

Three interacting components - for better safety, growth and competitiveness: 

The human being 

Preventive solutions based on the vehicle’s most important component. 

The road 

Intelligent systems designed to increase security for all road users. 

The vehicle 

Active safety through pro-active technology. 

• Injury prevention 
• Crash avoidance

• Business growth 
on a global market 

• Product excellence 
• Premium requirements 
• Cost 

IVSS 
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FÖRORD 
 
 
Denna studie har genomförts på beställning av Autoliv Development AB i Vårgårda i syfte att 
komplettera pågående insamling av trafik- och olycksdata för den aktuella platsen. Resultaten 
från undersökningen skall ligga till grund för diskussioner om den fortsatta inriktningen för 
analysen av trafiksäkerhetssituationen i korsningen. 
 
 
 
   András Várhelyi   Maj 2006 
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SAMMANFATTNING 
 
Syftet med fältmätningarna var att kartlägga vilka är de kritiska situationerna i 
landsvägskorsningen mellan E20 och väg 2623 utanför Jung. 
 
Konfliktobservation och hastighetsmätningar med radar genomfördes i korsningen. Tolv 
konflikter (9 allvarliga) registrerades under observationsperioden bestående av 35 timmar. 
Alla konflikter involverade ett fordon som kör ut från östra sekundärvägen. Majoriteten av 
konflikterna är av typen då ett fordon kör ut från östra sekundärvägen (antingen med korsande 
eller vänstersvängande riktning) och det kommer i konflikt med ett fordon som passerar 
korsningen från syd-väst. Näst största konflikttyp är då svängande och raktframkörande 
fordon från var sin sekundärvägstillfart konkurrerar om den korta tidluckan flödet längs 
primärvägen ger och då kommer i konflikt med varandra.  
 
Fortkörning är en vanlig företeelse genom korsningen. Mer än 65 % av förarna körde med en 
hastighet över hastighetsgränsen och 50 % av förarna körde fortare än 74 km/h. 
 
Det förekommer frekventa köer på sekundärvägstillfarterna. Lastbilsförare som pratar i 
mobiltelefon är mer regel än undantag när fordonen passerar korsningen. Det förekommer att 
lastbilsförare har ena foten i vilställning uppe på instrumentbrädan när fordonet passerar 
korsningen. När fordon kör ut från sekundärvägen efter stopp och svänger vänster och det står 
en bil mittemot vid stopplinjen förekommer det frekvent att det vänstersvängande fordonet 
kör först fast det skall lämna företräde åt rakt fram korsande fordon från motsatta hållet. 
Många fordon stannar aldrig helt vid stopplinjen. 
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SUMMARY 
 
 
The aim of the field observations was to explore which are the critical situations at the 
intersection of rural roads E20 and 2623 outside Jung. 
 
Conflict observations and speed measurements with radar gun were carried out at the 
intersection. Twelve conflicts (9 serious) were registered during the observation period of 35 
hours. All conflicts involved a vehicle driving out from the East secondary road. The majority 
of the conflicts were of the type where a vehicle drives out from the East secondary road 
(either crossing or left turning movement) and it comes into conflict with a vehicle passing the 
intersection from South-West. The next largest conflict type occurred when vehicles from the 
two secundary roads (turning and passing straight), competing for the short time gap in the 
flow of vehicles on the primary road, got in conflict with each other.  
 
Speeding among drivers on the main road through the intersection was usual. More than 65 % 
of the drivers drove with a speed over the speed limit and 50 % of the drivers drove faster 
than 74 km/h. 
 
There are frequent queues on the approaches of the secondary roads. Lorry drivers talking in 
their mobile phone when passing the intersection are more a rule than exception. It is not 
unusual that lorry drivers have one of their feet resting on the dashboard when their vehicle 
passing the intersection. When a vehicle drives out from the secondary road and turns left and 
there is a vehicle from the opposite approach to pass straight through the intersection, the left 
turning vehicle frequently do not give priority. Many vehicles do not stop at the stop line at 
all. 
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1 BAKGRUND 
 
Autoliv Development AB i Vårgårda genomför trafiksäkerhetsstudier i landsvägskorsningar. 
Som en del av insamling av trafik- och olycksdata för den aktuella platsen uppstod behovet att 
i fält observera förarbeteende som kan resultera i trafikkonflikter. Som ett led i denna analys 
har Institutionen för teknik och samhälle vid Lunds Tekniska högskola genomfört 
konfliktstudier i en av målkorsningarna. 
 
 
2 SYFTE 
 
Syftet med fältmätningarna var att kartlägga vilka är de kritiska situationerna i 
landsvägskorsningen mellan E20 och väg 2623.  
 
 
3 KORSNINGEN 
 
Studieobjektet är en fyrvägskorsning på landsväg mellan E20 och väg 2623. Väg E20 har en 
bredd på 13 meter, medan den korsande sekundärvägen nr 2623 är 9 m bred. Korsningens 
läge visas i figur 1 nedan. 
 
 

 
 
Figur 1. Situationskarta med landsvägskorsningen mellan E20 och väg 2623. 
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Båda huvudvägstillfarterna har ett körfält för varje riktning (högersväng, rakt fram, 
vänstersväng) genom korsningen. Medan sekundärvägen har ett körfält i 
korsningsmynningen. Stopplikt gäller på tillfarterna från sekundärvägarna. Fordonsflödena på 
huvudvägen är 8000ÅDT och 1200 / 1600ÅDT på sekundärvägarna. Den skyltade 
hastighetsgränsen är 70 km/tim på alla tillfarter. Huvudvägen utanför korsningsområdet har 
hastighetsbegränsning 90 km/t, medan sekundärvägen 2623 mot Jung har 70 km/t och samma 
väg sydöst mot Kvänum har 90 km/t hastighetsgräns utanför korsningsområdet. Längs 
huvudvägen före korsningen står varningsskylten ”Övrig fara” med tilläggstext 
”Olycksdrabbad korsning”.  Korsningens schematiska planritning visas i figur 2 nedan. 
 
 

   
 

 
 
Figur 2. Schematisk planritning för korsningen mellan E20 och väg 2623.  
 
 

Väg 20 

Väg 2623 

N

S
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4 METOD OCH GENOMFÖRANDE 
 
4.1 Konfliktobservationer 
 
För att analysera trafiksäkerhetssituationen i korsningen har, den vid institutionen utvecklade, 
konflikttekniken använts (Hydén, 1987). Konflikttekniken grundas på sambandet mellan 
konflikter (olyckstillbud) av en viss allvarlighetsgrad och olyckor. En konflikt är en situation 
där två trafikanter befinner sig på kollisionskurs och en olycka hade inträffat om de båda 
inblandade hade fortsatt utan att ändra riktning eller hastighet.  
 
Konflikttekniken är överlägsen olycksbaserade analyser vid analys trafiksäkerhetssituation 
vid enskilda latser: 

• Antalet olyckor är ofta litet och därmed behäftade med stora slumpmässiga 
variationer. För att kunna använda antalet olyckor som mått på säkerheten måste man 
vänta många år för att kunna samla in "tillräckligt många" olyckor. Under en så lång 
tid kan förhållandena ändras på platsen, vilket gör det svårbedömt om de eventuellt 
uppvisade effekterna berodde på åtgärderna eller på andra orsaker. Med hjälp av 
konflikttekniken kan man samla in tillräckligt antal konflikter på en vecka för att 
kunna bedöma säkerhetsläget.  

• Ett annat problem med analyser baserade på olyckor är att inte alla olyckor 
rapporteras. 

• En trafiksäkerhetsåtgärd är ofta införd p.g.a. att antalet olyckor på platsen var relativt 
stort. Om antalet olyckor året efter blir mindre kan det bero på regressionseffekten, 
d.v.s. att antalet återgått till det "normala" medelvärdet. 

• Konfliktstudierna ger mer detaljerad information än olycksanalyserna, bl a beträffande 
orsaker till situationernas uppkomst och om de inblandade trafikanternas hastigheter. 

 
Konflikterna registreras av speciellt tränade observatörer direkt i trafiken. Förutom att alla 
grundläggande data (inblandade trafikanter och deras färdriktningar, hastigheter etc.) 
registrerades gjordes också en beskrivning av händelseförloppet som föregick konflikten och 
de faktorer som påverkade händelseutvecklingen enligt observatörens bedömning. Formulär 
där registreringen gjordes finns i bilaga 1.  
 
Observationstider har varit måndag till fredag kl. 7:00-9:00, 10:00-11:30, 13:30-15:00, 16:00-
18:00. Den totala observationstiden uppgick till 35 timmar. 
 
 
4.2 Hastighetsmätningar med radar  
 
Hastigheter mättes med radarpistol på slumpmässigt valda "fria" fordon, dvs fordon som 
"fritt" kan välja sin hastighet längs huvudvägen. Hastigheterna mättes rakt framifrån med c:a 
100 fordon per mätsnitt. Mätsnitten låg c:a 100 meter före korsningen. 
Mättider har varit måndag till fredag mellan kl. 13:00 och kl. 18:30. 
 
Det genomfördes även hastighetsmätningar med tidtagarur (vissa notoriska fortkörare kan ha 
radarvarnare i bilen och därmed kommer ej med i radarmätningarna). 
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5 RESULTAT 
 
5.1 Konflikter 
 
Tolv konflikter registrerades under observationsperioden bestående av 35 timmar. En 
sammanställning av observerade konflikttyperna visas i figur 3 nedan (Varje enskild 
konfliktsituation presenteras i bilaga 2). Som det framgår av figur 3 involverade alla 
konflikter ett fordon som kör ut från östra sekundärvägen. Majoriteten (7 st) av konflikterna är 
av typen då ett fordon kör ut från östra sekundärvägen (antingen med korsande eller 
vänstersvängande riktning) och det kommer i konflikt med ett fordon som passerar 
korsningen längs primärvägen från sydväst. Näst största konflikttyp (4st) är då svängande och 
raktframkörande fordon från var sitt sekundärvägstillfart konkurrerar om den korta tidluckan 
flödet längs primärvägen ger och då kommer i konflikt med varandra. Det förekommer även 
en konflikt där ett vänstersvängande fordon från primärvägen kommer i konflikt med ett 
fordon som kör ut från sekundärvägen på högra sidan (konflikt nr 4). 
 

 
 
Figur 3. Sammanställning av konflikterna (Numren på allvarliga konflikter är i fet 
    stil). 

Väg 20

Väg 2623 

N

4 

2 

30 

13, 32 

22, 28

8, 10, 12, 14, 15
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Nio konflikter var allvarliga, se diagram i figur 4 nedan. Allvarliga konflikter definieras av att 
den tidsmarginal som återstår då avväjningen påbörjas är högst lika med bromstiden vid 
häftig inbromsning på lätt fuktig vägbana plus en halv sekund. Konflikthastigheterna i dessa 
allvarliga konflikter verkar vara relativt låga, vilket beror på att den avvärjande parten är 
föraren som kör ut från sekundärvägen. Detta innebär inte att en olycka av samma typ inte 
skulle leda till mycket allvarliga personskador eftersom det andra involverade fordonet har en 
hög hastighet längs huvudleden och en kollision mellan dessa fordon kunde leda till stora 
skador. 
 
 

 
Figur 4. Allvarlighetsgraden av konflikterna (konflikterna till vänster och ovan den röda 

gränslinjen är allvarliga). 
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5.2 Hastigheter  
 
Medelhastighet och dess standaravvikelse visas i tabell 1 och hastighetsfördelningskurvan i 
figur 5 nedan. 
 
Tabell 1. Medelhastighet och standaravvikelse för fria fordon längs huvudvägen c:a 100 

meter före korsningen. 
 Från NO Från SV 
Antal mätningar  100 100 
Medelhastighet (km/h) 75,1 75,7 
Standardavvikelse (km/h) 8,78 8,71 
Medianhastighet (km/h) 74,0 75,5 

 
Som det framgår av tabell 1 och figur 5 är fortkörning en vanlig företeelse genom korsningen. 
Majoriteten av förare kör över hastighetsgränsen (70 km/t) genom korsningen.  Mer än 65 % 
av förarna kör med en hastighet över hastighetsgränsen och 50 % av förare kör fortare än 74 
km/h. 
 

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90

km/h

%

Från NO Från SV
 

 
Figur 5. Hastighetsfördelningsdiagram för fria fordon längs huvudvägen c:a 100 meter 

före korsningen. 
 
Hastighetsmätningarna med tidtagarur visade extrema hastigheter. Det mättes över 30 fordon 
som körde med en hastighet över 100 km/h, den högsta hastigheten som uppmättes var 140 
km/h genom korsningen. 
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5.3 Övriga observationer  
 
Det förekommer frekventa köer på sekundärvägstillfarten, upp till 15 bilar i kö på östra 
tillfarten och upp till 7 bilar på västra tillfarten. Väntetiderna för korsande trafik är långa 
p.g.a. bl.a.: 

• Mycket trafik på E20, 
• Många tunga fordon på E20, 
• Höga hastigheter på E20, 
• Många tunga fordon på korsande väg. Utfart från Preem till E20 har mycket långtradare 

och trailers men även Bussar är vanligt förekommande. 
• En del fordonsförare har lång reaktionstid innan de korsar, ibland beroende på 

användande av mobiltelefon. 
 
E20 utgör en barriär mellan Jung och Kvänum (boende och arbete/boende, arbete och skola). 
Enstaka korsande cyklister och någon fotgängare förekommer i korsningen 
 
Lastbilsförare som pratar i mobiltelefon är mer regel än undantag. Det förekommer att 
lastbilsförare har ena foten i vilställning uppe på instrumentbrädan när de passerar korsningen. 
 
När fordon kör ut från sekundärvägen efter stopp och svänger vänster och det står en bil 
mittemot vid stopplinjen förekommer det frekvent att det fordonet kör först fast det skall 
lämna företräde åt rakt fram korsande fordon från motsatta hållet.  
 
Många fordon stannar aldrig helt vid stopplinjen. De bromsar ner fordonet till nästan stilla 
eller rullar sakta förbi stopplinjen. Bilar och bussar kör ut en bit vid stoppet när passerande 
fordon på huvudled närmar sig från vänster som om de inte först observerat det ankommande 
fordonet, och då de upptäcker detta stoppar planerad rörelse. 
 
Vid utfart från sekundärvägen kör ofta högersvängande upp jämsides med fordon med annan 
körriktning för att på så sätt komma ut på huvudvägen. Vägrenen används då fullt ut. 
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6 DISKUSSION, SLUTSATSER 
 
Tolv konflikter (9 allvarliga) registrerades under observationsperioden bestående av 35 
timmar. Alla konflikter involverade ett fordon som kör ut från östra sekundärvägen (antingen 
med korsande eller vänstersvängande riktning).  
 
Fortkörning är en vanlig företeelse genom korsningen. Det förekommer hastigheter upp till 
140 km/h genom korsningen. 
 
Det är frekventa köer på sekundärvägstillfarterna eftersom väntetiderna för korsande trafik är 
långa. Lastbilsförare som pratar i mobiltelefon är mer regel än undantag. Det förekommer att 
lastbilsförare har ena foten i vilställning uppe på instrumentbrädan när de passerar korsningen. 
När fordon kör ut från sekundärvägen efter stopp och svänger vänster och det står en bil 
mittemot vid stopplinjen förekommer det frekvent att det fordonet kör först fast det skall 
lämna företräde åt rakt fram korsande fordon från motsatta hållet. Många fordon stannar 
aldrig helt vid stopplinjen. Vid utfart från sekundärvägen kör ofta högersvängande upp 
jämsides med fordon med annan körriktning för att på så sätt komma ut på huvudvägen.  
 
Den fortsatta studien av trafiksäkerhetssituationen i denna korsning bör fokusera på 
situationerna där från östra sidovägen utkörande fordon kommer i konflikt med fordon 
antingen kommande från söder på huvudvägen eller fordon som kör ut från motsatta 
sekundärvägstillfart. 
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BILAGA 1. FORMULÄR FÖR REGISTRERING AV KONFLIKTER 
 
Observatör: _______________ Datum:__________  Tid:___________ Löpnr:_____ 
 
Stad:  Vårgårda  
 
Korsning:  Väg 20/2623 (vid Preem bensinstation SO Jung) 
 

Väderlek: Sol                Mulet                 Regn           
 

Vägbana: Torr                  Våt         
 

Tidsperiod                                                                                          
               7:00-9:00         10:00-11:30      13:30-15:00       16:00-18:00 
 Primär 

Trafikant 
I 

Primär 
Trafikant 

II 

Sekundär 
Trafikant 

III 
    

Privatbilist    
    

Cyklist    
    

Fotgängare    
    

Övrig  ________    ________   ________  
    

Kön (fotg) M        K   M        K   M        K   
    

Ålder (fotg)  ________    ________   ________  
    
    

Hastighet _____ km/h _____ km/h _____ km/h
    

Avst. till kolli-
sionspunkten 

 
_____ m 

 
_____ m 

   

TO värde _____ sek _____ sek 
   

Avvärjande 
manöver 

  

Inbromsning   
   

Väjning   
   

Acceleration   
   
   

Möjlighet  ja  ja 
   

att väja nej nej 
   

    ja      nej  
  

  
  
  

Beskrivning av situationen: 
 
 
 
 
 
 
 
 
 
 
Fortsättning på nästa sida                  ⇒ 

Norrpil

Skiss över de inblandades läge.
 
Markera din position med 
 
(Markera videokamerans 
position med) 

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

Väg 20 

Väg 2623 



 13

BILAGA 2. ENSKILDA KONFLIKTSITUATIONER 
 
Konflikt, löpnr 2:  
Vänstersvängande personbil (I) från sidoväg med stopplikt kör utan att stanna, 
buss (II) från sidoväg med stopplikt står vid stopplinje i färd med att göra vänstersväng.  
 
Fordon I II 
Hastighet [km/h] 25 25 
Avstånd [m] 16 4 
TO-värde 2,3  
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II
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Konflikt, löpnr 4:  
Rakt-fram-körande personbil (II) från sidoväg med stopplikt, väjer ej för till vänster väntande 
tung motorcykel med passagerare vänstersvängande på huvudled.  
 
Fordon I II 
Hastighet [km/h]  25 25 
Avstånd [m] 14 16 
TO-värde 2,0  
 
 
 
 
 
 Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

II

I

III
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Konflikt, löpnr 8:  
Vänstersvängande skolbuss (I) står på sidoväg med stopplikt, ser ut som ej ser rakt-fram-
körande från vänster kommande tung lastbil (II) på huvudled. 
 
Fordon I II 
Hastighet [km/h] 25 75 
Avstånd [m] 6 40 
TO-värde 0,9  
 
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II
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Konflikt, löpnr 10:  
Vänstersvängande personbil (I) från sidoväg med stopplikt kör ut efter lastbil. 
Det kommer en rakt-fram-körande personbil från vänster (II) på huvudled i relativt hög 
hastighet. 
 
Fordon I II 
Hastighet [km/h] 25 90 
Avstånd [m] 6 60 
TO-värde 0,9  
 
 
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II
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Konflikt, löpnr 12:  
Vänstersvängande skåpbil från sidoväg med stopplikt kör ut, rakt-fram-körande personbil från 
vänster på huvudled kommer i relativ hög fart. Personbil från motsatt håll på sidoväg skall 
svänga vänster. 
 
Fordon I II III 
Hastighet [km/h] 25 90 0 
Avstånd [m] 6 70 - 
TO-värde 0,9  - 
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II
III
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Konflikt, löpnr 13:  
Stor stadsjeep (I) svänger vänster från sidoväg med stopplikt, högersvängande 
personbil (II) på motsatt sidoväg med stopplikt börjar också köra, men saktar in, stadsjeepen 
kör först. 
 
Fordon I II III 
Hastighet [km/h] 30 15 0 
Avstånd [m] 28 8 - 
TO-värde  1,9 - 
 
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II 

III
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Konflikt, löpnr 14:  
Vänstersvängande personbil (I) från sidoväg med stopplikt kör ut, kommer rakt-fram- 
körande personbil (II) från vänster på huvudled i relativt hög hastighet. 
 
Fordon I II 
Hastighet [km/h] 25 90 
Avstånd [m] 6 60 
TO-värde 0,9  
 
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II
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Konflikt, löpnr 15:  
Vänstersvängande personbil (I) från sidoväg med stopplikt kör ut, kommer rakt-fram- 
körande personbil (II) från vänster på huvudled i relativt hög hastighet. Skåpbil (III) står vid 
stopplinje på motsatt sidoväg. 
 
Fordon I II III 
Hastighet [km/h] 25 90 0 
Avstånd [m] 6 60 - 
TO-värde 0,9  - 
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II
III
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Konflikt, löpnr 22:  
Personbil (I) på sidoväg med stopplikt, som skall köra rakt fram, verkar först inte se 
rakt-fram-körande personbil (II) som kommer från vänster på huvudled. 
 
Fordon I II 
Hastighet [km/h] 25 70 
Avstånd [m] 5 60 
TO-värde 0,7  
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II
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Konflikt, löpnr 28:  
Personbil (I) står vid stopplinje på sidoväg med stopplikt, skall köra rakt fram. Ser ut 
som tänkt köra, när det kommer rakt-fram-körande personbilar (II) och (III) från höger och 
vänster på huvudled. 
 
Fordon I II III 
Hastighet [km/h] 25 70 70 
Avstånd [m] 5 60 - 
TO-värde 0,7  - 
 
 
 
 
 Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II

III

IV
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Konflikt, löpnr 30:  
Rakt-fram-körande personbil (II) börjar röra på sig. Från motsatt sidoväg med stopplikt 
kommer 
vänstersvängande personbil (I), som försöker köra först men stannar. Den andra bilen börjar 
backa 
tillbaka till stopplinjen. Det kommer rakt-fram-körande personbil (III) sydöst ifrån på 
huvudled.               
 
Fordon I II III 
Hastighet [km/h] 20 20 70 
Avstånd [m] 4 4 60 
TO-värde  0,7  
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

III

II

IV
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Konflikt, löpnr 32:  
Lastbil med släp (I) svänger höger från sidoväg med stopplikt. Buss (II) svänger vänster från 
motsatt sidoväg med stopplikt. Lastbil bromsar, stannar då buss fortsätter mot lastbil. 
 
Fordon I II 
Hastighet [km/h] 20 20 
Avstånd [m] 4,5 20 
TO-värde 0,8  
 
 
 

Väg 20 

Väg 2623 

N

S

Privatbil, Lastbil, Buss. 
 
Cykel, Motorcykel 
 
Fotgängare 

I

II
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ABSTRACT 
Even though many situations in driving involve more 
than one road user and interaction between those road 
users, most car driving models utilize a single driver 
perspective. Collisions between cars constitute a 
significant part of the total number of crashes each year. 
A consequence is that driver modeling should move 
beyond single driver behavior and aim at explaining 
interaction between drivers. In this paper we will 
present an approach that merges Hollnagel’s Extended 
Control Model with Clark’s Joint Action perspective on 
coordination. The purpose is to suggest a basic model to 
help explain coordination in traffic. 

Keywords 
Coordination, intersection, driving, driver models, 
traffic safety, Cognitive Systems Engineering, Joint 
Action, Joint Action Control Model 

INTRODUCTION 
The field of driver modeling aims at explaining 
performance of drivers. A large number of models of 
vehicle driving are based on either cybernetics/control 
theory, cognitive psychology as information processing 
or a mix thereof. To explain how control1 can be 
achieved in a driving situation has been the major 
purpose of driver models (Gibson & Crook, 1938; 
McRuer, 1977; Dounges, 1978; Michon, 1985). What 
all of these models share is that they approach the task 
of driving from a single driver perspective or in some 
cases the driver and the vehicle as a system. Crashes 
with more than one driver involved constitute a 
significant part of all crashes each year, but as the 
current models work very well as a point of departure, 
they are insufficient per se to explain the dynamics of 
driver-driver interaction. 
 

                                                           
1 ‘Control’, in this context, refers to the ability to keep 

the vehicle(s) within an acceptable performance 
envelope in relation to the goal(s) of the driver(s). 
Control can further be described in relation to goals on 
multiple levels, see the Extended Control Model 
below. 

STATE OF THE ART 
Cognitive Systems Engineering (CSE) (Hollnagel & 
Woods, 1983; 2005) is an approach that aims at 
analysing and evaluating the performance of complex 
systems consisting of both humans and technical 
artefacts. Taking a stance in cybernetics, CSE has 
extended the basic cybernetic theories about control by 
taking cognitive aspects into account. A basic premise 
in CSE is that all humans act in a socio-technical 
context that primarily shapes their behaviour, and thus 
performance. According to Cognitive Systems 
Engineering it is possible to view a person and the 
equipment he or she use as a Joint Cognitive System 
(JCS), meaning that the system as a whole strives 
toward a goal and that the system can modify its 
behavioural pattern on the basis of past experience to 
achieve anti-entropic ends. How can then the boundaries 
of a JCS be defined? Hollnagel & Woods (2005) use the 
following example: a driver and his/her car is a JCS, but 
a driver, his/her car and other drivers and their cars on a 
road are also a JCS, although on a different analytical 
level (see figure 1).  

 
Figure 1. Joint Cognitive systems for driving. 
(Hollnagel & Woods, 2005) 

 
In order to define if a constituent should be a part of the 
JCS, it is firstly necessary to identify if the function of it 
is important for the system, i.e. if the constituent 
represents a significant source of variety for the JCS – 
either the variety to be controlled or the variety of the 
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controller (Hollnagel & Woods, 2005). The variety of 
the controller refers to constituents that allow the 
controller to exercise his/her variety, thus different 
kinds of mediators. Secondly, it is necessary to know if 
the system can manipulate the constituent, or its input, 
so the result is a specific outcome. If not, the constituent 
should be seen as a part of the environment. In the case 
of driving, Hollnagel & Woods states that weather 
clearly is a part of the environment rather than the JCS, 
since it is beyond the control of the driver-vehicle 
system. The driver-vehicle JCS can only modify its 
behaviour so that it adapts to the weather conditions, it 
cannot modify the weather. 

The Contextual Control Model 
Human performance is largely determined by the 
situation. The environment, our cognitive limitations, 
and the temporal aspects of our activities constrain 
possible actions. If we consider a common task like 
driving to work, we quickly realize that even though it 
mostly works out in the desired way, there is a large 
number of things that possibly can go wrong, and we 
perpetually make adaptations to the surroundings while 
driving, i.e. other drivers have a strong influence on the 
way we drive. The context has a strong influence since 
it to a great extent structures the driving task. Imagine 
driving to work without any roads, traffic rules or signs? 
The road has the contextual feature of limiting the area 
we drive on, the traffic rules help us to manoeuvre in 
traffic. By constantly reducing the number of choices 
within the system of ‘traffic’, it becomes possible to 
move large vehicles at extensive speeds close to each 
other with a surprisingly low accident rate. The 
Contextual Control Model (COCOM) (Hollnagel, 1993) 
provides a framework for examining control in different 
contexts, see figure 2.  

 
Figure 2. The Contextual Control Model (Hollnagel, 
1998). 

 

In figure 2, the controller, who is assumed to have a 
goal, a desired state that is to be achieved, takes action 

based on an understanding, a construct, in his/her effort 
to achieve or maintain control over a target system2. 
This action produces some kind of response from the 
target system. These responses are the feedback to the 
controller. It is not self-evident that the observable 
reactions are purely a consequence of the controller’s 
action; they may also be influenced by external events. 
The controller will then maintain or change his/her 
construct depending on the feedback, and take further 
action.  

The Extended Control Model 
Although compensatory (feedback driven) control 
models apply in many situations, we know that there are 
great differences in driving style and performance, even 
when all aspects of the current situation are identical. 
Hollnagel et al. (2003) have suggested an extension of 
COCOM, aiming at describing driving control with 
even higher levels of control, the Extended Control 
Model (ECOM). The ECOM does not only try to 
explain the closed loop behaviours, but also tries to 
introduce high-level cognitive activities like planning. 
By providing more specific purposes with the driving 
activity, we may be able to understand why drivers 
perform different actions in seemingly similar 
situations. In the ECOM, control is seen as several 
parallel activities that give input to each other, see 
figure 3. Higher level cognitive processes, such as goal 
setting, will thus affect the lower level cognitive 
processes.  

The levels of ECOM applied to driving3 could be 
summarised as follows: 

Targeting At the targeting level, the driver’s 
own expectations of what will happen in the future 
derive plans and goals, like, for instance reaching 
destinations. Short and long term goals are set up and 
prioritized, which affects lower levels. 
Monitoring At the monitoring level, the system 
keeps track of the traffic environment and the 
vehicle, and makes plans both from feedback from 
lower levels and expectations from the higher level. 
The plans generated are used by the regulating and 
tracking loops.  
Regulating At the regulating level, tasks like 
target speed, specific position and movement relative 
to other traffic elements are controlled, often 
involving a number of tracking sub-loops.  
                                                           
2 We use the term ‘system’ in this case. It should be 

noted that the term ‘process’, as in ‘driving process’, 
could also be suitable. 

3 Also called the Driver In Control model by Hollnagel 
et al. (2003). 



 
Figure 3. The Extended Control Model (ECOM) (Hollnagel et al., 2003). 

 
Tracking At the tracking level, feedback tasks 
controlled by higher levels’ goals and targets are 
performed, e.g. keeping the car on the road and 
shifting gears, maintaining speed, distance to the car 
in front/behind, and relative or absolute lateral 
position. By an experienced driver, these actions are 
performed almost automatically.  
From the perspective of ECOM, goal properties, like 
going from A to B as fast as possible, will serve as a 
gain directly to the lower control level, affecting the 
overall behaviour of the Joint Driver Vehicle System. 
However, goals will always be weighted against each 
other. For example, fast against safe or speed against 
accuracy. As noted by Hollnagel et al. (2003), situations 
may also occur where the driver deliberately gives up 
control on one or more cognitive levels, in order to 
handle more severe difficulties on other. Depending on 
more intricate characteristics of the driver, we may find 
the weighting between goals different.  

In this paper, ECOM is seen as a state-of-the-art 
model of driving behavior though the model does not 
only aim at explaining feedback driven behaviour, but 
also anticipatory, feedforward driven control. This is a 
significant contribution to driver modelling since it 
explains the variance in performance due to higher level 
cognitive activities, which is not explained by the basic 
feedback-driven models. 

COORDINATION 
A drawback of almost all models based on the 
cybernetic approach (ECOM included) is that they 
apply a single driver perspective. Any skilled driver 
recognises however that driver behaviour is also shaped 
by dynamic contextual features, i.e. by interaction with 

other drivers. The ECOM helps us explain driver 
behaviour on the levels of goal-setting (targeting/ 
monitoring) and manoeuvring (regulating/ tracking), but 
in its current form, it does not really provide an answer 
to how drivers coordinate their driving in traffic 
situations with multiple drivers. For example, when two 
drivers approach each other in a traffic situation, both of 
them will make a rapid assessment of the other driver’s 
intention, and, if necessary, modify their behaviour. 
Wilde (1976) states that crucial concepts in the pattern 
of social interaction in driving are communication and 
perception of intent, both severely constrained by the 
design of vehicular signalling systems. The highly 
structured traffic environment adds more constraints, 
both in design and by traffic rules and ‘social’ norms of 
driving. These constraints help drivers to coordinate 
their actions, despite the limitations of the 
communication facilities in automobiles. 

The ECOM is a useful conceptual model, or a ‘skeleton’ 
of driver-vehicle systems, upon which other theories can 
be connected to the different levels of control. The 
compensatory control levels (regulating, tracking) have 
already been described in detail (see for example 
Gibson & Crook, 1938 or McRuer, 1977), but the 
anticipatory control levels, especially when it concerns 
how monitoring is shaped by driver assumptions about 
other drivers and the general traffic situation, has been 
given less attention. We will suggest such a model, 
based on Clark’s work on joint activities (1996) that can 
expand the scope of the ECOM and help describing how 
coordination is achieved between drivers. 



Expanding the scope 
A driver on an empty rural road performs autonomous 
actions, but participates in joint actions when 
approaching locations where he/she has to coordinate 
with other drivers, such as in intersections or in dense 
traffic. Thus neither individual models nor models of 
interaction in isolation are sufficient if one wants to 
understand interactive traffic behaviour. Rather, there is 
a need to merge these two perspectives, taking a holistic 
approach on driving where individual goals, 
assumptions, as well as the situational preconditions in 
terms of the traffic situation and the means for 
coordination are taken into account, see figure 4.  
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Figure 4. Driver control in coordination 

  

Clark (1996) contrasts between individual actions and 
joint actions when describing communication or ‘use of 
language’ as the later, e.g. joint actions. Individual 
actions are carried out in isolation, and thus require no 
communication or coordination with others. Joint 
actions are performed with a common goal, which is 
based on the involved participants’ assumptions of the 
purpose and procedure of the action, and may or may 
not demand communication, but always coordination. 
Driving is an activity where each driver constantly 
moves between individual actions and joint actions, 
depending on the traffic situation. 

Klein et al. (2004) generalise the concept of joint 
activity when describing key aspects of coordination. 
They propose that joint activity requires a basic 
compact that constitutes a level of commitment for all 
parties to support the process of coordination, an 
agreement to participate and to carry out the required 
coordination responsibilities. One aspect of this basic 
compact is to align goals, typically to relax some short-
term goals in order to permit more long-term goals, 
individual or shared, to be addressed. For instance, 
when approaching an intersection a short-term goal of 
making a left turn, might be relaxed for the long-term 
goal of reaching the destination safely. To achieve this, 
one may have to coordinate actions with other drivers to 
avoid danger, and, hence, wait until it is possible to 
make a safe left turn.  

A second aspect of the basic compact is to try to detect 
and correct any loss of common ground that might 
disrupt the joint activity. Common ground (Clark & 

Brennan, 1991) refers to knowledge, beliefs and 
assumptions that support a joint action and describes 
what it is that make joint actions work. Common ground 
is described in three basic stages in a joint activity 
(Clark, 1996). Initial common ground includes all the 
essential knowledge and prior history that the parties 
bring to the joint activity, their shared general 
knowledge of the world and the conventions associated 
with the task, as well as what they know about each 
other. Public event so far includes knowledge of the 
joint actions taken so far. The current state of the 
activity provides cues in the physical scene to the parties 
to enable prediction of actions and the form of 
coordination. 

In driving, joint actions are performed by strangers who 
will likely never meet, who lacks personal initial 
common ground about each other. The coordination 
process often takes place in high speeds in short time 
windows limiting the common ground of public event 
so far. This is compensated by an initial common 
ground based on an understanding of traffic rules, 
‘social’ norms of driving and a shared understanding of 
the ability to communicate intent by signalling, 
positioning of the vehicle, etc. It is also compensated by 
the highly scripted common ground of the current state 
of the activity. Highly structured by the, for driving, 
specially designed physical scene with road lanes and 
signs supporting the shared understanding of traffic 
rules, norms and conventions. 

Peculiarities of communication in driving – a 
comparison with face-to-face interaction 
In contrast to driver-driver interaction, everyday 
interaction is largely based on verbal communication, 
but also highly supported by non-verbal cues, such as 
gestures, facial expressions, gaze etc. The specific 
preconditions in traffic interaction differ greatly from 
face-to-face human interaction, see table 1.  

 

Table 1. Characteristics of driver-driver and face-to-face 
communication.
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Figure 5. The Joint Action Control Model of driving as a framework for explaining driver coordination. 
 

The time available for interaction and coordination in 
traffic is often spars and the means for communicating 
often limited. At very low speeds, the drivers may in the 
best case be able to make eye contact with each other or 
do some gestures, but at higher speeds, the drivers have 
to rely solely on positioning and the signal systems of 
their vehicles. Furthermore, the consequence of a 
misunderstanding is often great. If two drivers 
misunderstand each other, it may lead to a collision, 
inducing both economical loss and endangering the 
lives of the drivers. As in all social interactions, the 
crucial concepts in driver interaction would be 
perception of intent and presentation of intent. As 
mentioned above, limitations of communication and 
available time in traffic interaction restricts the 
possibility of achieving verification of intent between 
the involved drivers. However, the very scripted settings 
of traffic, where drivers have a well established 
understanding of the regularities and roles of traffic 
behaviour in various situations allows many conflicts to 
be managed successfully, despite the limitations on 
communication. 

A joint action is by Clark (1996) described as a phase 
with an entry, a body and an exit. Phases are what 
actually get coordinated. The limitations of 

communication in driving situation, of course, make it 
difficult for drivers to interpret whether there is an 
agreement to enter a phase or not, making it a part of 
their common ground. Instead, conventions play an 
important role to decide whether or not the other 
driver/s follows the basic compact and supports the 
coordination phase/s. We would like to argue that 
drivers bring to the situation this structure of 
coordination. A structure not unique for driving, but 
originated from other human-human activities, which 
make drivers successfully accomplish coordination. 

THE JOINT ACTION CONTROL MODEL – OF 
DRIVING 
Even though for instance Gibson’s and Crook´s (1938) 
idea about field of safe travel partly explains 
coordination from the perspective of individual drivers, 
integrating joint actions with ECOM enables a higher-
level understanding of coordination and provides a 
structure for factors assumed to influence coordination. 
Many of the factors mentioned as essential in driver-
driver interaction were summarised already by Wilde 
(1976), although with a focus on a single driver’s 
internal states. Instead, we advocate for the importance 
of studying the dynamic interactive behaviour of 
drivers. Integrating the work on joint activity with 



ECOM provides a framework for analysing driver 
interaction in relation to goals on multiple control 
levels. As stated, driver behaviour is affected both by 
low-level and high-level goals, as well as the ability to 
coordinate driving with other drivers, which to a large 
extent is affected by individual assumptions made by 
the drivers in a situation. When entering a situation 
demanding coordination, as in a road intersection, 
drivers make assumptions about each others intentions 
based on traffic rules, traffic ‘norms’, the type of 
vehicles involved and the observed behaviour of other 
drivers. The pre-requisite for successful coordination is 
that the drivers assume that they have entered the same 
type of activity, or at least, if uncertain of other drivers 
intentions, that they have a preparedness to compensate 
for other drivers actions if they are in conflict with the 
individual course of action. As a synthesis of the models 
presented above, we suggest a model of Joint Action 
Control (Joint Action Control Model, JACOM), see 
figure 5. 

As can be seen in the model, each driver entering a joint 
activity has to control his/her vehicle while taking the 
physical environment as well as the actions of other 
drivers into account. The coordination of action follows 
the same stages of entering, body and exit as in other 
human-human activities, which in terms of the 
individual drivers consist of a set of assumptions about 
other drivers intentions that are modified during the 
course of public events. Although driving in dense 
traffic or intersections surely is a complex task, 
everyday traffic proves that successful coordination 
takes place almost constantly. The explanation for the 
success is probably two-folded. Firstly, all drivers have 
about the same background knowledge in terms of 
traffic regulations and traffic norms, described in the 
model as initial common ground. Secondly, humans are 
very good at verifying that the basic compact is 
fulfilled, i.e. coordinating actions with others and 
compensating for each others mistakes. Improvements 
in the traffic environment in terms of traffic lights, 
roundabouts, lane separation etc. have also decreased 
the demands on driver interaction, reducing the risk for 
misunderstandings and collisions.  

To summarise, models of driving has focused mainly on 
the single driver, and thus neglected the dynamic 
character of coordination. This has in turn led to a focus 
on isolating drivers from each other rather than 
enhancing the capacity for coordination. This paper 
emphasise the need to expand the single-driver models 
of driving toward multi-driver models of driving. The 
Joint Action Control Model of driving can be seen as a 
first step in this direction. 
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1. Background and need for automatic processing 
The IVSS Intersection Accidents project involves automatic video surveillance of an intersection at 
Sävenäs close to Göteborg. Through image processing the moving objects in the intersection are 
identified and represented as trajectories. Several data files are generated in Matlab format, typically 
containing about two hours of tracking data from the intersection. However, the data from the image 
processing does not perfectly represent the vehicles travelling through the intersection. Some of the 
main problems are: 

• Trajectories broken into separate parts, thus representing one vehicle with several trajectories,  
• Trajectories jumping from one vehicle to another, i.e. representing several vehicles, 
• Trajectories not representing vehicles (flags are one prominent issue) 

 
In order to perform reliable analyses, the trajectories from the image processing need to better match 
the vehicles travelling through the intersection. This was the setting and goal for the development of 
an automatic repair function. The task was divided in two parts: establishing quality measures and 
developing methods for repairing trajectories. Quality measures are required to identify defect 
trajectories and to monitor the effect of methods for automatic repair. In this report, the development of 
quality measures will precede the description, usage, performance and illustration of the scripts 
developed for automatic repair. All scripts were developed in Matlab and full documentation is 
available in the code. It should be stressed that the automatic repair does not include any image 
processing; the repair algorithms are operating purely on existing trajectories. 

2. Quality measurements and noise level 
Two categories of quality measures have been developed: trajectory quality and noise over time. A 
trajectory quality describes how well a single trajectory performs and the noise over time is a measure 
of the image processing performance at a given video frame. Further on, these two categories will be 
referred to as quality and noise. During the development of quality and noise, the measures have 
been manually evaluated using the original video and the integrated trajectory view available in the 
Hedvig software. One of the corner stones behind the quality measures are principal trajectories that 
are further described below. 

2.1. Principal trajectories 
Vehicles travelling through an intersection typically follow a distinct pattern in space; they appear on 
one road edge, drive through the intersection centre and disappear on another edge. The idea behind 
principal trajectories is to identify the most common path leading from one distinct edge to another. For 
instance, a four-way intersection will have three principal paths leading from each road edge (if u-turns 
are neglected). Several objects (trajectories) travelling along the same principal path are used to form 
the principal trajectory. The principal trajectory is created through an averaging where each trajectory’s 
position in space (rather than time) is used for synchronisation. Details on how principal trajectories 
are created can be found in appendix A. 
 
When a complete set of principal trajectories has been created for an intersection, it can be used as 
guidelines for normal vehicle behaviour. In this project, the principal trajectories are used to measure 
trajectory quality, noise level over time and to guide the automatic repair process when trajectories are 
split and merged. An example of principals generated from data from the Sävenäs intersection is 
shown in figure 1. 
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Figure 1: Principal trajectories (dotted black) generated for and plotted in the intersection at Sävenäs. 

2.2. Trajectory quality 
A number of quality measures have been developed within the project for different purposes. To find a 
single quality measure that could be estimated for every trajectory in the intersection an attempt was 
made to summarise and evaluate the previously used quality measures. The definition used for 
trajectory quality is the probability that the trajectory is fully representing one vehicle’s entire journey 
through the intersection. Thus, high quality requires trajectories to represent vehicles, to represent 
only single vehicles and to represent their entire journey through the intersection. 
 

Trajectory quality : probability of representing one vehicle’s entire journey through the intersection. 
 
In total nine measures were identified as useful for describing different aspects of trajectory quality. 
Listed without ranking the measures identified are: 

1. Number of frames (points) (proportional to duration in time). 
2. Length in meters [m]. 
3. Largest span in space (||(span(x), span(y))||2 where span(x) = |max(x) – min(x)|) [m]. 
4. Rotation quality measured as max total rotation/length in meters [m-1]. 
5. Largest jump between two subsequent points (max dr = max ||(dx, dy)||2) [m]. 
6. Minimum absolute distance to intersection centre [m]. 
7. Average distance in space to the best matching principal trajectory [m]. 
8. Confidence for classification according to the best matching principal. 
9. Length in parallel to the best matching principal, divided by the principal's length. 

 
These nine partial quality measures, available after repair in the field Objects.qualities, were 
considered individually and evaluated on several different data sets. The results and distributions for 
each quality measure can be found in appendix B. To aggregate the partial measures into one single 
quality measure, each partial measure was translated linearly with a method described in appendix B. 
Briefly, this method applies predefined thresholds for in which interval a partial measure is most 
precise. In this way the method will extract the most relevant data from each partial measure. The 
result of this process is shown in figure 2 where the distribution of the aggregated quality measure is 
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shown for 22 212 trajectories from different days. The aggregated quality measure is available after 
automatic repair in the field Objects.quality. 
 
As can be seen in figure 2, the objects are separated in two piles at about 0.2 and 0.9. Through 
manual verification it was found that no trajectory with a quality below 0.5 appeared to be fully 
representing one vehicle’s journey through the intersection (as quality was defined above). Thus, the 
qualities residing in the lower end are invalid or broken trajectories that should be excluded from the 
analysis. However, this does not imply that all vehicles are fully detected and represented with high 
qualities. If for instance one vehicle is split up in several short trajectory pieces each piece will be 
given a low quality since it can hardly be distinguished from the shadow of a flag. This is where the 
automatic repair comes in, providing methods for split and merge. 
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Figure 2: Aggregated quality measure for 22 212 trajectories from different days and times with 
various qualities. 
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2.3. Noise level 
The performance of the image processing depends largely on the time because of shifting weather 
conditions (sunlight and wind) and variations in traffic density. To estimate the quality over time, the 
noise level measure was developed. The noise level is an estimation of how many broken trajectories 
there are in each time frame. Whether a trajectory is broken or not is determined by some of its quality 
measures. After counting the number of invalid trajectories for each frame, the noise level is achieved 
by filtering with a Gaussian low-pass filter. Finally, a threshold can be applied to separate noisy data 
from good data as illustrated in figure 3. The noise level after automatic repair is available in the field 
ImLabels.noise. 
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Figure 3: Illustration of noise level calculation for a period of time. The blue stepping curve 
corresponds to the number of invalid trajectories, the red curve is the low-pass filtered count (the noise 
measure) and the gray bars represent sets of frames with noise greater than 1.5. 
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3. Automatic trajectory repair 
The automatic trajectory repair will process the data from image processing and try to repair 
trajectories that appear to be invalid. The script is executed from the Matlab command auto_repair. 
Help on how to use a specific script is provided by executing the Matlab command ‘help scriptname’.  
 
The following steps are carried out during automatic repair: 

• Pre-processing of trajectories 
• Quality and noise measurements 
• Split of trajectories representing more than one vehicle 
• Merge of several trajectories representing one vehicle 
• Estimation of automatic repair performance 

 
The very first step however is to generate principal trajectories for the intersection. Preferably this is 
done in advanced in order that the principal trajectories can be loaded from a file during the automatic 
repair (see appendix A for details on how to create principals). The pre-processing will calculate a 
number of trajectory properties that are required in several of the following steps. Quality and noise 
measurements are used to estimate which trajectories that are representing vehicles and to estimate 
how the image processing has performed over time (this is likely to affect the performance of 
automatic split and merge). No data with low quality is deleted during the automatic repair; instead the 
quality level is delivered as a property of each trajectory. The following fields are added to the 
structure Object during automatic repair: 
 
The automatic split algorithm will detect trajectories that appear to be jumping from one vehicle to 
another. This is done by monitoring the deviation from the closest principal trajectory. If the vehicle 
trajectory suddenly starts to deviate more and more from the principal’s path it is considered to have 
jumped. The point where the sudden deviation starts is used as point of split. This algorithm is able to 
handle multiple splits, e.g. where a trajectory jumps between several vehicles or objects in the video. 
Detailed information on the algorithm behind split is provided in appendix C. 
 
During automatic merge an algorithm will identify trajectories that resemble valid vehicle journeys 
through the intersection but are shorter in distance. These trajectories are referred to as cut pieces. 
The algorithm will then step through all the cut pieces and try to find other trajectories to connect them 
with. In the search forward, the paths provided by principal trajectories are used as hints for the 
algorithm. A number of requirements are set to ensure that the merged trajectory has a vehicle-like 
behaviour. Detailed information on the algorithm behind merge is provided in appendix D. 
 
During automatic repair, the following fields are added to each trajectory in the Object structure: 

dist distance vector for the trajectory, starts at 0, unit [m] 
mLength length of total merged part of this trajectory [m] 
principal index of the best matching principal trajectory 
qualities vector of quality measures (see quality measures above) 
quality aggregated quality measure in the range [0, 1] 
source indices to original trajectory in the original Object structure 
sourcei original positions (indices) within the original trajectory 

 
When the trajectory repair is finished, the script will estimate the effect on the trajectories. This is done 
by measuring how the quality and noise have changed. In the ideal case the noise will be reduced and 
the quality increased. The aggregated quality is measured as the average trajectory quality and the 
noise as the time in seconds where the noise level is above 1.5. All measures of repair performance 
are put in a structure, auto_repair_info, which is passed along with the repaired data. A description of 
this structure is provided below. 
 
 Field name in 

auto_repair_info Description 
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 noise_t         Seconds with a noise level greater than 1.5 after repair. 
 noise_ratio     Fraction of time with noise > 1.5 after repair (noise_t/total_t). 
 splits          Number of trajectories split during automatic repair. 
 merges          Number of merges during automatic repair. 
 noise_t_raw     Seconds with a noise level greater than 1.5 before repair. 
 noise_ratio_raw Fraction of time with noise > 1.5 before repair (noise_t_raw/total_t). 
 d_noise         Decrease in total noise during repair ((∑noisebefore – ∑noiseafter)/∑noisebefore). 
 d_quality Increase in average quality during repair  

(mean(qualitybefore) – mean(qualityafter))/mean(qualitybefore). 
 



 

Organization Type of document 

Volvo Cars Safety Centre Report 
Name of document Issue Issue date Page 

Automatic Trajectory Repair Report 1 2008-03-25 8 (12) 
 

 

  

 

4. Results from automatic repair 
4.1. Illustration of the process 
The best way to illustrate how the automatic repair operates is by an example. Figure 4a to 4c below 
shows a situation where the image processing has a limited performance but where the automatic 
repair manages to mend most of the trajectories. The images were cropped from the Hedvig software 
and only trajectories representing the two blue vehicles in the centre are shown. In figure 4a, it is 
obvious that the yellow trajectory (starting in the bottom of the picture) jumps from the original car on 
to the vehicle arriving from the left. In figure 4b this trajectory has been successfully split (the abruptly 
turning piece at the end is discarded due to its lack of data points). After automatic merge, in figure 4c, 
the split trajectory is mended with the last part that was lost in both figure 4a and 4b. Unfortunately the 
image processing was confused by the many vehicles arriving from the left and the last piece is drifting 
towards the opposite lane until it is finally lost (long before the vehicle leaves the camera view).  
 
The situation shown in figures 4a to 4c is difficult for the automatic image processing because several 
vehicles arrive at the same time and queues are built up from the left. The tracking is lost, generating a 
large amount of trajectory pieces which makes the noise level rise. After automatic repair, it was found 
that the noise level for this scenario was above 3, which is to be considered a high noise level (cf. the 
limit of 1.5). 
 
 

 
Figure 4a: Trajectories in original data (from coarse image processing), only trajectories representing 
the two blue vehicles in the centre are shown. The circle indicates the current vehicle position. 
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Figure 4b: Trajectories in figure 4a after automatic split. 
 

 
Figure 4c: Trajectories after automatic split and automatic merge (entire automatic repair). 
 

4.2. Effects from automatic repair on quality and n oise 
To monitor the effects from automatic repair on data quality, the measures of trajectory quality and 
noise level were estimated before and after automatic repair. To illustrate the effects on noise, the 
automatic repair was applied on a data set from a normal day with steady light conditions where the 
image processing performed well most of the time (2nd of April 2007). Prior to repair, 379 seconds of 
data had a noise level greater than the limit of 1.5. After automatic repair, only 296 seconds of data 
had a noise greater than the limit. This change might appear minor but it is actually highly significant 
since the only operation applied was mending – no trajectories with low quality were discarded, flags 
and shadows remain. Figure 5 gives an example of how the noise level is changed by automatic repair 
for a limited segment of data. 
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Figure 5: Noise level for a section of data prior to and after automatic repair. 
 
The effects from automatic repair on trajectory qualities can be detected by studying the change in 
quality values. Figure 6 shows how the distribution of trajectory quality is changed during automatic 
repair. Negative values in the figure indicate that trajectories with this quality level were decreased in 
number during automatic repair and vice versa for positive. Thus it is apparent that the automatic 
repair in general reduces the number of trajectories with low quality and increases the number of 
trajectories with high quality, i.e. the automatic repair increases quality. When studying the distribution 
in figure 6, there seem to be more data below zero than above. If the number of trajectories remained 
constant during repair the distribution should be balanced, e.g. a trajectory removed from one quality 
interval should be added to another. However, in the automatic merge algorithm two or more 
trajectories can be combined into one which causes a reduction in the total count. This explains why 
more trajectories are removed at low quality than are added at high quality. It also shows that the 
automatic repair algorithm has a positive net effect on the trajectory quality. 
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Figure 6: Changes in trajectory quality during automatic repair on a two-hour data set. The distribution 
indicates the increase or decrease of number of trajectories with specific qualities. 
 

4.3. Summary of results on the image processed data  
The results in auto_repair_info provide a summary of the performance of automatic repair on the 
specific data set. To summarise the general performance a number of files (154) from coarse image 
processing were randomly selected and automatically repaired and the information from 
auto_repair_info was extracted. It turned out that the automatic repair in average increases the 
trajectory quality by 2.1 % and reduces the total noise by 18 %. The analysis also shows that in 
average 12 % of a data set will be above the noise limit of 1.5 after the automatic repair. Further 
details are provided in the table below. 
 

Parameter in 
auto_repair_info 

Average value for 
the 154 data sets 

Total noise after repair 872 s. 
Ratio of noise after repair 0.120 
Number of splits 117 
Number of merges 115 
Total noise prior to repair 1019 s. 
Ratio of noise prior to repair 0.140 
Ratio of total noise change 0.182 
Ratio of total quality change 0.0208 
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5. Discussion and conclusion 
The developed measures for quality and noise will constitute an important basis for further analysis of 
the data. It is crucial to understand and estimate the data quality to assure scientifically sound results. 
The automatic measures will also be useful during manual trajectory repair where they provide a hint 
on which trajectories and which time sections to consider for repair. Further on, the noise measure and 
specifically the total noise for a data file can be a criterion for including it in the analysis or not. 
However, even though the trajectory quality measure developed here was able to separate most 
trajectories into clusters of high and low quality (as in figure 2), there was still an interval where the 
quality was uncertain (about 0.5 to 0.8). It appears as if the trajectory quality could be improved further 
if an in-depth quality assessment would be carried out. Another indicator of this is that some of the 
partial quality measures are significantly correlated. Still it should be stressed that the limit of 0.5 is 
appear to be a reliable criterion for filtering out trajectories that do not fully represent one single vehicle 
travelling through the entire intersection. 
 
During the automatic repair several trajectories were mended which generated an increase in quality 
and a reduction of noise. Thus it performs as intended and even manages to repair some rather 
complex situations. This automatic processing will be profitable for the time-consuming manual 
trajectory mending. Still the manual work will be needed since the automatic repair only operates on 
existing trajectories. If there is not enough data available from the image processing the automatic 
repair will not be able to create the necessary trajectories since the video is not used as input. For the 
manual repair, it is thus strongly recommended that the user can select sections to repair based upon 
arbitrary limits of noise and quality. 
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Appendix A – Principal trajectories 
A principal trajectory is created from image processing data – trajectories – of vehicles travelling along 
the same path, i.e. from one specific road end to another. One way to identify trajectories travelling 
along the same path is by studying their entrance and exit points in the intersection. This can be done 
automatically using the script get_principals_advanced.m. The script will use a selection of 
trajectories, provided by the caller, and display all the trajectories’ entrance and exit points in a figure, 
generating clusters of points. The user will then be asked to draw boxes to identify the entrance and 
exit zones on each road end. After the manual identification, the principals will be automatically 
calculated and returned as trajectories. An illustration of the process of selecting entrance and exit 
zones is shown in figure A1 where the generated principals also are plotted. Further details on using 
the script are provided below. 
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Figure A1: Illustration of using get_principals_advanced.m. Trajectory entrance points are blue and 
exit points are red. The boxes are manually entered with two points each. The principal trajectories 
generated through this process are shown as the dotted black curves. No trajectories were found 
travelling from south to north, thus no principal trajectory could be generated for this path. 
 

Details on using get_principals_advanced.m 
After a rough filtering, a number of entrance and exit points are plotted in the intersection in a new 
figure. Entrance points are plotted blue and exit points red. Once the points are plotted, the user will 
be asked for input of the boxes. Each box is entered by clicking two corners opposite each other on 
the diagonal (e.g. lower left and upper right). After selecting the four boxes for input zones, the four 
exit zones are selected in the same manner. If there are less than four zones (e.g. in a three-way 
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intersection) it is possible to stop entering boxes by pressing enter. The operation will then shift from 
entrance zones to exit zones or from exit zones to done. 
 
NOTICE: The zones for entrance and exit must be entered in the same order. For instance: 

Entrance zones: 1. North. 2. West. 3. East. 4. South. 
Exit zones: 1. North. 2. West. 3. East. 4. South. 

 
Once the manual input is done the entered zones will be used for calculation of principals using 
get_principals.m. The entered zones will be display in the Matlab command window in a format that 
can be directly copied to get_principals.m for permanent use. 
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Appendix B – Trajectory quality measure evaluation 
Partial quality measure statistics 
The nine partial quality measures were evaluated in detail. After finding the distribution of a measure’s 
typical values, trajectories with different quality were considered, starting from the end where low 
quality is claimed to reside. The trajectories within a certain interval of quality were plotted and 
manually evaluated. As the interval gradually was shifted towards higher and higher quality the 
trajectory behaviours became more and more vehicle-like. A limit was manually entered where the first 
trajectories that seemed valid appeared. At the same time, a manual grading was made for lowest and 
highest quality limits, i.e. where the trajectory quality did not decline or improve any further. The three 
values, transition limit, minimum and maximum are summarised in table B1 where also some 
statistical measures are included. Distributions for each partial quality measure are given in figure B1. 
Further details on the computation of the quality measures are provided in the script code. To 
recapitulate, the partial quality measures considered are: 
 

1. Number of frames (points) (proportional to duration in time). 
2. Length in meters [m]. 
3. Largest span in space (||(span(x), span(y))||2 where span(x) = |max(x) – min(x)|) [m]. 
4. Rotation quality measured as max total rotation/length in meters [m-1]. 
5. Largest jump between two subsequent points (max dr = max ||(dx, dy)||2) [m]. 
6. Minimum absolute distance to intersection centre [m]. 
7. Average distance in space to the best matching principal trajectory [m]. 
8. Confidence for classification according to the best matching principal. 
9. Length in parallel to the best matching principal, divided by the principal's length. 

 
 
Quality measure #1 #2 #3 #4 #5 #6 #7 #8 #9 
Relevant transition 56 24 20 5,50 1,25 10 9,50 0,005 0,54 
Percentage below 31 % 43 % 44 % 7 % 1 % 43 % 12 % 23 % 49 % 
Growing with quality Yes Yes Yes No No No No Yes Yes 
Relevant minimum 0 0 0 10 3 50 14 0 0 
Relevant maximum 200 60 50 1 0 0 2 0,70 1 
Min 1,00 0,00 0,00 0,00 0,00 0,01 0,02 0,00 0,01 
Max  5948 182 98,43 125,67 3,64 73,67 46,90 0,99 1,00 
Std  185,46 37,28 32,19 3,66 0,26 14,18 5,14 0,40 0,43 
Mean  164,09 43,68 37,50 1,94 0,41 14,24 3,30 0,49 0,53 
Median  145,00 47,41 42,71 1,16 0,46 7,93 0,95 0,60 0,59 

 
Table B1: Results from partial quality measure evaluation. The relevant values are manually entered 
as input for the aggregation to one single quality measure. 
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Figure B1: Distribution of the partial quality measures evaluated. 
 

Aggregation to a single quality measure 
To generate one single quality measure all partial measure were involved without individual weighting. 
The manually entered relevant values for min, transition and max were used to linearly transform the 
quality measures to a scale from 0 to 1, where 0 is bad quality and 1 good quality. Before 
transformation, values above the relevant maximum were set to the maximum limit and equivalently 
values below minimum where set to minimum limit. The linear transform was configured so that the 
manually entered transition from bad to possibly good data occurred at 0.5. After transforming each 
partial measure individually the aggregation was made through computing the average. It was found 
that, at least in the about 22 000 objects considered, no trajectory that appeared valid in shape had a 
quality below 0.5. 
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Appendix C – Algorithm behind automatic trajectory split 
The script auto_split.m will find trajectories that need to be split and return unaffected trajectories and 
the parts remaining after split. Notice that U-turns are split up unless u-turns are represented in the 
principals. When examining the trajectory, its deviation is measured from the principal trajectory that 
lies closest in space. Typical behaviour for trajectories that need to be split is a smooth following with a 
next to constant deviation followed by a step where the deviation increases. After the step the 
deviation is moved to a different level where it often remains constant. Thus the deviation is moved to 
a different level. For detecting this, the derivative of the deviation is used. 
 
The following criteria are used to detect if a trajectory needs to be split: 

1. A trajectory needs to have a certain amount of points (typically at least 6 meters) in parallel 
with any principal trajectory. This is required for attaining enough of points for detecting a step 
in the deviation. 

2. The largest absolute value of the deviation derivative must be larger than a certain value 
(typically ≥ 1.0). This is needed to ensure that the step is significant. 

3. The median value of the absolute deviation derivative needs to be small (typically ≤ 0.2) to 
ensure that the trajectory is mostly travelling in the same direction as a (its) principal 
trajectory. This is equivalent with requiring the deviation to be fairly constant most of the time. 

 
Further comments on the split algorithm are available as comments associated to the script. 
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Appendix D – Algorithm behind automatic trajectory merge 
The merge algorithm will run through all trajectories identified as cut and try to merge them with other 
trajectories. The procedure follows these steps: 

1. Find the principal paths that the cut trajectory might belong to. The criterion is that the 
distance must not be greater than cMaxValidDistance meters. Make sure it has not previously 
been merged with another trajectory. 

2. Search for pieces to connect: 
a. Look at objects with first appearance later in time than for the cut trajectory considered 

but no later than last time stamp of the cut trajectory + cMaxTimeGap seconds. 
b. Only consider objects not previously merged with another cut trajectory (to prevent 

merging two vehicles to one). 
c. Only consider objects that possibly travel along the same principal path. Requirement: 

the distance must not be greater than cMaxValidDistance (meters). 
d. Only consider objects longer than cMinTimeStamps. 
e. Only consider objects that start further away on the principal trajectory than the first 80of 

the cut trajectory. 
f. Measure the distance between the cut trajectory and the found piece using the Euclidian 

distance r = sqrt(dx2 + dy2) (meters) as well as the time distance dt (seconds). 
g. Translate the time distance to meters assuming the average speed of cAssumedSpeed 

(km/h) and calculate the total distance as delta = sqrt(r.^2 + 
(dt*cAssumedSpeed/3.6).^2) (meters). 

h. Select the trajectory piece that has the lowest delta value as the most appropriate. If the 
distance is too far no piece should be selected. If the second best trajectory piece has a 
very close delta value the pieces are reported to the user (based upon 
cMinConfidence). 

3. If a piece was selected, merge the two trajectories using interpolation. 
4. Check that the merged trajectory appears valid. Otherwise, reject the merge and skip to next 

trajectory. 
5. If it was valid, mark the attached piece as "used" (see 2.2). 
6. If the merged trajectory is shorter than cLengthRatioLimit times its closest principal trajectory, 

use the merged trajectory as initial part and jump to step 1. Otherwise, continue with the next. 
 
Specific values for the constants are available in the script together with further documentation and 
details. 
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1 Introduction

This report describes the tracking system that is used in the project IVSS
Intersection Accidents.

The report is outlined as follows: Section 2 gives a quick overview of the
system. Further overview on each component can be found in sections 6-13.
Many of the technical and theoretical details are moved to appendices, to make
the presentation more clear. Sections 4-5, 14, and appendix A describe a few
surrounding issues such as hardware related issues, camera calibration, video
data management routines, and computational issues. Limitations and ideas
for improvements are discussed in connection to each component.

1.1 Prerequisites

It was desired that as much video data as possible could be processed, which
means data in many varying conditions. For example, figures 1-4 shows how
the light can vary during a day, due to moving clouds, and due to seasonal
variations. Some of these situations had to be disregarded, e.g. wet asphalt.

Figure 1: Example of light variations during a sunny day for two cameras
mounted viewing different parts of a road.

Figure 2: Example of light variations due to moving clouds.

It was also desired, from a behavioral point of view, that data should be
collected from vehicles at least 3 seconds before they enter the intersection.
This corresponds to about 75m if the speed limit is 90km/h, which is a rather
large coverage of an intersection. The coverage was later reduced to about
40-50m due to technical limitations.
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2007-03-21, 8:00–15:00

2007-04-01, 7:00–15:00

2007-05-01, 6:30–13:00

2007-06-19, 7:00–15:00

2007-07-01, 7:00–15:00

2007-08-01, 7:00–15:00

2007-09-05, 8:00–16:00

Figure 3: Video examples during an extended time period.
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2007-10-01, 7:30–15:30

2007-11-01, 8:30–16:30

2007-12-20, 8:30–13:30

2008-01-01, 8:30–13:30

2008-01-06, 8:30–13:30

2008-02-01, 8:30–13:30

2008-04-02, 7:30–12:30

2008-05-01, 7:30–12:30

Figure 4: Video examples during an extended time period.
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2 System overview

Figure 5 illustrates the process from an image sequence to trajectory data. We
will here give a quick overview of the tracking system, details on each component
are described further in other sections. The components are the following:

1. Image rectification and ego-motion compensation: (Section 6)

The sequence is first rectified to remove lens distortion. The sequence is
also compensated for camera ego-motion when required.

2. Statistical background subtraction and foreground classification:
(Section 7)

A statistical background model is then estimated, and used for classifica-
tion of pixels into background/foreground. The foreground is then further
classified into foreground/shadow/highlight.

3. Coarse (first-round) tracking: (Section 11, with sections 8, 9, and 10
as preparations)

The classified image sequence is used as input to an image region tracker.
The tracker is based on 3D boxes, which in each frame are predicted
from previous frames (e.g. using a Kalman filter), and optimized to the
classified image. The 3D boxes simultaneously segments regions (which
can be sparse) in the classified image into objects and gives an estimate
of position and size on the 3D world ground plane. The coarse tracking is
computed in low resolution data, with a causal box prediction, and testing
different box sizes in each frame.

4. Post-filtering on trajectory data: (Section 12)

The estimated box position trajectories are after the coarse tracking pro-
cessed with a non-causal filter to improve the estimates.

5. Automatic and manual repair: (See [24])

Some trajectories will be broken due to occlusions, or trajectories from
different vehicles may have been fused due to limitations in the tracker
etc. Automatic and manual reparations, such as splitting and merging
of trajectories, are applied to improve the data. The automatic repair is
based on principal trajectories (see [24] for details). The manual repair is
optional.

6. Refined (second-round) tracking: (Section 13)

The trajectories are further refined by using the image data a second time.
The refined tracking utilizes 3D boxes, similar to the coarse tracking, but
now in high resolution, with a non-causal box prediction, and with a fixed
box size.

7. Post-filtering on trajectory data: Same as step 4.
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Figure 5: Overview of the image processing tracking system.
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2.1 System output

The output from the system is a .mat-file that contains the tracking data. There
are essentially two output variables from the system, ImLabels that contains
frame and object label information and Objects that contains vehicle data. Be-
sides these variables there are also a few variables with parameters for the world
ground plane, camera calibration, time interval etc.

ImLabels: Struct array with active trajectories and time stamps (msec since
1970) for each frame.
Field name: Description:
ImLabels(n).ObjectsLabels = [O1 O2 ...] Visible objects in ’frame n’
ImLabels(n).time = t Time stamp for ’frame n’ [msec since

1970]
ImLabels(n).syncind = [ind1 ind2 ...] Indices to corresponding frames in the

video files (The videos are not in sync,
therefore using ’frame n’ for both cam-
eras does not work)

Objects: Struct array with objects. Time is measured in msec since 1970
and geometric data in GPS coordinate system.
Field name: Description:
Objects(k).time = [t1 t2 t3 ...] Time stamps [msec since 1970]
Objects(k).size = [L W H]’ Size [meters]
Objects(k).pos = [X1 X2 ...;Y1 Y2 ...] Positions [meters]
Objects(k).orient = [fi1 fi2 ...] Orientations [degrees]
Objects(k).vel = [v1 v2 ...] Velocities (or rather speed) [me-

ters/seconds]
Objects(k).acc = [a1 a2 ...] Acceleration list [meters/seconds]

There are also a few other fields in Objects with quality measures from the
automatic repair procedure, see [24] for further details.

2.2 Related work

A vehicle tracking system intended for processing of a large amount of data
will have to deal with many different types of weather conditions and traffic
situations. This is a difficult task and is still not sufficiently solved, hence
the vast amount of continuing publications in this field. Nagel and co-workers
[25] have for example written an interesting exposé over the progress of object
tracking during 30 years, with frame differentiation, feature based optical flow,
dense optical flow, wire-frame models, and inclusion of more a priori knowledge
of e.g. lane locations.

One common approach in tracking systems is to first classify the image pixels
into background and foreground regions, as in the Stauffer-Grimson statistical
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background subtraction method [30]. One problem in this approach is shadows,
which are often included in the foreground and cause errors in segmentation
and tracking. The Swedish conditions may be especially difficult in that re-
spect, since the sun elevation angle in the middle of Sweden is at best about
55◦, thus casting long shadows even in summertime. There exist a number
methods for detection of shadows, [26] evaluates a few early methods. One of
the methods use the color model introduced in [16], which in [35] is combined
with the Stauffer-Grimson background subtraction method to get a statistical
background/foreground/shadow classification. This is the method used here,
and we also describe a generalization for dealing with highlights as well (defined
in section 7).

An alternative to detecting and removing shadows is to simulate them. [9]
showed how a shadow added to their wire-frame model could improve the ac-
curacy when fitting the model to edge features. [29] give examples of how
simulating shadows on a 3D box (with fixed size) can improve detection. The
detection is however still useful when the simulation is insufficient, e.g. when
the vehicle model is inaccurate, or when other indirect shadows appear. We
will combine both shadow detection and shadow simulation, and show that the
combination can improve the estimation on average.

We use 3D boxes as vehicle appearance model, to aid the segmentation but
also to simulate shadows. As said in [9, 8], switching from 2D tracking in the
image plane to 3D tracking in the scene domain often results in a substantially
reduced failure rate, because more prior knowledge about the objects can be
utilized. For example, foreground regions are not always homogeneous, and we
need some criteria to merge regions that are likely to belong to the same object.
It can be difficult to choose an image based scale threshold for merging regions,
especially if the objects vary in size e.g. due to varying distance. The use of 3D
boxes is a way to choose this scale threshold based on geometric information.

Many other models of different complexities have been proposed, ranging
from a few 3D line features [18], rectangular 2D boxes [23], and more explicit
models like wire-frame (polyhedric) models [25, 9, 8, 21]. In our system the
3D box appears to be a sufficiently complex model, and it is simple enough to
cover most types of vehicles. It is difficult to have wire-frame models for all
sorts of vehicles, especially in industrial areas where many uncommon types of
vehicles occur (tractors, trucks, vehicles with different types of trailers, etc.).
Furthermore, full adaptation of the wire-frame model to image data can be
unstable [4].
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3 Camera setup issues

The choice of camera setup was simulated in Matlab (see e.g. ’help graph3d’)
before the actual setup and collection. Figure 3 shows some examples of sim-
ulated camera pictures in Matlab (the image was found on the Internet, and a
depth-map for some of the largest objects has been estimated and designed by
hand).

There are limitations to this approach. Lens distortions are not included
in the present Matlab toolbox for simulation, which means that this method
cannot be used to simulate camera images with wide angle lenses (unless we
make special software). But the simulation at least gives an idea of the resulting
view.
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Simulation example. Camera with 50◦ FOV, 15m above ground.

Simulation example. Camera with 90◦ FOV, 15m above ground.

Simulation example, Renova in Göteborg. Camera with 90◦ FOV, 11m above
ground.
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Simulation example, Renova in Göteborg. Camera with 90◦ FOV, 18m above
ground.
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4 Hardware related issues

This section discusses software and other issues that are closely related to the
hardware.

4.1 Adaptive shutter control

The camera need to have some type of adaptive control for compensation of
illumination changes. The cameras used in this project did not have any build
in automation for this control. A PID controller were implemented for selecting
the shutter time to keep a constant average image intensity, the details are
described in appendix B.

The shutter time cannot alone keep a constant intensity in all conditions,
figures 3 and 4 shows some limitations. The ability to control the light sensitivity
would be improved if we also included the aperture in the control, but this
requires motorized lenses.

4.1.1 Post-processing due to instability in the controller

In one of the intersections (Jung), the parameters were set such that the camera
shutter started to toggle, and the image intensity displayed the same phenom-
ena. In order for the background subtraction to work, the images should have
a constant intensity or at least change smoothly. A post-processing procedure
to repair this data was therefore implemented and included in the GPU imple-
mentation for simultaneous ego-motion compensation and rectification (section
6). The images were adjusted such that the mean intensity in certain regions
(manually marked, to avoid areas with moving objects like the road) was held
constant. Some camera views cover mostly the road, so the marked regions were
in some cases quite small but appeared to be sufficient.

4.2 Bayer conversion

The conversion from the Bayer format in the camera sensor to RGB images
may cause color distortion effects. They are most obvious in high contrast
regions, see e.g. figure 6, but may occur in any region. The shadow detection
described in section 7 relies on the assumption that only the intensity of a pixel
changes when the region becomes shadowed. The color distortion in the Bayer
conversion may then cause some shadow misclassification. However, there is
probably other more important sources of errors. But care should be taken not
to use a too crude method in the Bayer conversion if the following processing is
relying on color information.

4.3 Polarization filters

Polarization filters were later installed, to reduce light reflexes from wind-shields
etc. However, the effect was minor. Instead, an image processing procedure to
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Figure 6: Examples of Bayer conversion effects.
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detect highlight pixels were developed, which gave a better performance, see
section 7. Reflexes due to wet asphalt is however still a problem.

4.4 Frame and time drops

There are occasional drops in frames and time stamps in the collected video data.
The frame drops and the time drops does not always come at the same time.
These drops may reduce the performance in the case of multiple cameras, where
the tracking algorithm assumes that the cameras are synchronized. Initially,
the synchronization relied on a constant framerate, but were later changed to
rely on the time stamps.
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5 Camera calibration

Figure 7 shows an overview of the camera calibration. The calibration is per-
formed in two steps: First, parameters for the lens distortion is estimated.
Second, after rectification of the lens distortion, only the pinhole camera model
remains, and the mapping between 3D and 2D (the projection matrix) is esti-
mated. These two steps are described in further detail below.

Figure 7: Overview of the camera calibration.

5.1 Lens distortion

It was eventually decided to use cameras with wide angle lenses, due to the
large coverage requirements. The techniques for calibration of such lenses are
somewhat less standardized, and required some implementations and testing.
Appendix C describes the radial tangent lens distortion model for fisheye lenses,
that is used in our system.

The procedure to find the lens distortion parameters is as follows:

1. Make a striped calibration image.

2. Take a number of images of the calibration pattern in different orientation.
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3. Find and collect line segments from all images. The chosen calibration
pattern simplifies this procedure, compared to taking just one image of a
pattern containing lines in different directions.

4. Optimize the lens distortion parameters. Choose the parameters that gives
undistorted (straight) lines. The error function is computed as follows

(a) Map the points on the line segments to the undistorted domain.

(b) Estimate a straight line to each segment.

(c) For each line segment, compute the closest distance from each point
on the line to the fitted line.

(d) Map back to the distorted domain before computing the sum of er-
rors.
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It may seem easier to compute the error in the undistorted domain. But
the lens-parameters may rescale the undistorted domain, which can affect
the error (the optimization may decide to rescale, i.e. shrink to nothing,
instead of improving the straightness).

Example result:

5.1.1 Comments

Some manual work had to be made to remove faulty line segments due to reflexes
in the calibration images.

We also tried the radial polynomial model rd = ru−γr3u from [11] instead of
the tangent model. This polynomial model gave twice the error in the example
above.

5.2 GPS measurements

In order to estimate the mapping between the 3D and 2D domain, a set of
measured 3D GPS points were used. Figures 8 and 9 shows some examples (see
also figures 10-12).
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Figure 8: GPS measurements in Renova.

Figure 9: GPS measurements in Jung.
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5.3 Ground plane

The ground was approximated with a plane. This approximation seemed suffi-
cient for the two intersections in focus. For example, the difference between the
measured GPS points and the estimated ground plane in Renova was at most
∼ 20 cm in the selected region (a circle with 40m radius).

5.4 Projection Matrix

The theory regarding estimation of the ground plane and the mapping from the
3D world to the 2D image is described in appendix D. We discuss some general
details here.

There are different ways to estimate the 3D-2D mapping (as described in
the appendix). Initially, the idea was to find the mapping directly, but this
method requires that the GPS points are sufficiently spread out in the 3D space.
However, most of the points is located on the ground, i.e. in a 2D subspace, and
some of the points were noisy. This limitation made the approach somewhat
insufficient, especially since the focal length had to estimated simultaneously
(the focal length is not part of the lens distortion parameters).

Another, indirect method, is to first estimate the mapping between the 2D
ground plane and the 2D image (after first estimating the ground plane). Then,
the full mapping can be estimated using some geometrical constraints (see the
appendix). This method also gave a somewhat insufficient result, so a manually
tuning of the focal length was performed instead of automatically estimation (an
incorrect focal length will give a skewed result or an incorrect height scaling).

Furthermore, in addition to point correspondences, line correspondences was
also included for the estimation to improve the result.

The procedure is as follows:

1. Collect 3D points and lines (e.g. using GPS).

2. Estimate the ground plane.

3. Get point and line correspondences. Manually mark the corresponding
points and lines in the image.

4. Choose (guess) the focal length. Estimate the 3D-2D mapping (the pro-
jection matrix P), use either the direct or the indirect method. Look at
the result, by mapping the 3D points and lines into the image, and adjust
the focal length until the result is satisfactory.

5.4.1 Renova and Jung result

Figure 10 shows an example result in the Renova intersection with two cameras.
Figures 11-14 shows results from the Jung intersection with four cameras.
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Figure 10: Resulting calibration in Renova.
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Figure 11: Resulting calibration in Jung for pole #1. GPS data mapped into
the camera image.
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Figure 12: Resulting calibration in Jung for pole #2. GPS data mapped into
the camera image.
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Figure 13: Overview of Jung.
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Figure 14: Selected coverage in Jung.
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2006 April-May 2007 June-July 2007 Aug 2007
(1024x768) (720x576) (less wide angle) (adjusted view)

(polarization-filter)

Figure 15: Different calibrations required in Renova.

5.4.2 Re-calibrations in Renova

The calibration had to be remade a few times in the Renova intersection, to
improve the coverage and to make full use of the image pixels, see figure 15.
Some of the initially measured GPS points is missing in the later versions due
to repairs of the intersection, which affected the calibration somewhat. Care
should be taken when selecting the points, and a more automatic procedure
should be implemented if calibration is frequently required.

5.4.3 Re-calibrations in Jung

The calibration in Jung also had to be remade a few times, due to installation of
polarization filters, to improve the accuracy of the vehicle position estimation,
and due to a slight change in mounting position (cause unknown).
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6 Camera ego-motion

Many intersections do not have buildings nearby, and cameras then have to be
mounted on poles that sway due to the wind. Image analysis of video data, such
as vehicle tracking, is easier if all motions in the video are caused by moving
objects. The image sequence then has to be compensated for camera ego-motion.
Moreover, the ego-motion compensation will also improve the accuracy of the
camera calibration, i.e. the mapping between the 3D world and the 2D image
plane. This will in turn improve the accuracy of image based 3D position
estimation.

A method for simultaneous compensation of camera ego-motion and image
rectification (due to lens distortion) has been implemented in GPU. Appendix
E describes the theoretical details.

However, the video data is still encoded and decoded in software. The encod-
ing is especially heavy when using mpeg4, so the algorithm is still not processing
in real time. Currently, about 10fps is achieved, but there are four cameras in
Jung and we have two dedicated computers for this processing (requires NVIDIA
graphics cards) so the effective speed is about 5fps.

The ego-motion compensation method seems to work well in most cases,
especially when combined with a statistical background model that reduce the
remaining ego-motion that could not be compensated for (however, the back-
ground segmentation performance will still decrease somewhat due to the ego-
motion). There are still some situations when the ego-motion is severe where
the compensation fails, even if they are much more rare after the compensation.

Figure 16 shows two examples of good and bad results. Note though that
even if there are some faulty detection in the second case, most of it is classified
either as shadow or as highlight (see section 7). Also note that even if this
classification sometimes also works without ego-motion compensation (as in the
’good’ case in figure 16), the following position estimation will be less accurate.

We use a time window for the ego-motion compensation of about 10 seconds.
This is a much shorter window than used for the statistical background model
estimation, which may be one reason to the bad case in figure 16. The ego-
motion compensation is based on estimating the average position over a time
window, and the wind may temporarily give a constant offset on the mounting
pole position which cannot be detected by the algorithm.
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without compensation without compensation

with compensation with compensation

Figure 16: First column: Example of good results. Second column: Ex-
ample of poor result (although most of the misclassification is detected as
shadow or highlight). Top: Rectified image. Middle: Statistical segmen-
tation without ego-motion compensation. Bottom: Statistical segmentation
with ego-motion compensation. The colors denotes different foreground classes,
i.e. white=foreground, blue=shadow, red=highlight.
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7 Statistical background subtraction and fore-
ground classification

The classification into background/foreground/shadow/highlight is a very im-
portant step in the tracking algorithm. However, it is also very difficult to
choose parameters that will give a stable result in all weather and traffic condi-
tions. We will first describe the method, and then show some results and discuss
limitations.

7.1 Method

We use the statistical classification method in [35] for classifying each pixel into
background or foreground. The method is a modification of the well known
Stauffer-Grimson background subtraction method [30], with a somewhat dif-
ferent update rule and a lower regularization limit for the Gaussian standard
deviations. Basically, a Gaussian mixture model is used in each pixel to esti-
mate the color distribution over time and foreground pixels are detected if the
color is unlikely to belong to the distribution.

The foreground pixels are further classified into foreground/shadow/highlight.
In [35] the Stauffer-Grimson background subtraction is combined with the shadow
detection method in [16] to get a foreground/shadow classification. In short, a
pixel is classified as a shadow pixel if the color lies in a cylinder region between
the black (the origin) and any of the center colors of the background Gaussians.
We have also applied the same idea for highlight, so that a pixel is classified as
a highlight pixel if the color lies in a cylinder located on the opposite side of
any of the Gaussian center colors. Figure 17 illustrates the class regions.

Figure 17: Illustration of the shadow/highlight classification in the RGB color
space.

We define highlight as pixels that do not belong to the foreground objects,
and that are brighter than the average background color (as in figure 17). High-
light can occur from many different phenomena, e.g. reflection on a bright vehicle
onto the ground, bloom and streak effects, and rapid light changes caused by
moving clouds, see figure 18.
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Figure 18: Examples of highlight and shadow detection. Top: Reflection
of a bright vehicle onto the ground. Second: Bloom and streak effects.
Third: Sun reappearing from behind moving clouds. The colors denote
the following: black=background, white=foreground, blue/darkgray=shadows,
red/lightgray=highlight.
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Figure 19: Examples of difficult classification in the umbra region.

Figure 18 also shows the result of the foreground/shadow/highlight detec-
tion. Much of the highlight can be detected in these cases and removed by
the algorithm. The entire algorithm for background modeling and classifica-
tion of pixels into background/foreground/shadow/highlight is summarized in
appendix F.

7.2 Limitations

This sections describe some limitations of the background subtraction and fore-
ground classification method. It is very difficult to achieve a classification per-
formance for general conditions that works as well as tuning the parameters
(learning rate, classification thresholds, etc.) for certain weather conditions and
traffic density. These compromises will give rise to artifacts as discussed below.

7.2.1 Shadow misclassification

There are many situations where shadow and foreground objects are misclassi-
fied, we will here give some examples. Note that the 3D box modeling of vehicles
that is described later in this report can deal with some misclassification, but
the performance would be improved if the errors could be reduced.

Figure 19 shows two examples of the shadow detection. Note that there are
some misclassification, especially in the shadow near the vehicle, i.e. the umbra
region which is the dark core of the shadow.

Figures 20 and 21 shows other examples of good and poor results. Most of
the misclassified cases have in common that the shadows are much darker than
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in the correctly classified cases. This happens more often for larger vehicles,
where the umbra region is larger. There is also one case where the black car is
brighter than its shadow. As mentioned above, the shadow theory in [16] that
is used here (and in many other models) models shadows as being darker than
the background, but not too dark. Extending the shadow class to more darker
regions will increase the misclassification for dark vehicles. Still, it may perhaps
be better to just set all dark pixels to background, including dark vehicles, in
the shadow classification and deal with dark vehicles in a separate way.

7.2.2 The part sun/cloud problem

Changes in light due to the sun appearing and disappearing from behind moving
clouds are quite common. Some of these changes can be classified into shadow
or highlight, but light changes can also be classified as foreground (the white
regions in the figures). These regions will initiate tracking filters and cause
illusionary vehicles. Figures 22-24 shows examples with different results.

Furthermore, the light variations will decrease the performance of the statis-
tical background model estimation, since they are detected as foreground and
therefore prevents the background model to be updated. For example, the con-
vergence of the background model will be very slow if the variations continue
for a longer period of time (e.g. leaving ghost artifacts as in figures 23-24).

7.2.3 Choosing time window

One fundamental problem is the time window for learning of the statistical
background model. It is difficult to tune the time window to suite all varieties of
traffic density and light conditions. For example, [17] mention that the learning
rate of the background update is tuned depending on the type of sequence
and the expected speed of motion, which is not desirable when designing an
automatic system. Heavy traffic, or if the light is varying too much due to
moving clouds, will cause slower convergence of the background model since the
model is not updated in the foreground/shadow/highlight regions. As we have
seen, some of the light variations can be classified as shadows or highlight, but
there will still be misclassification and it is desirable that the background model
adapts to new conditions.

Figures 25-26 shows examples of behavior during the initial adaptation pe-
riod (using the same learning rate in both cases). The time to learn the back-
ground depends on the time that the background has been visible. Hence, the
length of the adaptation period depends largely on the amount of heavy traffic.

Furthermore, vehicles that are temporarily stationary for a longer period
of time will eventually disappear and become part of the background model,
figure 27 shows an example. The statistical background model can remember
the previous background for some time, so that when the vehicle assumes its
coarse it does not leave a ghost vehicle. However, there will be ghost effects
for vehicles that are temporarily stationary for a sufficiently long period of time
(depending on the learning rate of the background model), see figure 28.

33



Figure 20: Examples of predominantly successful classifications.
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Figure 21: Examples of misclassifications.
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Figure 22: Example sequence of sun reappearing from behind moving clouds.
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Figure 23: Example sequence of sun reappearing from behind moving clouds.

37



Figure 24: Example sequence of sun reappearing from behind moving clouds.
The result in this last case is worse than the previous ones, partly because the
light variations have been quite extended, so that the background model has
not converged. 38



After 2.5 minutes

After 3 minutes

After 3.5 minutes

After 4 minutes

After 4.5 minutes

After 5 minutes

Figure 25: Example of classification behavior during the initial adaptation pe-
riod. It takes longer time to learn the background in regions where moving
objects are present.
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After 2.5 minutes After 8 minutes

After 3 minutes After 9 minutes

After 3.5 minutes After 10 minutes

After 4 minutes After 11 minutes

After 4.5 minutes After 12 minutes

After 5 minutes After 13 minutes

After 6 minutes After 14 minutes

After 7 minutes After 15 minutes

Figure 26: Example of classification behavior during the initial adaptation pe-
riod (same learning rate as in figure 25. The adaptation period on the left
exit road is particularly long, due to heavy traffic (several trucks have been
temporarily static for a longer period of time).
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We use a non-causal version of the subtraction method which helps to reduce
the ghost vehicle effects somewhat, but the improvement is limited.

7.2.4 Other difficult weather conditions

There are some weather conditions that this type of classification method is not
suitable for. Figure 29 shows some examples. Days which contain wet asphalt
are manually found and discarded.

7.3 Discussion and related work

In a recent approach, [17] use a method similar to ours to detect shadows, but
they also added edge cues to improve the shadow detection. Another recent
similar method is [6] that classifies pixels into even more categories such as
reflections (similar to our highlights), ghosts, and fluctuations. They use trun-
cated cone regions instead of our cylinder regions to model the different class
regions in the color space (however, they use truncated cones which is similar to
cylinders). It is also possible to use more light invariant features in the Stauffer-
Grimson method, as in e.g. [1]. It is likely that some of these new methods can
improve the classification.

Still, method parameters are often tuned to certain sequences and light con-
ditions, and it may be difficult to have perfect detection under general and
varying conditions (the many publications in this field also indicate this chal-
lenge). Another problem is that light from a vehicle reflects onto the ground and
changes the color on the ground depending on the color of the vehicle, this will
affect the shadow classification if one vehicle reflects light into another vehicles
shadow.

It may be better to either use a longer adaptation period than done here,
and deal with change in light differently, or use a shorter period and modify
the segmentation criteria. An alternative (or a special case) to background
subtraction could be to use a very short time window, for example frame dif-
ference, but that requires a different way for segmenting objects. Using color
for segmentation is in some cases helpful, as in e.g. [23] (where 2D rectangles
are used in combination with color to segment objects). However, many objects
are multi-colored, and parts of objects often resembles the background color.
Using motion features can also be helpful, but an issue then is how to deal with
temporarily static vehicles, which is not detected by frame difference or motion
features. A combination of features for segmentation would probably give the
best result, if the multi-feature fusion can be designed properly.
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Figure 27: Example of the background model adapting to a vehicle.
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Figure 28: Example of ghost effect.
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Figure 29: Examples of difficult data due to rain/snow on the lens, building
reflection (which in this particular case be solved by ignoring the image region
containing the wall), head light reflection, and wet asphalt reflection (the figures
have been created at different points in time and are therefore visualized in
different ways).
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8 3D box shadow simulation

Let B = {L,W,H, x, y, ϕ} denote the state of a 3D box on a ground plane in
3D, where (L,W,H) = (Length,Width,Height), (x, y) is the position on the
ground plane, and ϕ is the orientation.

To simulate an image of a 3D box we need knowledge of the ground plane
and the camera calibration parameters, i.e. lens distortion parameters and the
projection matrix that defines the mapping of 3D world points to 2D image
points. The calibration details are explained in section 5, we will not go into the
calibration details here, but just mention that all the parameters are estimated
using measured GPS points and general calibration techniques.

Moreover, to simulate box shadows we use the software package [5] to com-
pute the solar position from date, time, and location on Earth. Figure 30 shows
an example of the shadow simulation.

As an interesting footnote, according to the simulation, the sun elevation
angle in the middle of Sweden is at best about 55◦, thus casting long shadows
even in summertime.
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Figure 30: Example on light variations during a sunny day. The small house,
three flag poles, and a sign are modeled and their simulated shadows can be
compared to the true shadows. Note that some of the error between the true
shadows and the simulated shadows on the flag poles may be due to the poles
not being absolutely vertical.
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9 3D box optimization

Figure 31 illustrates the problem of modeling region segments in an image with
a 3D box. The figure is only intended to give an idea of the method. We
will in this section go through the procedure in more detail, including how to
incorporate shadow detection and simulation into the optimization (which is
not illustrated in the figure).

Figure 31: Illustration of the 3D box modeling of image region segments (with-
out the shadow detection/simulation).

We will first define the similarity measure between a classified image which
contains the classes background/foreground/shadow and a simulated image of
a 3D box including the shadow of the box. Second, we will describe the opti-
mization procedure to find the 3D box that maximizes the similarity measure.

9.1 Similarity function

Let I(x) be the classified image and S(x) be the simulated image, and represent
the classes as follows

I(x), S(x) =

 0 if background
128 if shadow
255 if foreground

(1)

Furthermore, let V denote the valid pixels, i.e. pixels that are not occluded by
other objects (buildings, vehicles, image rectification borders, etc.). Define the
similarity between the classified image and the simulated image as

s(I, S) =
∑
x∈V

p(I(x))S(x) , (2)
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where

p(I) =

 pb < 0 if I=0 (background)
ps > 0 if I=128 (shadow)
pf > 0 if I=255 (foreground)

(3)

For example pb = −0.2, ps = 0.1, pf = 1. This function is quite ad-hoc, but it
has some nice properties. A simulated box is rewarded more than its simulated
shadow in a detected shadow region. For example, black cars are often misclas-
sified as shadows, in which case the box should be covering the region instead
of its shadow.

Initially, this similarity measure was intended to improve the box fitting
in sunny situations when the shadow was misclassified as foreground. But
the improvement compared to just using one class (foreground) and simulat-
ing shadows was minor. This is because knowledge of the solar position (and
box orientation) seems sufficient to reduce the ambiguities. Instead, the im-
provement was most evident on days with diffuse light when the light causes
shadows to appear around the vehicles. Figure 32 shows some examples of box
optimization (explained in the next section) using this similarity function.

We also tried to use correlation as a similarity measure, but the results were
worse. Correlation often causes the optimization to terminate at some local
optimum if the classified region is sparse. Our measure favors large boxes, which
helps to glue sparse segments together, unless there is too much background in-
between, or if the other segments are invalid (e.g. covered by another box).

9.2 Optimization procedure

We employ a fairly simple optimization method. Basically, the algorithm is
initiated with a predicted box state (from e.g. a Kalman filter) and tries different
changes of size and position iteratively to find the box state that gives the highest
similarity measure. The changes in size are not arbitrary, but chosen from a list
of common sizes, see table 1 for examples1. The iteration loops over box sizes
and position transformations, with gradually decreasing step size, see algorithms
3 and 4 in appendix G for details.

Figure 32 shows some example results. For comparison, the same figure
also shows the result when simulating, but not detecting shadows, as well as
when detecting and removing shadow pixels (and without simulating shadows).

1

This list does not cover all types of vehicles, especially not in industrial areas where
uncommon types of vehicles occur more often than in an inner city, for example (the last
one is not that common...):
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Vehicle type (Length, Width, Height)
Pedestrian (1,1,2)
Motorcycle (3.00,1.00,1.50)
Small car, VW Golf (4.20,1.73,1.48)
V70 (4.73,1.86,1.56)
Van, VW Multivan (4.89,1.90,1.94)
Van, slightly bigger (6.00,2.00,3.00)
V70 with trailer (7.73,1.86,1.56)
Truck, Volvo FL/FE (9.00,2.50,4.00)
Extra ad-hoc size (7.50,2.25,3.50)
Extra ad-hoc size (10.00,2.50,3.50)
Extra ad-hoc size (12.00,2.50,4.00)

Table 1: Examples of vehicle sizes.

The other methods are in some cases somewhat better, and a topic for future
research may be to improve the similarity measure even further, but the new
proposed method is better on average.

We give some observations from experiments here. Initially, we tried to use
free sizes of boxes in algorithm 3, i.e. using the transformations {Tn} = { In-
crease/decrease front position, Increase/decrease rear position, Increase/decrease
height, Increase/decrease x, Increase/decrease y }. However this seemed too un-
stable if the foreground/shadow-classification fails too much, and using a fixed
set of sizes to reduce the degrees of freedom gave a more stable performance.

We have also tried to optimize with the shadow simulation as a degree of
freedom (testing both turned on and off), but this also gave a more unstable
result.

Moreover, we also tried to add change in orientation to the list of trans-
formations, but it is too unstable (at least for some object views) to include a
free change in orientation in the optimization when using only a single camera
view. One solution might be to add a punishing term for the orientation in the
similarity measure, i.e.

s′ = s cos(ϕ0 − ϕ)pϕsign(s) (4)

where ϕ0 is the initial estimated orientation. However, the utility of this rule is
still unclear.

We have also made experiments with merging of estimates from up to four
cameras with partly overlapping views of an intersection (see e.g. figure 14 on
page 26). Initially we tried to optimize the 3D box to all views simultaneously, by
adding the similarity measures from each camera. However, this requires a very
accurate time synchronization between the cameras. Otherwise the optimized
box usually becomes larger than the actual vehicle since the box tries to cover all
camera blobs (since foreground is rewarded more than background is punished).
If the cameras are not fully in sync, it appears to be better to optimize to each
camera separately and then merge the resulting 3D boxes by e.g. averaging the
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Our method Our method No shadow detection Shadows removed

Figure 32: Examples of results from algorithm 4, using fixed parameters in
(3). First and second column: Optimal box using our method, overlaid on the
classified and original image respectively. Third column: Optimal box when
not detecting shadows (i.e. setting all shadow pixels in the left column to fore-
ground). Fourth column: Optimal box when removing all detected shadow
pixels and without simulated shadows. The orientation is manually selected
here, but could for example be predicted from previous positions or in some
cases from known lane orientation. The initial position is roughly estimated
from the image blob.
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state parameters.
The optimization algorithm is very crude and may sometimes end up in a

local optima if the initial position is too far from the optimum. It can then
be useful to add a few more random transformations to the list in algorithm
3, or to use more elaborate optimization schemes. However, the improvement
has not been significant when using prediction from previous frames (e.g. using
a Kalman filter), and the estimation of size can also be improved by averaging
estimates in time (as described below).
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10 Kalman filters for prediction and smoothing

During tracking, the box state is predicted in the next frame. This prediction is
used for initialization of the box optimization in section 9. A causal non-linear
Kalman filter is used for the prediction. A non-causal Kalman filter is also
used after the tracking, to smooth the trajectory measurements. We will here
describe the various models and Kalman filters that is applied in different parts
of the process.

10.1 Models

We have explored the linear models ’constant speed’ and ’constant acceleration’.
Details on these linear models can be found in e.g. [34], and is also summarized
shortly in appendix H (since the reference [34] may be difficult to get hold of).

We have also explored non-linear models. Details on the bicycle model can
be found in appendix I, and details on the simplified bicycle model can be found
in appendix J.

It is still unclear which model that is most suited in the initial tracking
step. A complex model may become unstable since we only have position (and
possibly orientation) as measurement, and it takes longer time for these models
to recover from noisy measurements (e.g. a bicycle model have to turn in a
physically realistic manner to get back to the true position, while a linear model
can simply ’slide back’ to the position). Still, we currently use a bicycle model
in the coarse (first round) tracking, but some of the errors (e.g. the performance
in occlusion situations and instability in the beginning of a track) may be traced
back to the use of this model. Initially, a simpler model was used in the coarse
(first-round) tracking, but in order to get more realistic vehicle trajectories
before the following steps had been implemented this model was chosen and has
been kept.

More complex models can (and should) however be applied as a post-processing
step to further refine the trajectories. Section 12 describes this step.

Note that in reality the direction of the speed does not have to be the same as
the orientation of the vehicle. The difference is neglected in the bicycle models,
and may be a topic for future research.

10.2 Causal and non-causal Kalman filters

In the coarse (first round) tracking, we only have access to measurements from
previous points in time. In this case we use a causal Kalman filter for prediction
of the vehicle state in the next frame (which is used as initialization to the box
optimization). For the non-linear models, an extended Kalman filter (EKF)
have to be used, see e.g. [33] for more details.

When the coarse tracking is finished, we have access to measurements from
all times. It is then possible to apply a non-causal Kalman filter (’glättning’
in swedish). This version is less common, and we have only implemented the
linear models, see e.g. [20] for details. Hence, to utilize the benefits from both
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the non-linear models and the non-causal filters, a combination of filters have
been used in the post-processing (see section 12 for details).
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11 Coarse (first-round, causal) tracking

This section contains a description of the coarse tracking algorithm. By ’coarse’
we mean that the tracking is applied in low resolution, and that the prediction
is causal, i.e. only based on previous frames. Many of the components have been
described in the other sections, and we will refer to them for more details when
needed.

In essence, the tracking system computes 3D box state estimates in the
current frame, which are used as measurements to an extended Kalman filter
(EKF) in the 3D ground plane domain. The prediction from the Kalman filter
and previous trajectory data is then used as initialization to estimate the 3D
box state in the next frame. Hence, the tracking is performed in the 3D domain,
and the measurements are also in 3D, even though they are computed using 2D
images. Figures 33-34 may give a rough idea.

The details can be worked out in many different ways, we propose some
solutions here. Let B = {L,W,H, x, y, ϕ} denote the state of a 3D box on a
ground plane in 3D, where (L,W,H) = (Length,Width,Height), (x, y) is the
position on the ground plane, and ϕ is the orientation.

We will describe the system in terms of a box ’life cycle’:

1. Initiation: Find foreground regions that is not yet covered by a box
(after updating current boxes). Initiate a Kalman filter for each new box.
Section 11.1.

2. For each new frame:

(a) Predict the box position and orientation from previous esti-
mates. Section 11.2.

(b) Get a measurement of box position and size using the box
optimization procedure and the prediction as initialization. The core
procedure is described in section 9, but section 11.3 describes the
surrounding details.

(c) Update the Kalman filter using the box position and orienta-
tion estimate if the measurement is considered valid, otherwise use
Kalman ’blind prediction’.

(d) Update the size estimate using all measurements in time. Section
11.4.
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Figure 33: Illustration of the coarse tracking system.

Figure 34: Example of the output from the coarse tracking system.
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3. Terminate if the box is no longer in the image, or if the box is no longer
covering a foreground region.

The output from each frame is:

• A ’raw’ measurement of from the box optimization, which will be used in
the post-processing (section 12).

• The Kalman state that will be used for prediction in the next frame. (The
Kalman state was also used as final output before the post-processing and
the refined tracking was implemented.)

After termination of the tracking we will also have a size estimate based on the
estimates from all frames.

11.1 Initiating new boxes

Deciding when to initiate new boxes can be tricky, especially in heavy traffic. In
our system, new boxes are currently only allowed to be initiated if the segment
does not overlap much with existing boxes. This means that new vehicles must
be almost fully visible to be initiated.

1. Find regions in the image that is not overlapping with existing boxes,
and that is sufficiently large (using some ad-hoc measure that takes into
account the 3D geometry which gives different size thresholds in different
parts of the image).

2. Optimize the 3D box position and size to the region (see section 9). The
optimization is made without using an occlusion mask for the existing
boxes (which makes it easier to detect if the new box belongs to an old
one). The lane orientation is used as initial orientation.

3. Keep the new box if considered valid. The validation criteria can for
example be:

• Sufficiently large in the image

• Enough foreground pixels inside the box

• The initial seed should still be inside the box

• Not too much overlap with existing or other new boxes.

11.2 Prediction of the 3D box state

One component of the tracking involves predicting the state (position, orien-
tation, size) of the 3D boxes to the next frame. The prediction is used as
initialization to the box optimization, and is computed as follows:

• The box position is predicted from the Kalman filter. We use a bicycle
model in an extended Kalman filter (see 10 and appendix I).
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• The box orientation is predicted from the trajectory of previously col-
lected estimates, by computing the tangent at the end of the trajectory
in a certain spatial window (initially using the lane orientation). It has
seemed more stable to use a spatially based window rather than a time
based window like the orientation in the Kalman model. For vehicles that
are temporarily stationary over extended periods the latter estimate may
become unstable. In a recent paper [3] (which is an improved version of
[2]), propose another model including curvature of the motion path which
reduces the stop-and-go problem. But even if we use an exact vehicle
model, noisy position measurements can still in theory make the car ap-
pear to move forward and backward and eventually turn around. It may
also be possible to use optical flow as a hint for the orientation, as in
e.g. [29], but this only works for moving vehicles.

11.3 Estimation of 3D box position and size

Once we have a prediction of the box state (section 11.2), we can initialize the
box optimization. The procedure is as follows:

1. Compute an occlusion mask (the valid mask V in section 9). The
mask marks out regions where the vehicle is likely to be occluded by other
boxes and buildings. The mask is made from manually labeled building
regions etc., and from image regions that overlap with predicted current
boxes.

Moreover, in cases where shadows are largely misclassified as foreground,
it has appeared to be more robust to also include the regions that fall
within simulated shadows of other boxes as invalid pixels. This means
that the tracker will treat a vehicle that falls within (simulated) shadows
from other vehicles as occluded. Unfortunately, since we do not know in
which cases the shadow detection fails, this criteria is always used. The
performance is especially reduced in situations where large vehicles and
long shadows are present.

2. Optimize a box (section 9). When a vehicle becomes partly occluded
(as can be detected by computing the overlap between the occlusion mask
V and the image of the predicted box), it has appeared more stable to lock
the size to the currently accumulated estimate (see section 11.4) during
optimization. Hence, we use algorithm 4 (optimize both position and
size) if the box is considered to be fully visible, and algorithm 3 (optimize
position only) otherwise. The occlusion mask V is used in both cases.

3. Decide whether the estimated box is valid or should be treated
as an outlier. The 3D box estimates are sometimes corrupted and should
then be treated as outliers. Various outlier tests can be applied such as
thresholds for

• maximally allowed occlusion (both in 2D and 3D)
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• lower limit for pixel area

• maximal foreground sparsity inside a box

• maximally allowed distance from the prediction

These tests may depend on the situation. For example, we have collected
data from an intersection where flag poles on the side of the road cast
moving shadows onto the road, which sometimes initiate new boxes. A
3D test for overlapping boxes would not allow these boxes to be ‘run over’
by true boxes.

11.4 Averaging size estimates

The vehicle size is computed by weighting together the estimates from each
frame in time. Each estimate of L, W, and H is weighted depending on the
view from which the vehicle was seen. For example, if the vehicle is viewed from
above, the height estimate gets a low weight and the length and width get higher
weights. The weight also depends on the size in pixels of each measurement.
The exact formula for the weight is probably not critical.

11.5 Multiple cameras

As also mentioned in the box optimization section 9, we have also made experi-
ments with merging of estimates from up to four cameras with partly overlapping
views of an intersection (see e.g. figure 14 on page 26).

Initially we tried to optimize the 3D box to all views simultaneously, by
adding the similarity measures from each camera. However, this requires a very
accurate time synchronization between the cameras. Otherwise the optimized
box usually becomes larger than the actual vehicle, since the box tries to cover all
camera blobs (foreground is rewarded more than background is punished). If the
cameras are not sufficiently synchronized, it appears to be better to optimize to
each camera separately and then merge the resulting 3D boxes by e.g. averaging
the state parameters (this may be true even if the cameras were synchronized).

The initial seeds for new boxes are also made separately from each camera,
but the final selection of new boxes is made based on all cameras.

11.6 Discussion

The tracking performance varies depending on conditions. Figures 35 shows
some results. Figure 36-36 shows some results where the tracking have failed.
Better performance is still desired in situations with large occlusions and heavy
traffic. This is a well known problem and currently unsolved for the general
case.

However, the performance in moderate occlusions should, and probably
could, be improved. Figure 37 shows an example where two vehicles meet,
one of the vehicles (1173) are lost, and the other (1172) vehicle ’jumps’ over to
the lost one. The lost vehicle then have to be almost fully visible before a new
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box can be initiated. This behavior is due to some insufficient property of the
Kalman filter and outlier testing (which was not investigated further due to lack
of time). For example, initially the occlusion masks were created from images
of the predicted boxes rather than the actual segments in the image, which gave
some unpredictable behavior.

Some of these errors can be repaired afterwards by the automatic and manual
repair. The automatic repair compares measured trajectories with a set of
principal trajectories, see figure 38 for examples and [24] for more details.

There are also some problems with entering vehicles. The estimated box size
increases as more of the vehicle becomes visible, which results in an incorrect
estimate of the center position (which may even move backwards). Estimating
the position of the front of the box may improve the behavior. It would be even
better if the tracking could start once the entire vehicle is inside the image,
but this will reduce the coverage considerably. The chosen bicycle model in the
Kalman filter needs a few samples before the prediction can be reliable, and the
same goes for the spatial window for prediction of the orientation. Therefore,
the orientation is initially locked to the lane direction for the first few samples.
Even if the orientation is incorrect, this approach seems to give a more robust
behavior than to try to predict the true orientation.

Moreover, the coarse tracking is using low resolution images, mainly to in-
crease the speed of the processing. This means that many small objects, such
as pedestrians, will be too small to initiate a box. The large coverage demand
also made it necessary to track vehicles that are only a few pixels large. This
will reduce the size estimation accuracy, and even issues like how to downsam-
ple images becomes important (we found it better to exclude the usual lowpass
filtering before downsampling, to avoid smearing of small regions).
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Figure 35: Examples of tracking results.
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Figure 36: Examples of tracking errors. Top: Two vehicles are merged into a
truck. Bottom: False vehicles are generated due to moving clouds.
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Figure 37: Examples of ’jump’ error.
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Renova intersection

Jung intersection

Figure 38: Examples of principal trajectories in the automatic repair.
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12 Post-processing

The coarse tracking step and the refine tracking step are both followed by some
post-processing on the trajectory data, to further improve the estimates of the
position, orientation, speed, etc.

After the coarse tracking, we have measurements from all times and it is
suitable to have a non-causal post-filtering to make use of both past and future
measurements. As discussed in the Kalman filter section 10, we have only
implemented the non-causal Kalman filter for the linear case. Therefore, to
utilize the benefits from both the non-linear models and the non-causal filters,
a combination of filters have been used in the post-processing. For some more
details on the models and Kalman filters, see section 10.

1. First, a linear constant speed model is applied in a non-causal Kalman
filter to improve the position measurements. The measurements are also
weighted depending on the confidence, i.e. depending on occlusions, out-
lier tests etc. Hence, in regions where the vehicle has been occluded the
positions will be interpolated from neighboring, visible, regions.

2. Second, the orientation in each position is refined by estimating the ori-
entation of the position trajectory in a symmetric (non-causal) Gaussian
weighted spatial window (e.g. a few meters wide). Basically, a local co-
variance matrix is estimated, and the orientation is computed from the
dominant eigenvector.

It has appeared more robust to estimate the orientation from a spatial
window instead of a time based window (for example from a non-linear
Kalman filter), especially when the vehicles are temporarily stationary for
a longer period of time.

3. Finally (or in parallel to the second step), a nonlinear simplified bicycle
model is applied in a causal Kalman filter, to further refine the position
and speed estimates (e.g. preventing vehicles from ’sliding’ laterally). The
acceleration is computed by just simply differentiate the speed.

It should be noted, that it may not always be better to use these refined
estimates for analysis. The original estimates may appear more noisy when
plotted or visualized in a video sequence, but could be closer to the truth if the
post-processing models are not physically correct.
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13 Refined (second-round) tracking

Basically, the refined (second-round) tracking improves the estimated positions
of existing boxes using the high resolution images. The differences to the coarse
tracking are the following:

• The tracking is performed in the highest resolution.

• The box size is locked at all times, using the accumulated size estimate
from the coarse tracking (section 11.4).

• The predictions are not made from previous frames, i.e. is not causal, as in
the coarse tracker. Instead, the box states from the post-processing in sec-
tion 12 is used, which smooths the coarse tracking measurements (possibly
followed by automatic and manual repairs) in a non-causal manner.

• There is no initiation of new boxes, and no extrapolation of existing tra-
jectories.

The refined tracking is followed by the same post-processing as the coarse track-
ing (section 11.4).

The refined tracking described here was initially planned to include refine-
ment of the box size (but was not implemented due to lack of time). An im-
proved size estimate would in turn would improve the position estimates even
further. Currently, the box size is estimated in low resolution images in the
coarse tracking step. The estimate is based on a number of estimates from dif-
ferent views, and a higher weight is given to estimates where the vehicle is close
to the camera (is large in the image), but the estimate would still be improved
using high resolution images and for example using a few well chosen views.
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14 Computational issues

Most of the scripts surrounding the image processing have been written in
Python (and some in bash). This includes video management scripts for putting
new data at right places, making web-copies, gathering of data for processing,
and automatization of image processing.

Section 2 and figure 5 on page 9 described the image processing procedures.
Most of the image processing is computed on a Linux cluster at the Swedish
National Supercomputer Center (NSC), except the camera ego-motion compen-
sation on GPU which is processed on two dedicated windows-machines. The
rectification, background subtraction and foreground classification, and the box
optimization is written in C/C++. The remaining parts are written in Matlab
and Mex. Each component in the overview figure 5 results in either a video .avi-
file or a Matlab .mat-file, which will be input to the subsequent step. It would
be more computationally effective to make a combined implementation of the
components, but it would also be more difficult to develop and test individual
components.

The main bottlenecks in the implementation are the coarse tracking and the
refine tracking, due to the box optimization, Matlab functions, and large images.
The speed depends on the traffic density. For example, the coarse tracking with
two vehicles takes about 1.5 seconds/frame (on a standard machine), with the
following partitions:

20% Box optimization (C-code)
20% Generate images of 3D boxes (C-code) to create image masks

for use in various steps
20% Visualization (plotting not included) and debugging variables,

i.e. reading rectified images, downsampling, making vehicle tem-
plates (generating 3D box images)

20% Matlab operations on large images (e.g. find, nnz, bwmorph, ...)
15% Read classified images and convert to grayscale representation
5% Remaining Matlab operations

A few more simple optimizations can be made, e.g. removing creation of de-
bugging variables. Further improvements require more work, e.g. modifying the
algorithm or code for the box optimization, and changing entirely from Matlab
to C. For example, just converting the classified images from color representation
to grayvalued representation takes about 10% of the time (which only involves
a few operations for thresholding, multiplication, and conversion to uint8).
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A Video management and processing routines

The management of collected video data has required some resources. This
includes setting up the file structure, making low resolution copies for the web,
gather selected data for processing, and scripts to make the image processing
more automatic. Below follows an overview of the process from taking care
of incoming data, to putting the resulting vehicle trajectories from the image
processing on the web.

Most of the scripts for managing the video data have been written in Python.
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B PID controller for adaptive shutter control

This section describe how to use a PID controller from the mean image intensity
to the shutter time. Figure 39 shows a general feedback system.

Figure 39: Sketch of a controller.

Variable definitions:

Variable General description In our case
r(t) Reference signal Desired mean intensity (constant in time)
u(t) Control signal Shutter time
y(t) Measured signal Current mean intensity
F (s) Controller transfer function PID controller
G(s) System transfer function Camera model for the mapping between shutter

time and mean image intensity
The basic PID controller is in continuous time written as

u(t) = K

(
e(t) +

1
TI

∫ t

t0

e(τ)dτ + TD
de(t)
dt

)
, (5)

where e(t) = r − y(t), and K, TI , and TD is the user parameters. The user
parameters can for example be chosen using the Ziegler-Nichols ad-hoc rule
described in [12]. In practice (discrete time) we compute the control signal
according to [12]:

ũn = K (en + Sn +Dn) ,


en = r − yn

Sn = Sn−1 + T
TI
en

Dn = TD
en−en−1

T

(6)

ũn < umin: un = umin, Sn = umin/K
umax < ũn < umax: un = ũn

umax < ũn: un = umax, Sn = umax/K
where T is the sampling time.

Note that the integral variable Sn is limited in the case of the control signal
being too high or too low. This gives a better behavior of the controller.

The PID controller was simulated in the test phase using the very simple
system transfer function G(s) = 1

1+s . This function may not be physically
correct in our case, but used only for implementation and bug control purposes.
We can convert G to discrete form using e.g. Tustins formula s ≈ 2

T
1−q−1

1+q−1 ,
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where q is the shift operator, e.g. qun = un+ 1. The system transfer function
becomes G(q) = T (1+q−1)

(T+2)+(T−2)∗q−1 , i.e. yn = −T−2
T+2yn−1 + T

T+2 (un + un+1).
Another useful tool for implementation and bug checking is tf.m, step.m,

and feedback.m in MATLAB. These functions can be used to simulate a con-
tinuous transfer function, which can be compared with your own discrete im-
plementation to make sure that your implementation is correct. For example

>> sys = tf(1,[1 1]);
>> step(sys);

computed a step response for the function G(s) above. This step response can
be compared with the Y vector from the following script:

>> T = 0.01;
>> Y = 0;
>> for t=0:0.01:6
>> if t==0
>> y = (-(T-2)*Y(end) + T*1)/(T+2);
>> else
>> y = (-(T-2)*Y(end) + T*2)/(T+2);
>> end
>> Y = [Y y];
>> end

The closed system transfer function y = GF
1+GF r can be generated using the

function feedback.m, and simulated in the same manner as above.

B.1 DirectShow software specification

Two filters for adaptive control of the camera shutter time were implemented
in DirectShow, as specified below.
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Mean image
intensity

Input: Color RGB image, gray-valued image, or Bayer image.
Output: Mean (average) image intensity (real valued).
User parameters: None
Description: The mean intensity is for all image formats defined as the sum

of all values divided by the number of values. Examples:

• RGB image, stored in a M ×N × 3 array:

Mean = 1
N∗M∗3

∑M
m=1

∑N
n=1

∑3
i=1 I(m,n, i)

• Gray-valued image or Bayer image, stored in a M × N
array:

Mean = 1
N∗M

∑M
m=1

∑N
n=1 I(m,n)
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PID
controller

Input: Measured value, real valued y (e.g. mean image intensity)
Output: Control value, real valued u (e.g. shutter time)
User parameters:

Symbol Name Range Default
K Gain ]∞,∞[ 1
TI Integral coeff ]0,∞] ∞
TD Derivative coeff [0,∞[ 0
umin Min output value [−∞,∞] −∞
umax Max output value [−∞,∞] ∞
T Sampling time (= 1

sampling rate ) ]0,∞[ —
r Reference value ]−∞,∞[ —

Description: Implementation of the function
u(t) = K

(
e(t) + 1

TI

∫ t

t0
e(τ)dτ + TD

de(t)
dt

)
, e(t) = r − y(t)

All variables can be real valued (i.e. not only integers).

Pseudo code:

% Initialisation
e0 = 0
S = 0
D = 0

% Function call, new measurement y
%----------------------------------
e = r-y
S = S+T/TI*e
D = TD/T*(e-e0)
u = K*(e+S+D)
if u<umin
u = umin
S = umin/K

elseif u>umax
u = umax
S = umax/K

end

% Update
e0 = e;
%----------------------------------

Note that e0 and S need to be stored for the next call.



C Short description of the radial tangent lens
distortion model

C.1 Definitions and notations

Distorted image Id Undistorted image Iu

xd = point in distorted
image

xu = point in undistorted
image

Lens distortion deals with the mapping between distorted images and undis-
torted images.

Fisheye lens (wide angle lens): Lens with extreme distortion, FOV (Field Of
View) >≈ 100◦.

C.2 Radial tangent lens distortion model

From [10]:

rd =
1
ω

arctan
(
2ru tan

ω

2

)
, (7)

ru =
tan(rdω)
2 tan ω

2

.

This model corresponds to an ideal fisheye lens (but also seems to work well
for more regular lenses, according to [7]?). The parameter ω corresponds to the
field of view (FOV) angle.

However, this model does not fulfill the requirement that the metric in the
center should be preserved, i.e.

dru
drd

∣∣∣∣
rd=0

= 1 , (8)

Of course we can always rescale ru in (7) after the mapping from rd, to accom-
modate to the metric-preserving demand (8). But this is equivalent to using
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the simpler model

rd =
arctan(ruω)

ω
, (9)

ru =
tan(rdω)

ω
.

This simpler model also has the advantage that we do not have to normalize rd
such that 0 < rd < 1/2 which is necessary in (7). But note that ω now has the
unit radians/pixel.

C.2.1 Origin and aspect ratio

Same as [10], we also include parameters for the origin and aspect ratio according
to

xd = sxx
′
d + cx (10)

yd = y′d + cy . (11)

where rd =
√
x′2d + y′2d.

Furthermore, it is sometimes necessary to include a homography if the cal-
ibration picture was not taken orthogonal to the camera. This is not required
in the estimation method used here.

C.2.2 Comments

• The model is estimated using calibration images with straight line seg-
ments. The line segments should be straight in the undistorted image. In
this way we do not have to deal with homographies.

• It may seem simpler to compute the error in the undistorted domain. But
the lens-parameters may rescale the undistorted domain, which can affect
the error (the optimization may decide to rescale instead of improving the
straightness).
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D Theory for the projective geometry

D.1 Definitions and notations

It is assumed that we have a camera, a 3D world, and a 3D world ground plane,
see figure 40.

x =
(
x1

x2

)
2D image coordinates (we choose this notation instead
of (x, y) to conform with Matlabs matrix notation)

X =

XY
Z

 3D coordinates

Y =

y1y2
y3

 Point X described in the 3D world ground plane coor-
dinate system

y =
(
y1
y2

)
2D coordinates in the 3D world ground plane

x̃, ỹ, X̃ Homogeneous coordinates, i.e.

x̃ =
(
x
1

)
, ỹ =

(
y
1

)
, X̃ =

(
X
1

)
Projection matrix, P Also known as camera matrix. Mapping between 2D

image coordinates, x, and 3D world coordinates, X,

x̃ =
(
x
1

)
∼ P

(
X
1

)
= PX̃

Homography, H Mapping between points in two planes,

x̃ =
(
x
1

)
∼ H

(
y
1

)
= Hỹ

Camera matrix, K Contains camera intrinsic parameters, generally

K =

γf sf cx
0 f cy
0 0 1

 (12)

where f = focal length, c = (c1, c2) = principal point
(origin), s = skew, γ = aspect ratio. We will assume
s = 0 and γ = 1 here.

Plane parameters, V Representation of the 3D ground plane,
V1X + V2Y + V3Z + V4 = 0

Transformation, T Transformation between original 3D coordinate system
and ground plane coordinate system, Ỹ = TX̃.

We assume here that the lens distortion has been removed, i.e. that all image
coordinates belong to the undistorted domain (x = xu).

This section is based on the references [14, 11, 32].
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Figure 40: The camera, the 3D world, and the ground plane. Each of these
three have a coordinate systems.

D.2 3D ground plane

D.3 Plane estimation

The 3D plane is here assumed to be fairly parallel to the X,Y -plane. We can
therefore estimate the plane from the least squares problem

min
∑

k

(Zk − a− bXk − cYk)2 . (13)

The plane vector becomes V = (b , c ,−1 , a).

D.4 3D ↔ plane coordinate transformation

It is useful to have a mapping between 3D points X to plane coordinates (y1, y2).
For this we define the plane coordinate system as

{v̂1, v̂2, n̂} where
v̂1 =

(
0 V3 −V2

)T
/
√
V 2

2 + v2
3

v̂2 = n̂× v̂1

n̂ =
(
V1 V2 V3

)T
/
√
V 2

1 + V 2
2 + v2

3

(14)

Let
Rp =

(
v̂1 v̂2 n̂

)T (15)

and define the translation vector

tp =

 0
0

V4/
√
V 2

1 + V 2
2 + v2

3

 . (16)

Then {Rp, tp} defines the mapping between 3D points coordinate system and
plane coordinate system. For example, a 3D point X is transformed to the plane
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coordinate system as
Y = RpX + tp . (17)

The first two elements in Y contains the coordinates (y1, y2) within the plane,
and the third element y3 is the distance between the point and the plane. And
the other way around, a point (y1, y2) in the plane can be transformed to the
corresponding 3D point as

X = RT
p

y1y2
0

− tp

 . (18)

For later use we also define the transformation matrix

T =
(
Rp tp

0 1

)
, (19)

and we have the relation
Ỹ = TX̃ . (20)

D.5 Some theory and relations

Assume that we have a point x in the image, a corresponding point X in the
3D world, and that the same point is described by y in the 3D world ground
plane. The mapping between x and y is defined by the homography as

x̃ ∼ Hỹ . (21)

The mapping between x and X is defined by the projection matrix as

x̃ ∼ PX̃ . (22)

D.6 Relation between H and P

It is easier to relate the homography for the 3D (ground) plane and the projec-
tion matrix if we describe the 3D point X in the 3D plane coordinate system
Y. Putting the relation (20) into (22) gives

x̃ ∼ PT−1Ỹ . (23)

Let P′ = PT−1 denote the projection matrix relative to the plane coordinate
system. It is fairly easy to see that columns 1, 2, and 4 in P′ equals H (the
homography describes mapping of points in the plane y3 = 0), i.e.

P′ ∼
(
H1 H2 u H3

)
, (24)

where Hk denotes column k in H, and u denotes the extra ’missing’ column.
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D.7 Focal length from H

In this section we assume that the principal point c is known (e.g. from the lens
distortion calibration), and that we want to estimate the focal length from the
homography. The projection matrix P′ can be written as

P′ = K
(
R t

)
, (25)

where K is the camera matrix

K =

f 0 c1
0 f c2
0 0 1

 (26)

and R and t are the rotation and translation that transforms the image coor-
dinate system to the 3D world plane coordinate system. Let R = (r1 r2 r3).
Then, from (24) we have that

H = αK
(
r1 r2 t

)
, (27)

where α is an unknown proportionality factor. We thus have that αr1 = K−1H1

and αr2 = K−1H2. Since r1 and r2 are columns in a rotation matrix we know
that

‖r1‖ = ‖r2‖ = 1 (28)

rT
1 r2 = 0 (29)

This knowledge can be used to estimate the focal length. Constraint (28) leads
to

(H11 − c1H31)2 + (H21 − c2H31)2 + f2H2
31 = f2α2

(H12 − c1H32)2 + (H22 − c2H32)2 + f2H2
32 = f2α2 , (30)

which has the solution

f =

√
(H11 − c1H31)2 + (H21 − c2H31)2 − (H12 − c1H32)2 − (H22 − c2H32)2

H2
32 −H2

31

(31)

α =

√
(H11 − c1H31)2 + (H21 − c2H31)2 + f2H2

31

f2
. (32)

We may also use the constraint (29) to derive an estimate of f . Preliminary
experiments indicate however that this latter solution is less reliable.

D.8 Camera position from P

The focal point f is the right null space of P, i.e.

Pf = 0 . (33)
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The focal point defines the camera position in the 3D space. It is easy to verify
that the focal point can be written as

f =
(
−P−1

1:3P4

1

)
, (34)

where P1:3 denotes the three first columns in P and P4 denotes the last fourth
column.

D.9 3D position X from image position x

The mapping from a 2D image point x to a 3D point X is not unique. In this
section we assume that the height above the ground plane (i.e. y3) is known.

It can be verified that a point x maps to the 3D ray

X = X0 + sU where

{
X0 = −P−1

1:3P4 (the focal point)
U = P−1

1:3x̃
(35)

This ray transformed into plane coordinates becomes

Y = RpX + tp = RpX0 + tp + sRpU . (36)

The line parameter s can be determined if y3 is known. Then the point Y can
be computed, and finally we can go back to the original 3D coordinate system
and get the desired 3D point X.

D.10 Estimation of homography, H

The goal here is to estimate H in (21). Let hkT denote row k in the matrix H
and let

h =

h1

h2

h3

 (37)

denote the matrix H reshaped into a vector.

D.11 Estimation of H from point correspondences

Equation (21) can be formulated

x̃×Hỹ , (38)

which can be rewritten as 0T −ỹT x2ỹT
1

ỹT 0T −x1ỹT

−x2ỹT x1ỹT 0T

h = 0 . (39)
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Note that the three rows in the equation system are linearly dependent and the
third row can therefore be removed, thus leaving the system(

0T −ỹT x2ỹT
1

ỹT 0T −x1ỹT

)
h = 0 . (40)

This is a linear equation system which can be solved for H using SVD, after
collecting equations from a number of points.

D.12 Estimation of H from line correspondences

A line in the 3D ground plane may be represented by two points y0 and y1

through which the line passes. The condition that these points lies on a line
l = (l1, l2, l3) in the image is

lT Hỹi , i = 0, 1 . (41)

which can be rewritten using h in (45) as(
l1ỹT

i l2ỹT
i l3ỹT

i

)
h = 0 , i = 0, 1 . (42)

This is a linear equation system which can be solved for H using SVD, after
collecting equations from a number of lines.

Note that we can use both point correspondences and line correspondences
simultaneously by combining (40) and (42).

D.13 Pre-processing and post-processing

In order to get a more stable solution, it is sometimes useful to pre-process the
data. In this case we compute

x′ = Wx(x−mx) ,
y′ = Wy(y −my) . (43)

The transformation may for example be based on the mean and standard devia-
tion of the data, to get values somewhere in the range [−1, 1]. The homography
H′ is then estimated using x′ and y′ and one of the methods above. The final
homography is then computed as

H =
(
Wx −Wxmx

0 1

)−1

H′
(
Wy −Wymy

0 1

)
. (44)

D.14 Estimation of projection matrix, P

The goal here is to estimate P in (22). Let pkT denote row k in the matrix P
and let

p =

p1

p2

p3

 (45)

denote the matrix P reshaped into a vector.
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D.15 Direct estimation of P from point correspondences

This method is useful when the 3D data points does not lie only in a plane.
The method may still be useful if all points lie within a plane, but may then
be unstable. The direct method to estimate P is very similar to the method of
estimating H in section D.10. Reformulate 22 as

x̃×PX̃ = 0 . (46)

which can be rewritten as 0T −X̃T x2X̃T
1

X̃T 0T −x1X̃T

−x2X̃T x1X̃T 0T

p = 0 . (47)

The three rows in the equation system are linearly dependent and the third row
can therefore be removed, thus leaving the system(

0T −X̃T x2X̃T
1

X̃T 0T −x1X̃T

)
p = 0 . (48)

This is a linear equation system which can be solved for P using SVD, after
collecting equations from a number of points.

Similar pre-processing and post-processing as in section D.13 may be used
here as well in order to achieve a more reliable solution.

D.16 Direct estimation of P from line correspondences

A line in 3D may be represented by two points X0 and X1 through which the
line passes. The condition that these points lies on a line l = (l1, l2, l3) in the
image is

lT PX̃i , i = 0, 1 . (49)

which can be rewritten using p in (45) as(
l1X̃T

i l2X̃T
i l3X̃T

i

)
p = 0 , i = 0, 1 . (50)

This is a linear equation system which can be solved for P using SVD, after
collecting equations from a number of lines.

Note that we can use both point correspondences and line correspondences
simultaneously by combining (48) and (50).

D.17 Estimation of P from ground plane homography H

This method is useful when the 3D points lie in a (ground) plane. The method
is as follows:

1. First, estimate the ground plane, V (section D.3). Transform the points
X to ground plane coordinates y (section D.4).
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2. Estimate the homography H between image points x and points in the
ground plane y (section D.10).

3. Estimate the focal length f (section D.7 if we not already know the focal
length from some other method).

4. Use the formulas section D.7 to compute α, K, r1, and r2. Then compute
r3 = r1 × r2.

5. Compute the image-to-groundplane projection matrix P′ as

P′ =
(
H1 H2 αKr3 H3

)
. (51)

6. Finally, compute the image-to-3D projection matrix P = P′T, where T
is the 3D-to-plane transformation matrix (19).
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Figure 41: 3D data.

D.18 Examples

This section illustrates the theory in previous sections.

D.18.1 The data

The GPS 3D data is shown in figure 41. There are two cameras at different
positions in the intersection. The camera images are shown in figure 42.

D.18.2 Camera 1: Estimation of P directly

The result for camera 1 using the direct method is shown in the top image in
figure 43.

D.18.3 Camera 2: Estimation of P from H

The result for camera 2 using the H method is shown in the bottom image in
figure 43.
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Figure 42: The two camera images and the landmarks.
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Figure 43: Result for camera 1 and 2. The circle marks out a region with radius
70m.
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Figure 44: Result for camera 1 and 2 mapped to the 3D domain. The circle
marks out a region with radius 70m.
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E Simultaneous camera ego-motion compensa-
tion and rectification

We will here describe a theory for simultaneous compensation of camera ego-
motion and image rectification. See figure 45 for an overview.

This section is outlined as follows: Sections E.1-E describe the theories for
image point tracking, lens distortion rectification, and camera ego-motion es-
timation. Section E.4 gives the implementational details. Section E.5 gives a
short description of a statistical background model estimator, which is used as
a part of the performance evaluation experiments in section E.6.

E.1 Image point tracking

Our camera ego-motion estimation needs a number of traced points to compute
the ’mean’ image (point) position. For this we use the KLT (Kanade-Lucas)
tracker, see e.g. [27, 22, 31], which tracks a local region template with a subpixel
translation model. The KLT tracker is based on the early work of Lucas and
Kanade [22], and was fully developed by Tomasi and Kanade [31].

At first we tried using the Harris interest point detector, see [13], to find
suitable regions to track (c.f. [27]). But we finally decided to use a regularly
sampled grid, in order to have the points spread out in the entire image in a
simple manner, see figure 46.

In practice, the point grid has to be reset once in a while due to changes
in light and in the static environment. We therefore use two grids that overlap
in time and are alternately reset. A first per-point bounding box outlier test is
applied to eliminate points that are too far from their original position, i.e. are
stuck on some moving vehicle. This step is necessary for getting a good initial
guess for the ego-motion solver. The active grid points are later fed in the
ego-motion solver to estimate the motion of the camera.

E.2 Lens distortion model

Lens distortion rectification deals with the mapping between the captured, ra-
dially distorted, image and a rectified image where the pinhole camera model
can be applied, see figure 47 for an example. For our application we used the
FOV model from [10], but the choice of model is not critical for the implemen-
tation performance due to the highly programmable nature and computational
performance of a modern graphics card. The model is briefly described below.

Let xd denote a point in the distorted image, xu the corresponding point in
the undistorted image, and rd = ‖xd‖, ru = ‖xu‖. The FOV model is defined
as

rd =
1
ω

arctan
(
2ru tan

ω

2

)
⇔ ru =

tan(rdω)
2 tan ω

2

. (52)

This model corresponds to an ideal fish-eye lens (but also seems to work well
for more regular lenses, according to [7]). The parameter ω corresponds to the
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Sec E.1: Image point tracking

KLT
⇒

��
Sec E.2: Map points to undistorted domain

ω, sx, cd

⇒

��Sec E: Estimate camera ego-motion from
current point positions to average point

positions

⇒

↘ ↙
t,Ω

��
Simultaneously map distorted image to

undistorted domain and to the mean position

ω, sx, cd

t,Ω
⇒

Figure 45: Process overview.
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Figure 46: Example of point grid.

Distorted image Id Undistorted/rectified image Iu

Figure 47: Example of lens distortion and image rectification.

field of view (FOV) angle.
We have observed that this model does not preserve the metric in the image

center (i.e. dru

drd
= 1 at rd = 0), which sometimes is desirable if we do not want

to loose resolution anywhere in the image. Of course one could always rescale
ru in (52) after the mapping from rd, to fulfill to the preservation requirement.
But this is equivalent to using the simpler expression

rd =
arctan(ruω)

ω
⇔ ru =

tan(rdω)
ω

. (53)

Note that this new ω (the same symbol is kept for simplicity) has the unit
[radians/pixel] if rd, ru are measured in pixels.

In line with [10], we also include parameters for the origin and aspect ratio
according to

xd =
(
sx 0
0 1

)
x′d + cd (54)
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(hence we use rd = ‖x′d‖ in (53) instead). For the estimation of the lens param-
eters (ω, sx, cd) see appendix C.

Undistorted points, xu, will from now on be denoted x = (x, y) for simplicity.

E.3 Camera ego-motion compensation

E.3.1 Ego-Motion model

There exist several different camera ego-motion models, depending on the type
of camera motion (e.g. only rotation) and the geometry of the 3D world (e.g. flat
world). In our case we have camera rotation as well as translation, and we did
not want to restrict ourselves to a flat world since many intersections are close
to buildings and trees.

Let T = (TX , TY , TZ)T denote the instantaneous translation and Ω =
(ΩX ,ΩY ,ΩZ)T the instantaneous rotation. Moreover, let f denote the camera
focal length and (X,Y, Z) denote the 3D point that corresponds to the point
x = (x, y)T in the image in a common coordinate system, see figure 48.

Figure 48: Camera geometry and motion parameters

It is well known that the instantaneous motion v at point x, assuming a
pinhole camera, in the general case can be expressed as

v(x) =
(
f 0 −x
0 f −y

)(
1

Z(x)
T +

1
f
Ω⊗

(
x
f

))
(55)

=
1

Z(x)

(
f 0 −x
0 f −y

)
T +

(
−xy

f (f + x2

f ) −y
−(f + y2

f ) xy
f x

)
Ω

Unfortunately (and naturally) the translation term depends on the distance to
the observed 3D point, Z, which is unknown in our case. Various approximations
to the first (the translation) term have been tested, e.g.

0 ,
(

1 0
0 1

)
t ,

(
x 0
0 y

)
t ,

(
1 0 x 0
0 1 0 y

)
t . (56)
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The best choice depends (by empirical studies) on the camera setup relative to
the 3D ground, existing static objects in the view, etc. We currently use the
third one from the left.

E.3.2 Model estimation

The main idea in the ego-motion compensation is to warp the image so that
tracked points in the image (assumed to follow from the ego-motion) map to
their average position in time.

Let {x(t)k} denote a set of K points that have been tracked for a period
of time, and mapped to the undistorted domain (the tracking is done in the
original distorted image). Before we use these points to estimate the camera
ego-motion, we first remove outliers by the following criteria: A point that has
moved too far from its initial position (the camera pole motion is bounded) will
be classified as an outlier for a period of time. If the point after that time is
inside the box again, then it is reinstated as an inlier, otherwise it is removed
for another period of time. Typically, this handles points that are temporarily
occluded by passing objects.

The average position in time is then computed for the remaining points,
denoted {x̄k}. After that we compute the motion of point k at time t as vk(t) =
xk(t)− x̄k.

The camera ego-motion parameters t,Ω in (55-56) can then be computed
as the solution to a least squares problem by collecting (55-56) from the set
{vk(t),xk(t)} (excluding the outliers).

As a way to make the estimation more robust, new outliers are found as
points that do not fulfill the estimated ego-motion (55-56) very well, i.e. have a
large residual. The least squares problem is then solved again to give the final
estimate.

Once the ego-motion parameters are estimated, we can warp the image ac-
cordingly to the ’average’ position. The image rectification is done at the same
time. In this way we avoid the additional blur caused by resampling the image
twice.

E.4 GPU implementation

E.4.1 Programing Interface

There exist several possible ways to implement algorithms on a GPU. One way
is to use a Graphics API (Application Programing Interface) such as DirectX or
OpenGL. These APIs have a large support from different software and hardware
platforms, especially OpenGL which lets you develop applications on every thing
from small mobile devices and PlayStation 3 to any PC. There are however some
limitations on flexibility. It can be very difficult if not impossible to make some
algorithms efficient, even if they are parallel in their nature. This is the main
reason why two of the biggest graphics hardware vendors have come up with
more versatile APIs. NVIDIA has released CUDA, and AMD has developed
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the Stream SDK. These are more flexible and can make use of special hardware
functionality, such as shared memory between processors and random address
writes. These APIs are however vendor specific, and demand newer generations
of their Graphics boards. We have chosen to implement our algorithm in a
Graphics API (DirectX), mainly for two reasons. It uses functionality specific
to Graphics APIs, and as far as we can see the KLT algorithm would not benefit
from the extra functionalities of the new APIs. Because of the similarities
between the Graphics APIs, techniques used here can easily be transfered to
OpenGL.

E.4.2 The KLT Tracker

The KLT tracker is based on the early work of Lucas and Kanade [22], and was
fully developed by Tomasi and Kanade [31]. They define the dissimilarity ε(d)
between two local regions in two images (I and J) as:

ε(d) =
∫∫

W

(
I(x+

d

2
)− J(x− d

2
)
)2

dx . (57)

Here d = (dx, dy) is the displacement between the two regions and W defines
the spatial window (patch size). To find the displacement, the dissimilarity (57)
is approximated by its first order Taylor expansion and the minimum is found
by differentiation. For the case of discrete images the solution is computed from
the 2× 2 equation system:( ∑∑

w g
2
x

∑∑
w gx · gy∑∑

w gy · gx

∑∑
w g

2
y

)(
dx

dy

)
= 2

(∑∑
w(I − J)gx∑∑
w(I − J)gy

)
, (58)

where gx = I ′x + J ′x and gy = I ′y + J ′y. A more detailed derivation is found in
[15].

Calculation Scheme The KLT algorithm is an iterative process, where each
iteration can be divided into 5 steps, see Figure 49. Here follows a short ex-
planation of each step. We first extract the two patches (linearly interpolated)
that are going to be matched, for the following steps only the elementwise sums
and differences are needed so these are also calculated here. Next we apply an
neighboring pixel difference filter to Iw + Jw. The gradients are multiplied ele-
mentwise, as shown in the figure. Then we sum over the 5 unique elements. The
last step of the iteration is to estimate the disparity by solving the 2x2 equation
system. The J patch position is adjusted according to the current disparity
estimate and then the iteration process is started over again. Several different
stop criteria exist, this implementation uses a fixed number of iterations.

The KLT has been implemented on the GPU before [28]. There is however
a significant difference between their implementation and ours. They do all
the calculations for an entire patch and all its iterations in one shader thread
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Figure 49: Illustration of the different steps in a GPU implementation of a KLT
tracker.

(corresponds to one pixel calculation when doing graphics on the GPU). This is
a good solution for the problem if there are enough points to track, however if
there are a smaller amount of points (as in our implementation) the GPU will
not be fully utilized. The main reason for this is that the GPU uses a large
amount of threads to hide memory load latency and thread synchronization.
Our method divides the patch calculations to a larger extent between different
processors, and therefore can handle smaller amounts of patches more efficient.

Performance The hardware which was used for measuring the performance of
the implementation has an Intel Core 2 Duo E6600 CPU, and the graphics board
used is based on the Geforce 8800 GTX GPU from NVIDIA. The performance
measure of the KLT is based on the following numbers. The two tracking grids
were individually made up of 16x16 tracking points, giving us a total of 512
patches to track. To have enough structure within each patch we chose 32x32
as their size. The number of of iterations was set to 6, and the total computation
time was 3 ms/frame.

When solving the 5 parameter least square problem for the ego-motion model
in section E.3.2, a CPU version of Lapack is used. There are two reasons for
this. It creates a better GPU-CPU load balance, and it is easer and almost as
fast to use an already finished CPU implementation of an LSQ-Solver.

E.5 Statistical background segmentation

We will in the experiments use time difference, ‖Iu(t) − Iu(t − 1)‖, to evalu-
ate the stabilization performance. However, the subsequent step in an image
processing based object tracking system is usually some background/foreground
classification. One method for background subtraction that has become popu-
lar in recent years is [30] statistical background modeling, This method collects
color statistics in each pixel individually during time and detects foreground
pixels as pixels that have an uncommon color. This method has also been com-
bined with shadow detection in [35], and this combination is currently used in
our system. The statistical background model has some ability to handle ego-
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motion due to the statistical model, but we will show in the experiments that
the compensation still improves the result.

We use a CPU implementation of this method, but it can also be imple-
mented in GPU, see e.g. [19].

E.6 Experiments

Figures 50-55 show some results on a windy day. The used video was 1h long
at 20 fps, but the plot shows only a portion. The plot in figure 50 shows the
average time difference, i.e. mean(‖Iu(t)− Iu(t− 1)‖ > threshold), as function
of time. We choose to compute the average after thresholding, to ignore the
effects from sensor and compression noise that otherwise gives a large total
contribution even though it is low in each pixel. The plot shows the average
both without and with ego-motion compensation. We see that the average
without the compensation contains a lot of spikes, which are to a great extent
removed by the compensation. The remaining fluctuation mainly comes from
moving objects in the image.

The plot in figure 51 shows the corresponding average for the statistical
background subtraction with shadows detected and removed. This method can
deal with some ego-motion even without the compensation, but the result is
still better after the compensation.

Figures 52-55 shows the frames where the averages with and without com-
pensation differ the most, i.e. in a sense the ’best’ and ’worst’ cases. However,
the ’worst’ case only shows that the performance is not decreased when using
the compensation. There are still some cases in the sequence where the compen-
sation has been insufficient, due to some extraordinary motion, figure 56 shows
an example. These cases however appear to be quite rare.

E.7 Performance

When measuring the overall performance of the implementation, we include all
steps starting when the image is in main memory (CPU memory) and end-
ing when the result has been downloaded to main memory. More precisely,
the implementation uploads the 1024x768 image into the graphics memory, and
computes the tracking. Then the least squares ego-motion problem is solved and
the image is transformed accordingly to the ego-motion solution and the recti-
fication parameters. The resulting image is then downloaded from the graphics
memory (larger due to rectification, approximately 1440x1000). The measured
time for these operations is 33 ms/frame, well within the bounds of a real-time
system.
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Frame number

Figure 50: Example of mean value of (the thresholded) time difference as func-
tion of time. Both with and without ego-motion compensation.

Frame number

Figure 51: Example of mean value of the statistical subtraction as function of
time. Both with and without ego-motion compensation.
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Iu(t) ‖Iu(t)− Iu(t− 1)‖ > th ‖Iu(t)− Iu(t− 1)‖ > th
without compensation with compensation

Figure 52: The frame where the averages with and without compensation has
the largest negative difference. Col 1: Rectified image. Col 2: Frame differ-
ence without ego-motion compensation (using th=50, the original had 255 as
max value on each color channel). Col 3: Frame difference with ego-motion
compensation.

Iu(t) ‖Iu(t)− Iu(t− 1)‖ > th ‖Iu(t)− Iu(t− 1)‖ > th
without compensation with compensation

Figure 53: The frame where the averages with and without compensation has
the largest positive difference.

Iu(t) Statistical subtraction Statistical subtraction
without compensation with compensation

Figure 54: The frame where the averages with and without compensation has the
largest negative difference. Col 1: Rectified image. Col 2: Statistical subtraction
without ego-motion compensation. Col 3: Statistical subtraction with ego-
motion compensation.

Iu(t) Statistical subtraction Statistical subtraction
without compensation with compensation

Figure 55: The frame where the averages with and without compensation has the
largest positive difference. (Note that the subtraction indicates a false vehicle
near the center of the image. This is because a vehicle earlier in time has been
temporarily stationary for a longer period of time and has therefore become
part of the background.)
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Iu(t) Statistical subtraction Statistical subtraction
without compensation with compensation

Figure 56: Col 1: Rectified image. Col 2: Frame difference without ego-motion
compensation. Col 3: Frame difference with ego-motion compensation, where
the compensation was insufficient.
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F Algorithm for the statistical background model
and foreground-shadow-highlight classification

The algorithm below is a generalization of [35] to also include highlight detec-
tion. Algorithm 1 describes the updating of the background model parameters
(the same as in [35]). Algorithm 2 use the background model to classify pixels
into foreground/shadow/highlight. The notation used in both algorithms can
be found in table 2.

Table 2: Notation for algorithm 1 and 2.
xt pixel value at time t
ft frame at time

w mixing density
µ mean
σ2 variance

xrgb,t, µrgb,k RGB-components of xt and µk

K number of mixture components
D dimension of mixture components
α learning rate
λ threshold

σ2
init initial covariance vector
σ2

min minimum covariance component allowed
T threshold

k integer in the range [1, ...,K]
m integer in the range [1, ...,K]

match boolean

B number of mixture components belonging to the background
B̂ class label (background>0, foreground=-1, shadow=-2, highlight=-3)

β1, β2 shadow thresholds 0 ≤ β1 < β2 < 1
τs chrominance threshold for the shadow

β3, β4 highlight thresholds 1 < β3 < β4

τh chrominance threshold for the highlight

◦ element-wise multiplication
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Algorithm 1 Background modeling update using a mixture of D-dimensional
Gaussians
1: for all xt in ft do
2: match = 0
3: # Check if the new color is close to one of the components
4: for all k ∈ [1, ...,K] do
5: d2

k =
∑D

d=1
(xt,d−µk,d)2

σ2
k,d

6: if dk < λ then
7: if match = 0 then
8: m = k
9: else if wk√

‖σ2
k‖
> wm√

‖σ2
m‖

then

10: m = k
11: end if
12: match = 1
13: end if
14: end for
15:

16: if match = 0 then
17: # The new color is not close to a component, initiate a new component
18: # (by reusing the least useful component)
19: m = K
20: wm = α
21: µm = xt

22: σ2
m = σ2

init

23: else
24: # The new color is close to a component, update that component
25: wm = (1− α)wm + α
26: ρm = α

wm

27: µm = (1− ρm)µm + ρm · xt

28: σ2
m = (1− ρm)σ2

m + ρm(xt − µm) ◦ (xt − µm)
29:

30: Make sure no components of σ2
m are less than σ2

min.
31: end if
32:

33: # Decrease weights for non-matching components
34: for all k ∈ [1, ...,K] 6= m do
35: wk = (1− α)wk

36: end for
37:

38: # Sort components according to importance
39: if match 6= 0 then
40: Sort w, µ, σ with respect to ( w1√

‖σ2
1‖
, ..., wK√

‖σ2
K‖

).

41: end if
42:

43: # Find the (number of) components that models the background
44: B = argminb

(∑b
k=1 wk > T

)
45: end for



Algorithm 2 Background subtraction for algorithm 1 incorporating shadow
and highlight detection.
1: for all xt in ft do
2: B̂ = −1
3: # Check if the new color belongs to the background
4: for all k ∈ [1, ..., B] do
5: d2

k =
∑D

d=1
(xt,d−µk,d)2

σ2
k,d

6: if dk < λ then
7: B̂ = k
8: end if
9: end for

10:

11: # Classify foreground pixels
12: if B̂ = −1 then
13: for all k ∈ [1, .., B] do

14: Dv = xT
rgb,tµ̂rgb,k

‖µrgb,k‖
15: Dc = ‖xrgb,t − (xT

rgb,tµ̂rgb,k)µ̂rgb,k)‖
16: if β1 ≤ Dv ≤ β2 and Dc ≤ τs then
17: # Shadow
18: B̂ = −2
19: break
20: else if β3 ≤ Dv ≤ β4 and Dc ≤ τh then
21: # Highlight
22: B̂ = −3
23: break
24: end if
25: end for
26: end if
27: end for
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G 3D box optimization procedure

This section describes the optimization procedure to find the optimal 3D box
model to an image of a segmented object, see section 9 for more details. We
repeat the similarity measure for reference:

Let I(x) be the classified image and S(x) be the simulated image, and rep-
resent the classes as follows

I(x), S(x) =

 0 if background
128 if shadow
255 if foreground

(59)

Furthermore, let V denote the valid pixels, i.e. pixels that are not occluded by
other objects (buildings, vehicles, image rectification borders, etc.). Define the
similarity between the classified image and the simulated image as

s(I, S) =
∑
x∈V

p(I(x))S(x) , (60)

where

p(I) =

 pb < 0 if I=0 (background)
ps > 0 if I=128 (shadow)
pf > 0 if I=255 (foreground)

(61)
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Algorithm 3 Optimization of box position (fixed size and orientation). Basi-
cally, the algorithm tries different positions, with decreasing step size, around
the currently best value/state until the similarity measure is no longer increas-
ing.

Let {Tn} = { Increase x, Decrease x, Increase y, Decrease y }, with initially
1 meter step size (then divided by two a few times during the iterations).

# Given size, orientation, and initial position
(L,W,H, x0, y0, ϕ) = ...
# Initial optimum
sopt = −∞
Bopt = {L,W,H, x0, y0, ϕ}
# Loop over transformation scales
for m ∈ [0, ...,M ] do

# Loop over list of transformations as long as optimum is increasing
iter = 0
n = 0
while iter < |{Tk}| do

iter = iter + 1
n = mod(n+ 1, |{Tk}|) # Get next transformation
Bnew = transform(Bopt, Tn/2m) # Transform box
Snew = simulate box image(Bnew) # Simulate a box image
snew = s(I, Snew) # Compute similarity
# Store new optimum if new box is better
if snew > sopt then
sopt = snew

Bopt = Bnew

iter = 0
end if

end while
end for
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Algorithm 4 Optimization of box position and size (fixed orientation). Basi-
cally, the algorithm tries different sizes in algorithm 3.

# Given orientation, and initial position
(x0, y0, ϕ) = ...
# Loop over list of box sizes
sopt = −∞
for all (Lk,Wk,HK) in {(Lk,Wk,Hk)} do

# Optimize position using algorithm 3
(sk,Bk) = algorithm 3(Lk,Wk,Hk, x0, y0, ϕ)
# Store new optimum if new box is better
if sk > sopt then
sopt = sk

Bopt = Bk

end if
end for
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H Linear models

This section shortly summarize the linear models ’constant speed’ and ’constant
acceleration’ that have been explored in the causal and non-causal Kalman filters
in the tracking system. Details on these linear models can be found in e.g. [34].
The formulas describe the 1D version, but can easily be generalized to the 2D
case.

We will for the state and measurement equations in the Kalman filter use
the notation (same as in [33])

xk+1 = Axk + wk (62)
zk+1 = Hxk + vk (63)

where x is the state vector, z is the measurement vector, and w,v are the
state noise and measurement noise respectively. Furthermore, let Q denote the
process covariance matrix and R the measurement noise covariance matrix.

H.1 Constant speed

Let the constant speed model denote the constraint v̇(t) = bẇ(t), where w
is white unit noise. This model corresponds in the discrete case (assuming
piecewise constant noise during the sample period T ) to

x =
(
x
v

)
, A =

(
1 T
0 1

)
, Q = b2

(
T 3/3 T 2/2
T 2/2 T

)
(64)

H.2 Constant acceleration

Let the constant acceleration model denote the constraint ȧ(t) = bẇ(t), where
w is white unit noise. This model corresponds in the discrete case (assuming
piecewise constant noise during the sample period T ) to

x =

xv
a

 , A =

1 T T 2/2
0 1 T
0 0 1

 , Q = b2

T 5/20 T 4/8 T 3/6
T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T


(65)
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I Bicycle Model

This section describes how to derive the differential equations which govern the
bicycle model’s dynamic motion and how to write them in a time discrete form.
A good introduction to the Kalman filter and EKF can be found in [33]. The
bicycle model is illustrated in figure 57.

Figure 57: The bicycle model.

From rigid body mechanics for planar motion we know that the speed in
point B is

vB = vA +ωωω × rB/A , (66)

where vA is the velocity along the bicycle, ω = θ̇, and rB/A is read the distance
vector from point A to B. With the notation introduced in figure 57, (66) gives
the following equations

ẋ = v cos θ +
v

2
tanψ sin θ (67)

ẏ = v sin θ +
v

2
tanψ cos θ (68)

θ̇ =
v tanψ

l
(69)

ψ̇ = b (70)
v̇ = a , (71)
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where a and b are constant, and v = vA.
(Hint: Use v2

B = v2
A +(θ̇l)2 and θ̇l = vB sinψ to get θ̇l = vA tanψ = v tanψ.

Then put this result into ẋ = vO = vA + 1
2ωωω × rB/A = ...)

Time Discretization
In order to use (67)-(71) for extended Kalman filtering (EKF) the equations

needs to be written in a discrete form. A simple way to achieve discrete form
this is to utilize the Euler method for solving the differential equations, which
gives the following equations

xk = xk−1 + T (vk−1 cos θk−1 +
vk−1

2
tanψk−1 sin θk−1) (72)

yk = yk−1 + T (vk−1 sin θk−1 +
vk−1

2
tanψk−1 cos θk−1) (73)

θk = θk−1 + T
vk−1 tanψk−1

l
(74)

ψk = ψk−1 + Tb (75)
vk = vk−1 + Ta , (76)

where T is the time step. Equations (72)-(76) can then be used in an extended
Kalman filtering scheme.
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J Simplified Bicycle Model

This section describes how to derive the differential equations which govern the
bicycle model’s dynamic motion and how to write them in a time discrete form.
A good introduction to the Kalman filter and EKF can be found in [33]. The
simplified bicycle model is illustrated in figure 58.

Figure 58: The simplified bicycle model.

J.1 Constant speed model

With the notation introduced in figure 57 define a state vector and its derivative
as

x(t) =


x(t)
y(t)
θ(t)
v(t)

 , ẋ(t) =


ẋ(t)
ẏ(t)
θ̇(t)
v̇(t)

 =


v(t) cos θ(t)
v(t) sin θ(t)

0
0

 . (77)

Time Discretization
In order to use (77) for extended Kalman filtering (EKF) the equations needs

to be written in a discrete form. A simple way to achieve discrete form this is
to utilize the Euler method for solving the differential equations, which gives
the following equations

xk =


xk

yk

θk

vk

 =


xk−1 + Tvk−1 cos θk−1

yk−1 + Tvk−1 sin θk−1

θk−1

vk−1

 . (78)

where T is the time step. Equations (78) can then be used in an extended
Kalman filtering scheme.
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J.2 Constant acceleration model

With the notation introduced in figure 57 define a state vector and its derivative
as

x(t) =


x(t)
y(t)
θ(t)
v(t)
θ̇(t)
a(t)

 , ẋ(t) =



ẋ(t)
ẏ(t)
θ̇(t)
v̇(t)
θ̈(t)
ȧ(t)

 =


v(t) cos θ(t)
v(t) sin θ(t)

θ̇(t)
a(t)
0
0

 . (79)

Time Discretization
In order to use (79) for extended Kalman filtering (EKF) the equations needs

to be written in a discrete form. A simple way to achieve discrete form this is
to utilize the Euler method for solving the differential equations, which gives
the following equations

xk =


xk

yk

θk

vk

θ̇k

ak

 =



xk−1 + Tvk−1 cos θk−1

yk−1 + Tvk−1 sin θk−1

θk−1 + T θ̇k−1

vk−1 + Tak−1

θ̇k−1

ak−1

 . (80)

where T is the time step. Equations (80) can then be used in an extended
Kalman filtering scheme.
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